File ‹Code/code_runtime.ML›
signature CODE_RUNTIME =
sig
val target: string
val value: Proof.context ->
(Proof.context -> unit -> 'a) * ((unit -> 'a) -> Proof.context -> Proof.context) * string ->
string * string -> 'a
type 'a cookie = (Proof.context -> unit -> 'a) * ((unit -> 'a) -> Proof.context -> Proof.context) * string
val dynamic_value: 'a cookie -> Proof.context -> string option
-> ((term -> term) -> 'a -> 'a) -> term -> string list -> 'a option
val dynamic_value_strict: 'a cookie -> Proof.context -> string option
-> ((term -> term) -> 'a -> 'a) -> term -> string list -> 'a
val dynamic_value_exn: 'a cookie -> Proof.context -> string option
-> ((term -> term) -> 'a -> 'a) -> term -> string list -> 'a Exn.result
val dynamic_holds_conv: Proof.context -> conv
val code_reflect: (string * string list option) list -> string list -> string
-> Path.binding option -> theory -> theory
val code_reflect_cmd: (string * string list option) list -> string list -> string
-> Path.binding option -> theory -> theory
datatype truth = Holds
val put_truth: (unit -> truth) -> Proof.context -> Proof.context
val mount_computation: Proof.context -> (string * typ) list -> typ
-> (term -> 'ml) -> ((term -> term) -> 'ml option -> 'a) -> Proof.context -> term -> 'a
val mount_computation_conv: Proof.context -> (string * typ) list -> typ
-> (term -> 'ml) -> (Proof.context -> 'ml -> conv) -> Proof.context -> conv
val mount_computation_check: Proof.context -> (string * typ) list
-> (term -> truth) -> Proof.context -> conv
val polyml_as_definition: (binding * typ) list -> Path.T list -> theory -> theory
val trace: bool Config.T
end;
structure Code_Runtime : CODE_RUNTIME =
struct
open Basic_Code_Symbol;
val thisN = "Code_Runtime";
val prefix_this = Long_Name.append thisN;
val truthN = prefix_this "truth";
val HoldsN = prefix_this "Holds";
val target = "Eval";
datatype truth = Holds;
val _ = Theory.setup
(Code_Target.add_derived_target (target, [(Code_ML.target_SML, I)])
#> Code_Target.set_printings (Type_Constructor (\<^type_name>‹prop›,
[(target, SOME (0, (K o K o K) (Code_Printer.str truthN)))]))
#> Code_Target.set_printings (Constant (\<^const_name>‹Code_Generator.holds›,
[(target, SOME (Code_Printer.plain_const_syntax HoldsN))]))
#> Code_Target.add_reserved target thisN
#> fold (Code_Target.add_reserved target) ["oo", "ooo", "oooo", "upto", "downto", "orf", "andf"]);
val trace = Attrib.setup_config_bool \<^binding>‹code_runtime_trace› (K false);
fun compile_ML verbose code context =
(if Config.get_generic context trace then tracing code else ();
Code_Preproc.timed "compiling ML" Context.proof_of
(ML_Context.exec (fn () => ML_Compiler0.ML ML_Env.context
{line = 0, file = "generated code", verbose = verbose,
debug = false} code)) context);
fun value ctxt (get, put, put_ml) (prelude, value) =
let
val code =
prelude ^ "\nval _ = Context.put_generic_context (SOME (Context.map_proof (" ^
put_ml ^ " (fn () => " ^ value ^ ")) (Context.the_generic_context ())))";
val ctxt' = ctxt
|> put (fn () => error ("Bad compilation for " ^ quote put_ml))
|> Context.proof_map (compile_ML false code);
val computator = get ctxt';
in Code_Preproc.timed_exec "running ML" computator ctxt' end;
type 'a cookie = (Proof.context -> unit -> 'a) * ((unit -> 'a) -> Proof.context -> Proof.context) * string;
fun reject_vars ctxt t =
((Sign.no_frees ctxt o Sign.no_vars ctxt o map_types (K dummyT)) t; t);
fun build_compilation_text ctxt some_target program consts =
Code_Target.compilation_text ctxt (the_default target some_target) program consts false
#>> (fn ml_modules => space_implode "\n\n" (map (Bytes.content o snd) ml_modules));
fun run_compilation_text cookie ctxt comp vs_t args =
let
val (program_code, value_name) = comp vs_t;
val value_code = space_implode " "
(value_name :: "()" :: map (enclose "(" ")") args);
in Exn.result (value ctxt cookie) (program_code, value_code) end;
fun partiality_as_none e = SOME (Exn.release e)
handle General.Match => NONE
| General.Bind => NONE
| General.Fail _ => NONE;
fun dynamic_value_exn cookie ctxt some_target postproc t args =
let
val _ = reject_vars ctxt t;
val _ = if Config.get ctxt trace
then tracing ("Evaluation of term " ^ quote (Syntax.string_of_term ctxt t))
else ()
fun comp program _ vs_ty_t deps =
run_compilation_text cookie ctxt (build_compilation_text ctxt some_target program deps) vs_ty_t args;
in Code_Thingol.dynamic_value ctxt (Exn.map_res o postproc) comp t end;
fun dynamic_value_strict cookie ctxt some_target postproc t args =
Exn.release (dynamic_value_exn cookie ctxt some_target postproc t args);
fun dynamic_value cookie ctxt some_target postproc t args =
partiality_as_none (dynamic_value_exn cookie ctxt some_target postproc t args);
structure Truth_Result = Proof_Data
(
type T = unit -> truth;
val empty: T = fn () => raise Fail "Truth_Result";
fun init _ = empty;
);
val put_truth = Truth_Result.put;
val truth_cookie = (Truth_Result.get, put_truth, prefix_this "put_truth");
local
val reject_vars = fn ctxt => tap (reject_vars ctxt o Thm.term_of);
fun check_holds ctxt evaluator vs_t ct =
let
val t = Thm.term_of ct;
val _ = if fastype_of t <> propT
then error ("Not a proposition: " ^ Syntax.string_of_term ctxt t)
else ();
val iff = Thm.cterm_of ctxt (Term.Const (\<^const_name>‹Pure.eq›, propT --> propT --> propT));
val result = case partiality_as_none (run_compilation_text truth_cookie ctxt evaluator vs_t [])
of SOME Holds => true
| _ => false;
in
Thm.mk_binop iff ct (if result then \<^cprop>‹PROP Code_Generator.holds› else ct)
end;
val (_, raw_check_holds_oracle) =
Theory.setup_result (Thm.add_oracle (\<^binding>‹holds_by_evaluation›,
fn (ctxt, evaluator, vs_t, ct) => check_holds ctxt evaluator vs_t ct));
fun check_holds_oracle ctxt evaluator vs_ty_t ct =
raw_check_holds_oracle (ctxt, evaluator, vs_ty_t, ct);
in
fun dynamic_holds_conv ctxt = Code_Thingol.dynamic_conv ctxt
(fn program => fn vs_t => fn deps =>
check_holds_oracle ctxt (build_compilation_text ctxt NONE program deps) vs_t)
o reject_vars ctxt;
end;
val generated_computationN = "Generated_Computation";
fun typ_signatures' T =
let
val (Ts, T') = strip_type T;
in map_range (fn n => (drop n Ts ---> T', take n Ts)) (length Ts + 1) end;
fun typ_signatures cTs =
let
fun add (c, T) =
fold (fn (T, Ts) => Typtab.map_default (T, []) (cons (c, Ts)))
(typ_signatures' T);
in
Typtab.empty
|> fold add cTs
|> Typtab.lookup_list
end;
local
fun tycos_of (Type (tyco, Ts)) = maps tycos_of Ts @ [tyco]
| tycos_of _ = [];
val ml_name_of = Name.desymbolize NONE o Long_Name.base_name;
in
val covered_constsN = "covered_consts";
fun of_term_for_typ Ts =
let
val names = Ts
|> map (suffix "_of_term" o space_implode "_" o map ml_name_of o tycos_of)
|> Name.variant_list [];
in the o AList.lookup (op =) (Ts ~~ names) end;
fun eval_for_const ctxt cTs =
let
fun symbol_list (c, T) = c :: maps tycos_of (Sign.const_typargs (Proof_Context.theory_of ctxt) (c, T))
val names = cTs
|> map (prefix "eval_" o space_implode "_" o map ml_name_of o symbol_list)
|> Name.variant_list [];
in the o AList.lookup (op =) (cTs ~~ names) end;
end;
fun monomorphic T = fold_atyps ((K o K) false) T true;
fun check_typ ctxt T t =
Syntax.check_term ctxt (Type.constraint T t);
fun check_computation_input ctxt cTs t =
let
fun check t = check_comb (strip_comb t)
and check_comb (t as Abs _, _) =
error ("Bad term, contains abstraction: " ^ Syntax.string_of_term ctxt t)
| check_comb (t as Const (cT as (c, T)), ts) =
let
val _ = if not (member (op =) cTs cT)
then error ("Bad term, computation cannot proceed on constant " ^ Syntax.string_of_term ctxt t)
else ();
val _ = if not (monomorphic T)
then error ("Bad term, contains polymorphic constant " ^ Syntax.string_of_term ctxt t)
else ();
val _ = map check ts;
in () end;
val _ = check t;
in t end;
val print_const = ML_Syntax.print_pair ML_Syntax.print_string ML_Syntax.print_typ;
fun print_of_term_funs { typ_signatures_for, eval_for_const, of_term_for_typ } Ts =
let
val var_names = map_range (fn n => "t" ^ string_of_int (n + 1));
fun print_lhs c xs = "Const (" ^ quote c ^ ", _)"
|> fold (fn x => fn s => s ^ " $ " ^ x) xs
|> enclose "(" ")";
fun print_rhs c Ts T xs = eval_for_const (c, Ts ---> T)
|> fold2 (fn T' => fn x => fn s =>
s ^ (" (" ^ of_term_for_typ T' ^ " " ^ x ^ ")")) Ts xs
fun print_eq T (c, Ts) =
let
val xs = var_names (length Ts);
in print_lhs c xs ^ " = " ^ print_rhs c Ts T xs end;
fun print_eqs T =
let
val typ_signs = typ_signatures_for T;
val name = of_term_for_typ T;
in
map (print_eq T) typ_signs
|> map (prefix (name ^ " "))
|> space_implode "\n | "
end;
in
map print_eqs Ts
|> space_implode "\nand "
|> prefix "fun "
end;
fun print_computation_code ctxt compiled_value [] requested_Ts =
if null requested_Ts then ("", [])
else error ("No equation available for requested type "
^ Syntax.string_of_typ ctxt (hd requested_Ts))
| print_computation_code ctxt compiled_value cTs requested_Ts =
let
val proper_cTs = map_filter I cTs;
val typ_signatures_for = typ_signatures proper_cTs;
fun add_typ T Ts =
if member (op =) Ts T
then Ts
else case typ_signatures_for T of
[] => error ("No equation available for requested type "
^ Syntax.string_of_typ ctxt T)
| typ_signs =>
Ts
|> cons T
|> fold (fold add_typ o snd) typ_signs;
val required_Ts = build (fold add_typ requested_Ts);
val of_term_for_typ' = of_term_for_typ required_Ts;
val eval_for_const' = eval_for_const ctxt proper_cTs;
val eval_for_const'' = the_default "_" o Option.map eval_for_const';
val eval_tuple = enclose "(" ")" (commas (map eval_for_const' proper_cTs));
fun mk_abs s = "fn " ^ s ^ " => ";
val eval_abs = space_implode ""
(map (mk_abs o eval_for_const'') cTs);
val of_term_code = print_of_term_funs {
typ_signatures_for = typ_signatures_for,
eval_for_const = eval_for_const',
of_term_for_typ = of_term_for_typ' } required_Ts;
val of_term_names = map (Long_Name.append generated_computationN
o of_term_for_typ') requested_Ts;
in
cat_lines [
"structure " ^ generated_computationN ^ " =",
"struct",
"",
"val " ^ covered_constsN ^ " = " ^ ML_Syntax.print_list print_const proper_cTs ^ ";",
"",
"val " ^ eval_tuple ^ " = " ^ compiled_value ^ " ()",
" (" ^ eval_abs,
" " ^ eval_tuple ^ ");",
"",
of_term_code,
"",
"end"
] |> rpair of_term_names
end;
structure Computation_Preproc_Data = Theory_Data
(
type T = thm list;
val empty = [];
val merge = Library.merge Thm.eq_thm_prop;
);
local
fun add thm thy =
let
val thms = Simplifier.mksimps (Proof_Context.init_global thy) thm;
in
thy
|> Computation_Preproc_Data.map (fold (insert Thm.eq_thm_prop o Thm.trim_context) thms)
end;
fun get ctxt =
Computation_Preproc_Data.get (Proof_Context.theory_of ctxt)
|> map (Thm.transfer' ctxt)
in
fun preprocess_conv { ctxt } =
let
val rules = get ctxt;
in fn ctxt' => Raw_Simplifier.rewrite ctxt' false rules end;
fun preprocess_term { ctxt } =
let
val rules = map (Logic.dest_equals o Thm.plain_prop_of) (get ctxt);
in fn ctxt' => Pattern.rewrite_term (Proof_Context.theory_of ctxt') rules [] end;
val _ = Theory.setup
(Attrib.setup \<^binding>‹code_computation_unfold›
(Scan.succeed (Thm.declaration_attribute (fn thm => Context.mapping (add thm) I)))
"preprocessing equations for computation");
end;
fun prechecked_computation T raw_computation ctxt =
check_typ ctxt T
#> reject_vars ctxt
#> raw_computation ctxt;
fun prechecked_conv T raw_conv ctxt =
tap (check_typ ctxt T o reject_vars ctxt o Thm.term_of)
#> raw_conv ctxt;
fun checked_computation cTs raw_computation ctxt =
check_computation_input ctxt cTs
#> Exn.result raw_computation
#> partiality_as_none;
fun mount_computation ctxt cTs T raw_computation lift_postproc =
let
val preprocess = preprocess_term { ctxt = ctxt };
val computation = prechecked_computation T (Code_Preproc.static_value
{ ctxt = ctxt, lift_postproc = lift_postproc, consts = [] }
(K (checked_computation cTs raw_computation)));
in fn ctxt' => preprocess ctxt' #> computation ctxt' end;
fun mount_computation_conv ctxt cTs T raw_computation conv =
let
val preprocess = preprocess_conv { ctxt = ctxt };
val computation_conv = prechecked_conv T (Code_Preproc.static_conv
{ ctxt = ctxt, consts = [] }
(K (fn ctxt' => fn t =>
case checked_computation cTs raw_computation ctxt' t of
SOME x => conv ctxt' x
| NONE => Conv.all_conv)));
in fn ctxt' => preprocess ctxt' then_conv computation_conv ctxt' end;
local
fun holds ct = Thm.mk_binop \<^cterm>‹Pure.eq :: prop ⇒ prop ⇒ prop›
ct \<^cprop>‹PROP Code_Generator.holds›;
val (_, holds_oracle) = Theory.setup_result (Thm.add_oracle (\<^binding>‹holds›, holds));
in
fun mount_computation_check ctxt cTs raw_computation =
mount_computation_conv ctxt cTs \<^typ>‹prop› raw_computation
((K o K) holds_oracle);
end;
fun runtime_code'' ctxt module_name program tycos consts =
let
val thy = Proof_Context.theory_of ctxt;
val (ml_modules, target_names) =
Code_Target.produce_code_for ctxt
target module_name NONE [] program false (map Constant consts @ map Type_Constructor tycos);
val ml_code = space_implode "\n\n" (map (Bytes.content o snd) ml_modules);
val (consts', tycos') = chop (length consts) target_names;
val consts_map = map2 (fn const =>
fn NONE =>
error ("Constant " ^ (quote o Code.string_of_const thy) const ^
"\nhas a user-defined serialization")
| SOME const' => (const, const')) consts consts'
val tycos_map = map2 (fn tyco =>
fn NONE =>
error ("Type " ^ quote (Proof_Context.markup_type ctxt tyco) ^
"\nhas a user-defined serialization")
| SOME tyco' => (tyco, tyco')) tycos tycos';
in (ml_code, (tycos_map, consts_map)) end;
fun runtime_code' ctxt some_module_name named_tycos named_consts computation_Ts program evals vs_ty_evals deps =
let
val thy = Proof_Context.theory_of ctxt;
fun the_const (Const cT) = cT
| the_const t = error ("No constant after preprocessing: " ^ Syntax.string_of_term ctxt t)
val raw_computation_cTs = case evals of
Abs (_, _, t) => (map the_const o snd o strip_comb) t
| _ => error ("Bad term after preprocessing: " ^ Syntax.string_of_term ctxt evals);
val computation_cTs = fold_rev (fn cT => fn cTs =>
(if member (op =) cTs (SOME cT) then NONE else SOME cT) :: cTs) raw_computation_cTs [];
val consts' = fold (fn NONE => I | SOME (c, _) => insert (op =) c)
computation_cTs named_consts;
val program' = Code_Thingol.consts_program ctxt consts';
val program'' = Code_Symbol.Graph.merge (K true) (program, program');
val ((ml_modules, compiled_value), deresolve) =
Code_Target.compilation_text' ctxt target some_module_name program''
(map Code_Symbol.Type_Constructor named_tycos @ map Code_Symbol.Constant consts' @ deps) true vs_ty_evals;
fun deresolve_tyco tyco = case (deresolve o Code_Symbol.Type_Constructor) tyco of
NONE => error ("Type " ^ quote (Proof_Context.markup_type ctxt tyco) ^
"\nhas a user-defined serialization")
| SOME c' => c';
fun deresolve_const c = case (deresolve o Code_Symbol.Constant) c of
NONE => error ("Constant " ^ (quote o Code.string_of_const thy) c ^
"\nhas a user-defined serialization")
| SOME c' => c';
val tyco_names = map deresolve_tyco named_tycos;
val const_names = map deresolve_const named_consts;
val generated_code = space_implode "\n\n" (map (Bytes.content o snd) ml_modules);
val (of_term_code, of_term_names) =
print_computation_code ctxt compiled_value computation_cTs computation_Ts;
val compiled_computation = generated_code ^ "\n" ^ of_term_code;
in
compiled_computation
|> rpair { tyco_map = named_tycos ~~ tyco_names,
const_map = named_consts ~~ const_names,
of_term_map = computation_Ts ~~ of_term_names }
end;
fun funs_of_maps { tyco_map, const_map, of_term_map } =
{ name_for_tyco = the o AList.lookup (op =) tyco_map,
name_for_const = the o AList.lookup (op =) const_map,
of_term_for_typ = the o AList.lookup (op =) of_term_map };
fun runtime_code ctxt some_module_name named_tycos named_consts computation_Ts program evals vs_ty_evals deps =
runtime_code' ctxt some_module_name named_tycos named_consts computation_Ts program evals vs_ty_evals deps
||> funs_of_maps;
local
val mount_computationN = prefix_this "mount_computation";
val mount_computation_convN = prefix_this "mount_computation_conv";
val mount_computation_checkN = prefix_this "mount_computation_check";
structure Code_Antiq_Data = Proof_Data
(
type T = { named_consts: string list,
computation_Ts: typ list, computation_cTs: (string * typ) list,
position_index: int,
generated_code: (string * {
name_for_tyco: string -> string,
name_for_const: string -> string,
of_term_for_typ: typ -> string
}) lazy
};
val empty: T = { named_consts = [],
computation_Ts = [], computation_cTs = [],
position_index = 0,
generated_code = Lazy.lazy (fn () => raise Fail "empty")
};
fun init _ = empty;
);
val current_position_index = #position_index o Code_Antiq_Data.get;
fun register { named_consts, computation_Ts, computation_cTs } ctxt =
let
val data = Code_Antiq_Data.get ctxt;
val named_consts' = union (op =) named_consts (#named_consts data);
val computation_Ts' = union (op =) computation_Ts (#computation_Ts data);
val computation_cTs' = union (op =) computation_cTs (#computation_cTs data);
val position_index' = #position_index data + 1;
fun generated_code' () =
let
val evals =
Abs ("eval", map snd computation_cTs' ---> Term.aT [],
list_comb (Bound 0, map Const computation_cTs'))
|> preprocess_term { ctxt = ctxt } ctxt
in Code_Thingol.dynamic_value ctxt
(K I) (runtime_code ctxt NONE [] named_consts' computation_Ts') evals
end;
in
ctxt
|> Code_Antiq_Data.put {
named_consts = named_consts',
computation_Ts = computation_Ts',
computation_cTs = computation_cTs',
position_index = position_index',
generated_code = Lazy.lazy generated_code'
}
end;
fun register_const const =
register { named_consts = [const],
computation_Ts = [],
computation_cTs = [] };
fun register_computation cTs T =
register { named_consts = [],
computation_Ts = [T],
computation_cTs = cTs };
fun print body_code_for ctxt ctxt' =
let
val position_index = current_position_index ctxt;
val (code, name_ofs) = (Lazy.force o #generated_code o Code_Antiq_Data.get) ctxt';
val context_code = if position_index = 0 then code else "";
val body_code = body_code_for name_ofs (ML_Context.struct_name ctxt');
in (context_code, body_code) end;
fun print_code ctxt const =
print (fn { name_for_const, ... } => fn prfx =>
Long_Name.append prfx (name_for_const const)) ctxt;
fun print_computation kind ctxt T =
print (fn { of_term_for_typ, ... } => fn prfx =>
enclose "(" ")" (space_implode " " [
kind,
"(Context.proof_of (Context.the_generic_context ()))",
Long_Name.implode [prfx, generated_computationN, covered_constsN],
(ML_Syntax.atomic o ML_Syntax.print_typ) T,
Long_Name.append prfx (of_term_for_typ T)
])) ctxt;
fun print_computation_check ctxt =
print (fn { of_term_for_typ, ... } => fn prfx =>
enclose "(" ")" (space_implode " " [
mount_computation_checkN,
"(Context.proof_of (Context.the_generic_context ()))",
Long_Name.implode [prfx, generated_computationN, covered_constsN],
Long_Name.append prfx (of_term_for_typ \<^typ>‹prop›)
])) ctxt;
fun add_all_constrs ctxt (dT as Type (tyco, Ts)) =
case Code.get_type (Proof_Context.theory_of ctxt) tyco of
((vs, constrs), false) =>
let
val subst_TFree = the o AList.lookup (op =) (map fst vs ~~ Ts);
val cs = map (fn (c, (_, Ts')) =>
(c, (map o map_atyps) (fn TFree (v, _) => subst_TFree v) Ts'
---> dT)) constrs;
in
union (op =) cs
#> fold (add_all_constrs ctxt) Ts
end
| (_, true) => I;
fun prep_spec ctxt (raw_ts, raw_dTs) =
let
val ts = map (Syntax.check_term ctxt) raw_ts;
val dTs = map (Syntax.check_typ ctxt) raw_dTs;
in
[]
|> (fold o fold_aterms)
(fn (t as Const (cT as (_, T))) =>
if not (monomorphic T) then error ("Polymorphic constant: " ^ Syntax.string_of_term ctxt t)
else insert (op =) cT | _ => I) ts
|> fold (fn dT =>
if not (monomorphic dT) then error ("Polymorphic datatype: " ^ Syntax.string_of_typ ctxt dT)
else add_all_constrs ctxt dT) dTs
end;
in
fun ml_code_antiq raw_const ctxt =
let
val thy = Proof_Context.theory_of ctxt;
val const = Code.check_const thy raw_const;
in (print_code ctxt const, register_const const ctxt) end;
fun gen_ml_computation_antiq kind (raw_T, raw_spec) ctxt =
let
val cTs = prep_spec ctxt raw_spec;
val T = Syntax.check_typ ctxt raw_T;
val _ = if not (monomorphic T)
then error ("Polymorphic type: " ^ Syntax.string_of_typ ctxt T)
else ();
in (print_computation kind ctxt T, register_computation cTs T ctxt) end;
val ml_computation_antiq = gen_ml_computation_antiq mount_computationN;
val ml_computation_conv_antiq = gen_ml_computation_antiq mount_computation_convN;
fun ml_computation_check_antiq raw_spec ctxt =
let
val cTs = insert (op =) (dest_Const \<^Const>‹holds›) (prep_spec ctxt raw_spec);
in (print_computation_check ctxt, register_computation cTs \<^typ>‹prop› ctxt) end;
end;
fun check_datatype thy tyco some_consts =
let
val declared_constrs = (map fst o snd o fst o Code.get_type thy) tyco;
val constrs = case some_consts
of SOME [] => []
| SOME consts =>
let
val missing_constrs = subtract (op =) consts declared_constrs;
val _ = if null missing_constrs then []
else error ("Missing constructor(s) " ^ commas_quote missing_constrs
^ " for datatype " ^ quote tyco);
val false_constrs = subtract (op =) declared_constrs consts;
val _ = if null false_constrs then []
else error ("Non-constructor(s) " ^ commas_quote false_constrs
^ " for datatype " ^ quote tyco)
in consts end
| NONE => declared_constrs;
in (tyco, constrs) end;
fun add_eval_tyco (tyco, tyco') thy =
let
val k = Sign.arity_number thy tyco;
fun pr pr' _ [] = tyco'
| pr pr' _ [ty] =
Code_Printer.concat [pr' Code_Printer.BR ty, tyco']
| pr pr' _ tys =
Code_Printer.concat [Code_Printer.enum "," "(" ")" (map (pr' Code_Printer.BR) tys), tyco']
in
thy
|> Code_Target.set_printings (Type_Constructor (tyco, [(target, SOME (k, pr))]))
end;
fun add_eval_constr (const, const') thy =
let
val k = Code.args_number thy const;
fun pr pr' fxy ts = Code_Printer.brackify fxy
(const' :: the_list (Code_Printer.tuplify pr' Code_Printer.BR (map fst ts)));
in
thy
|> Code_Target.set_printings (Constant (const,
[(target, SOME (Code_Printer.simple_const_syntax (k, pr)))]))
end;
fun add_eval_const (const, const') = Code_Target.set_printings (Constant
(const, [(target, SOME (Code_Printer.simple_const_syntax (0, (K o K o K) const')))]));
fun process_reflection (code, (tyco_map, (constr_map, const_map))) module_name NONE thy =
thy
|> Code_Target.add_reserved target module_name
|> Context.theory_map (compile_ML true code)
|> fold (add_eval_tyco o apsnd Code_Printer.str) tyco_map
|> fold (add_eval_constr o apsnd Code_Printer.str) constr_map
|> fold (add_eval_const o apsnd Code_Printer.str) const_map
| process_reflection (code, _) _ (SOME binding) thy =
let
val code_binding = Path.map_binding Code_Target.code_path binding;
val preamble =
"(* Generated from " ^
Path.implode (Resources.thy_path (Path.basic (Context.theory_base_name thy))) ^
"; DO NOT EDIT! *)";
val thy' = Code_Target.export code_binding (Bytes.string (preamble ^ "\n\n" ^ code)) thy;
val _ = Code_Target.code_export_message thy';
in thy' end;
fun gen_code_reflect prep_type prep_const raw_datatypes raw_functions module_name file_prefix thy =
let
val ctxt = Proof_Context.init_global thy;
val datatypes = map (fn (raw_tyco, raw_cos) =>
(prep_type ctxt raw_tyco, (Option.map o map) (prep_const thy) raw_cos)) raw_datatypes;
val (tycos, constrs) = map_split (uncurry (check_datatype thy)) datatypes
|> apsnd flat;
val functions = map (prep_const thy) raw_functions;
val consts = constrs @ functions;
val program = Code_Thingol.consts_program ctxt consts;
val result = runtime_code'' ctxt module_name program tycos consts
|> (apsnd o apsnd) (chop (length constrs));
in
thy
|> process_reflection result module_name file_prefix
end;
val code_reflect = gen_code_reflect Code_Target.cert_tyco (K I);
val code_reflect_cmd = gen_code_reflect Code_Target.read_tyco Code.read_const;
local
val parse_consts_spec =
Scan.optional (Scan.lift (Args.$$$ "terms" -- Args.colon) |-- Scan.repeat1 Args.term) []
-- Scan.optional (Scan.lift (Args.$$$ "datatypes" -- Args.colon) |-- Scan.repeat1 Args.typ) [];
in
val _ = Theory.setup
(ML_Antiquotation.declaration \<^binding>‹code›
Args.term (K ml_code_antiq)
#> ML_Antiquotation.declaration \<^binding>‹computation›
(Args.typ -- parse_consts_spec) (K ml_computation_antiq)
#> ML_Antiquotation.declaration \<^binding>‹computation_conv›
(Args.typ -- parse_consts_spec) (K ml_computation_conv_antiq)
#> ML_Antiquotation.declaration \<^binding>‹computation_check›
parse_consts_spec (K ml_computation_check_antiq));
end;
local
val parse_datatype =
Parse.name -- Scan.optional (\<^keyword>‹=› |--
(((Parse.sym_ident || Parse.string) >> (fn "_" => NONE | _ => Scan.fail ()))
|| ((Parse.term ::: (Scan.repeat (\<^keyword>‹|› |-- Parse.term))) >> SOME))) (SOME []);
in
val _ =
Outer_Syntax.command \<^command_keyword>‹code_reflect›
"enrich runtime environment with generated code"
(Parse.name -- Scan.optional (\<^keyword>‹datatypes› |-- Parse.!!! (parse_datatype
::: Scan.repeat (\<^keyword>‹and› |-- parse_datatype))) []
-- Scan.optional (\<^keyword>‹functions› |-- Parse.!!! (Scan.repeat1 Parse.name)) []
-- Scan.option (\<^keyword>‹file_prefix› |-- Parse.!!! (Parse.position Parse.embedded))
>> (fn (((module_name, raw_datatypes), raw_functions), file_prefix) =>
Toplevel.theory (fn thy =>
code_reflect_cmd raw_datatypes raw_functions module_name
(Option.map Path.explode_binding file_prefix) thy)));
end;
local
structure Loaded_Values = Theory_Data
(
type T = string list
val empty = []
fun merge data : T = Library.merge (op =) data
);
fun notify_val (string, value) =
let
val _ = #enterVal ML_Env.name_space (string, value);
val _ = Theory.setup (Loaded_Values.map (insert (op =) string));
in () end;
fun abort _ = error "Only value bindings allowed.";
val notifying_context : ML_Compiler0.context =
{name_space =
{lookupVal = #lookupVal ML_Env.name_space,
lookupType = #lookupType ML_Env.name_space,
lookupFix = #lookupFix ML_Env.name_space,
lookupStruct = #lookupStruct ML_Env.name_space,
lookupSig = #lookupSig ML_Env.name_space,
lookupFunct = #lookupFunct ML_Env.name_space,
enterVal = notify_val,
enterType = abort,
enterFix = abort,
enterStruct = abort,
enterSig = abort,
enterFunct = abort,
allVal = #allVal ML_Env.name_space,
allType = #allType ML_Env.name_space,
allFix = #allFix ML_Env.name_space,
allStruct = #allStruct ML_Env.name_space,
allSig = #allSig ML_Env.name_space,
allFunct = #allFunct ML_Env.name_space},
print_depth = NONE,
here = #here ML_Env.context,
print = #print ML_Env.context,
error = #error ML_Env.context};
in
fun use_file filepath thy =
let
val thy' = Loaded_Values.put [] thy;
val _ = Context.put_generic_context ((SOME o Context.Theory) thy');
val _ =
ML_Compiler0.ML notifying_context
{line = 0, file = Path.implode filepath, verbose = false, debug = false}
(File.read filepath);
val thy'' = Context.the_global_context ();
val names = Loaded_Values.get thy'';
in (names, thy'') end;
end;
fun add_definiendum (ml_name, (b, T)) thy =
thy
|> Code_Target.add_reserved target ml_name
|> Specification.axiomatization [(b, SOME T, NoSyn)] [] [] []
|-> (fn ([Const (const, _)], _) =>
Code_Target.set_printings (Constant (const,
[(target, SOME (Code_Printer.simple_const_syntax (0, (K o K o K o Code_Printer.str) ml_name)))]))
#> tap (fn thy => Code_Target.produce_code (Proof_Context.init_global thy) false [const] target Code_Target.generatedN NONE []));
fun process_file filepath (definienda, thy) =
let
val (ml_names, thy') = use_file filepath thy;
val superfluous = subtract (fn ((name1, _), name2) => name1 = name2) definienda ml_names;
val _ = if null superfluous then ()
else error ("Value binding(s) " ^ commas_quote superfluous
^ " found in external file " ^ Path.print filepath
^ " not present among the given contants binding(s).");
val these_definienda = AList.make (the o AList.lookup (op =) definienda) ml_names;
val thy'' = fold add_definiendum these_definienda thy';
val definienda' = fold (AList.delete (op =)) ml_names definienda;
in (definienda', thy'') end;
fun polyml_as_definition bTs filepaths thy =
let
val definienda = map (fn bT => ((Binding.name_of o fst) bT, bT)) bTs;
val (remaining, thy') = fold process_file filepaths (definienda, thy);
val _ = if null remaining then ()
else error ("Constant binding(s) " ^ commas_quote (map fst remaining)
^ " not present in external file(s).");
in thy' end;
end;