File ‹Tools/Function/termination.ML›
signature TERMINATION =
sig
type data
datatype cell = Less of thm | LessEq of thm * thm | None of thm * thm | False of thm
val mk_sumcases : data -> typ -> term list -> term
val get_num_points : data -> int
val get_types : data -> int -> typ
val get_measures : data -> int -> term list
val get_chain : data -> term -> term -> thm option option
val get_descent : data -> term -> term -> term -> cell option
val dest_call : data -> term -> ((string * typ) list * int * term * int * term * term)
val CALLS : (term list * int -> tactic) -> int -> tactic
type ttac = data -> int -> tactic
val TERMINATION : Proof.context -> tactic -> ttac -> int -> tactic
val wf_union_tac : Proof.context -> tactic
val decompose_tac : Proof.context -> ttac
end
structure Termination : TERMINATION =
struct
open Function_Lib
val term2_ord = prod_ord Term_Ord.fast_term_ord Term_Ord.fast_term_ord
structure Term2tab = Table(type key = term * term val ord = term2_ord);
structure Term3tab =
Table(type key = term * (term * term) val ord = prod_ord Term_Ord.fast_term_ord term2_ord);
datatype skel =
SLeaf of int
| SBranch of (skel * skel)
fun mk_tree leaf branch =
let fun mk (SLeaf i) = leaf i
| mk (SBranch (s, t)) = branch (mk s, mk t)
in mk end
fun dest_tree split =
let fun dest (SLeaf i) x = [(i, x)]
| dest (SBranch (s, t)) x =
let val (l, r) = split x
in dest s l @ dest t r end
in dest end
fun is_inj (Const (\<^const_name>‹Sum_Type.Inl›, _) $ _) = true
| is_inj (Const (\<^const_name>‹Sum_Type.Inr›, _) $ _) = true
| is_inj _ = false
fun dest_inl (Const (\<^const_name>‹Sum_Type.Inl›, _) $ t) = SOME t
| dest_inl _ = NONE
fun dest_inr (Const (\<^const_name>‹Sum_Type.Inr›, _) $ t) = SOME t
| dest_inr _ = NONE
fun mk_skel ps =
let
fun skel i ps =
if forall is_inj ps andalso not (null ps)
then let
val (j, s) = skel i (map_filter dest_inl ps)
val (k, t) = skel j (map_filter dest_inr ps)
in (k, SBranch (s, t)) end
else (i + 1, SLeaf i)
in
snd (skel 0 ps)
end
fun node_types sk T = dest_tree (fn Type (\<^type_name>‹Sum_Type.sum›, [LT, RT]) => (LT, RT)) sk T |> map snd
fun dest_inj (SLeaf i) trm = (i, trm)
| dest_inj (SBranch (s, t)) trm =
case dest_inl trm of
SOME trm' => dest_inj s trm'
| _ => dest_inj t (the (dest_inr trm))
datatype cell = Less of thm | LessEq of thm * thm | None of thm * thm | False of thm;
type data =
skel
* (int -> typ)
* (term list Inttab.table)
* (term * term -> thm option)
* (term * (term * term) -> cell)
fun mk_sumcases (sk, _, _, _, _) T fs =
mk_tree (fn i => (nth fs i, domain_type (fastype_of (nth fs i))))
(fn ((f, fT), (g, gT)) => (Sum_Tree.mk_sumcase fT gT T f g, Sum_Tree.mk_sumT fT gT))
sk
|> fst
fun mk_sum_skel rel =
let
val cs = Function_Lib.dest_binop_list \<^const_name>‹Lattices.sup› rel
fun collect_pats (Const (\<^const_name>‹Collect›, _) $ Abs (_, _, c)) =
let
val (Const (\<^const_name>‹HOL.conj›, _) $ (Const (\<^const_name>‹HOL.eq›, _) $ _ $ (Const (\<^const_name>‹Pair›, _) $ r $ l)) $ _)
= Term.strip_qnt_body \<^const_name>‹Ex› c
in cons r o cons l end
in
mk_skel (fold collect_pats cs [])
end
fun prove_chain ctxt chain_tac (c1, c2) =
let
val goal =
HOLogic.mk_eq (HOLogic.mk_binop \<^const_name>‹Relation.relcomp› (c1, c2),
Const (\<^const_abbrev>‹Set.empty›, fastype_of c1))
|> HOLogic.mk_Trueprop
in
(case Function_Lib.try_proof ctxt (Thm.cterm_of ctxt goal) chain_tac of
Function_Lib.Solved thm => SOME thm
| _ => NONE)
end
fun dest_call' sk (Const (\<^const_name>‹Collect›, _) $ Abs (_, _, c)) =
let
val vs = Term.strip_qnt_vars \<^const_name>‹Ex› c
val (Const (\<^const_name>‹HOL.conj›, _) $ (Const (\<^const_name>‹HOL.eq›, _) $ _ $ (Const (\<^const_name>‹Pair›, _) $ r $ l)) $ Gam)
= Term.strip_qnt_body \<^const_name>‹Ex› c
val (p, l') = dest_inj sk l
val (q, r') = dest_inj sk r
in
(vs, p, l', q, r', Gam)
end
| dest_call' _ _ = error "dest_call"
fun dest_call (sk, _, _, _, _) = dest_call' sk
fun mk_desc ctxt tac vs Gam l r m1 m2 =
let
fun try rel =
try_proof ctxt (Thm.cterm_of ctxt
(Logic.list_all (vs,
Logic.mk_implies (HOLogic.mk_Trueprop Gam,
HOLogic.mk_Trueprop (Const (rel, \<^typ>‹nat ⇒ nat ⇒ bool›)
$ (m2 $ r) $ (m1 $ l)))))) tac
in
(case try \<^const_name>‹Orderings.less› of
Solved thm => Less thm
| Stuck thm =>
(case try \<^const_name>‹Orderings.less_eq› of
Solved thm2 => LessEq (thm2, thm)
| Stuck thm2 =>
if Thm.prems_of thm2 = [HOLogic.Trueprop $ \<^term>‹False›]
then False thm2 else None (thm2, thm)
| _ => raise Match)
| _ => raise Match)
end
fun prove_descent ctxt tac sk (c, (m1, m2)) =
let
val (vs, _, l, _, r, Gam) = dest_call' sk c
in
mk_desc ctxt tac vs Gam l r m1 m2
end
fun create ctxt chain_tac descent_tac T rel =
let
val sk = mk_sum_skel rel
val Ts = node_types sk T
val M = Inttab.make (map_index (apsnd (Measure_Functions.get_measure_functions ctxt)) Ts)
val chain_cache =
Cache.create Term2tab.empty Term2tab.lookup Term2tab.update
(prove_chain ctxt chain_tac)
val descent_cache =
Cache.create Term3tab.empty Term3tab.lookup Term3tab.update
(prove_descent ctxt descent_tac sk)
in
(sk, nth Ts, M, chain_cache, descent_cache)
end
fun get_num_points (sk, _, _, _, _) =
let
fun num (SLeaf i) = i + 1
| num (SBranch (s, t)) = num t
in num sk end
fun get_types (_, T, _, _, _) = T
fun get_measures (_, _, M, _, _) = Inttab.lookup_list M
fun get_chain (_, _, _, C, _) c1 c2 =
SOME (C (c1, c2))
fun get_descent (_, _, _, _, D) c m1 m2 =
SOME (D (c, (m1, m2)))
fun CALLS tac i st =
if Thm.no_prems st then all_tac st
else case Thm.term_of (Thm.cprem_of st i) of
(_ $ (_ $ rel)) => tac (Function_Lib.dest_binop_list \<^const_name>‹Lattices.sup› rel, i) st
|_ => no_tac st
type ttac = data -> int -> tactic
fun TERMINATION ctxt atac tac =
SUBGOAL (fn (_ $ \<^Const_>‹wf_on T for \<^Const_>‹top_class.top _› rel›, i) =>
tac (create ctxt atac atac T rel) i)
local
fun dest_term (t : term) =
let
val (vars, prop) = Function_Lib.dest_all_all t
val (prems, concl) = Logic.strip_horn prop
val (lhs, rhs) = concl
|> HOLogic.dest_Trueprop
|> HOLogic.dest_mem |> fst
|> HOLogic.dest_prod
in
(vars, prems, lhs, rhs)
end
fun mk_pair_compr (T, qs, l, r, conds) =
let
val pT = HOLogic.mk_prodT (T, T)
val n = length qs
val peq = HOLogic.eq_const pT $ Bound n $ (HOLogic.pair_const T T $ l $ r)
val conds' = if null conds then [\<^term>‹True›] else conds
in
HOLogic.Collect_const pT $
Abs ("uu_", pT,
(foldr1 HOLogic.mk_conj (peq :: conds')
|> fold_rev (fn v => fn t => HOLogic.exists_const (fastype_of v) $ lambda v t) qs))
end
val Un_aci_simps =
map mk_meta_eq @{thms Un_ac Un_absorb}
in
fun wf_union_tac ctxt st = SUBGOAL (fn _ =>
let
val ((_ $ (_ $ rel)) :: ineqs) = Thm.prems_of st
fun mk_compr ineq =
let
val (vars, prems, lhs, rhs) = dest_term ineq
in
mk_pair_compr (fastype_of lhs, vars, lhs, rhs, map (Object_Logic.atomize_term ctxt) prems)
end
val relation =
if null ineqs
then Const (\<^const_abbrev>‹Set.empty›, fastype_of rel)
else map mk_compr ineqs
|> foldr1 (HOLogic.mk_binop \<^const_name>‹Lattices.sup›)
fun solve_membership_tac i =
(EVERY' (replicate (i - 2) (resolve_tac ctxt @{thms UnI2}))
THEN' (fn j => TRY (resolve_tac ctxt @{thms UnI1} j))
THEN' (resolve_tac ctxt @{thms CollectI})
THEN' (fn i => REPEAT (resolve_tac ctxt @{thms exI} i))
THEN' ((resolve_tac ctxt @{thms refl})
ORELSE' ((resolve_tac ctxt @{thms conjI})
THEN' (resolve_tac ctxt @{thms refl})
THEN' (blast_tac ctxt)))
) i
in
if is_Var rel then
PRIMITIVE (infer_instantiate ctxt [(#1 (dest_Var rel), Thm.cterm_of ctxt relation)])
THEN ALLGOALS (fn i => if i = 1 then all_tac else solve_membership_tac i)
THEN rewrite_goal_tac ctxt Un_aci_simps 1
else no_tac
end) 1 st
end
fun mk_dgraph D cs =
Term_Graph.empty
|> fold (fn c => Term_Graph.new_node (c, ())) cs
|> fold_product (fn c1 => fn c2 =>
if is_none (get_chain D c1 c2 |> the_default NONE)
then Term_Graph.add_edge (c2, c1) else I)
cs cs
fun ucomp_empty_tac ctxt T =
REPEAT_ALL_NEW (resolve_tac ctxt @{thms union_comp_emptyR}
ORELSE' resolve_tac ctxt @{thms union_comp_emptyL}
ORELSE' SUBGOAL (fn (_ $ (_ $ (_ $ c1 $ c2) $ _), i) => resolve_tac ctxt [T c1 c2] i))
fun regroup_calls_tac ctxt cs = CALLS (fn (cs', i) =>
let
val is = map (fn c => find_index (curry op aconv c) cs') cs
in
CONVERSION (Conv.arg_conv (Conv.arg_conv
(Function_Lib.regroup_union_conv ctxt is))) i
end)
fun solve_trivial_tac ctxt D =
CALLS (fn ([c], i) =>
(case get_chain D c c of
SOME (SOME thm) =>
resolve_tac ctxt @{thms wf_no_loop} i THEN
resolve_tac ctxt [thm] i
| _ => no_tac)
| _ => no_tac)
fun decompose_tac ctxt D = CALLS (fn (cs, i) =>
let
val G = mk_dgraph D cs
val sccs = Term_Graph.strong_conn G
fun split [SCC] i = TRY (solve_trivial_tac ctxt D i)
| split (SCC::rest) i =
regroup_calls_tac ctxt SCC i
THEN resolve_tac ctxt @{thms wf_union_compatible} i
THEN resolve_tac ctxt @{thms less_by_empty} (i + 2)
THEN ucomp_empty_tac ctxt (the o the oo get_chain D) (i + 2)
THEN split rest (i + 1)
THEN TRY (solve_trivial_tac ctxt D i)
in
if length sccs > 1 then split sccs i
else solve_trivial_tac ctxt D i
end)
end