Lattices and Orders in Isabelle/HOL

Markus Wenzel
TU München

September 11, 2023

Abstract

We consider abstract structures of orders and lattices. Many fundamental concepts of lattice theory are developed, including dual structures, properties of bounds versus algebraic laws, lattice operations versus set-theoretic ones etc. We also give example instantiations of lattices and orders, such as direct products and function spaces. Wellknown properties are demonstrated, like the Knaster-Tarski Theorem for complete lattices.

This formal theory development may serve as an example of applying Isabelle/HOL to the domain of mathematical reasoning about "axiomatic" structures. Apart from the simply-typed classical set-theory of HOL, we employ Isabelle's system of axiomatic type classes for expressing structures and functors in a light-weight manner. Proofs are expressed in the Isar language for readable formal proof, while aiming at its "best-style" of representing formal reasoning.

Contents

1 Orders 3
1.1 Ordered structures 3
1.2 Duality 3
1.3 Transforming orders 5
1.3.1 Duals 5
1.3.2 Binary products 6
1.3.3 General products 7
2 Bounds 8
2.1 Infimum and supremum 8
2.2 Duality 10
2.3 Uniqueness 10
2.4 Related elements 11
2.5 General versus binary bounds 12
2.6 Connecting general bounds 13
3 Lattices 14
3.1 Lattice operations 14
3.2 Duality 16
3.3 Algebraic properties 17
3.4 Order versus algebraic structure 19
3.5 Example instances 20
3.5.1 Linear orders 20
3.5.2 Binary products 21
3.5.3 General products 23
3.6 Monotonicity and semi-morphisms 24
4 Complete lattices 26
4.1 Complete lattice operations 26
4.2 The Knaster-Tarski Theorem 27
4.3 Bottom and top elements 29
4.4 Duality 30
4.5 Complete lattices are lattices 31
4.6 Complete lattices and set-theory operations 32

1 Orders

theory Orders imports Main begin

1.1 Ordered structures

We define several classes of ordered structures over some type ' a with relation $\sqsubseteq:: ' a \Rightarrow{ }^{\prime} a \Rightarrow b o o l$. For a quasi-order that relation is required to be reflexive and transitive, for a partial order it also has to be anti-symmetric, while for a linear order all elements are required to be related (in either direction).

```
class leq \(=\)
    fixes leq :: ' \(a \Rightarrow{ }^{\prime} a \Rightarrow\) bool (infixl \(\left.\sqsubseteq 50\right)\)
class quasi-order \(=l e q+\)
    assumes leq-refl [intro?]: \(x \sqsubseteq x\)
    assumes leq-trans [trans]: \(x \sqsubseteq y \Longrightarrow y \sqsubseteq z \Longrightarrow x \sqsubseteq z\)
class partial-order \(=\) quasi-order +
    assumes leq-antisym [trans]: \(x \sqsubseteq y \Longrightarrow y \sqsubseteq x \Longrightarrow x=y\)
class linear-order \(=\) partial-order +
    assumes leq-linear: \(x \sqsubseteq y \vee y \sqsubseteq x\)
lemma linear-order-cases:
    \(\left(\left(x::^{\prime} a::\right.\right.\) linear-order \(\left.) \sqsubseteq y \Longrightarrow C\right) \Longrightarrow(y \sqsubseteq x \Longrightarrow C) \Longrightarrow C\)
    by (insert leq-linear) blast
```


1.2 Duality

The dual of an ordered structure is an isomorphic copy of the underlying type, with the \sqsubseteq relation defined as the inverse of the original one.

```
datatype 'a dual = dual 'a
primrec undual :: 'a dual => ' }a\mathrm{ where
    undual-dual: undual (dual x)}=
instantiation dual :: (leq) leq
begin
definition
    leq-dual-def: x' }\sqsubseteq\mp@subsup{y}{}{\prime}\equiv\mathrm{ undual }\mp@subsup{y}{}{\prime}\sqsubseteq\mathrm{ undual }\mp@subsup{x}{}{\prime
instance ..
end
lemma undual-leq [iff?]: (undual }\mp@subsup{x}{}{\prime}\sqsubseteq\mathrm{ undual }\mp@subsup{y}{}{\prime})=(\mp@subsup{y}{}{\prime}\sqsubseteq\mp@subsup{x}{}{\prime}
    by (simp add: leq-dual-def)
```

```
lemma dual-leq [iff?]: (dual \(x \sqsubseteq\) dual \(y)=(y \sqsubseteq x)\)
    by (simp add: leq-dual-def)
```

Functions dual and undual are inverse to each other; this entails the following fundamental properties.
lemma dual-undual [simp]: dual (undual x^{\prime}) $=x^{\prime}$ by (cases x^{\prime}) simp
lemma undual-dual-id [simp]: undual o dual $=$ id by (rule ext) simp
lemma dual-undual-id [simp]: dual o undual $=$ id by (rule ext) simp

Since dual (and undual) are both injective and surjective, the basic logical connectives (equality, quantification etc.) are transferred as follows.
lemma undual-equality [iff?]: (undual $x^{\prime}=$ undual $\left.y^{\prime}\right)=\left(x^{\prime}=y^{\prime}\right)$ by (cases x^{\prime}, cases y^{\prime}) simp
lemma dual-equality [iff?]: (dual $x=$ dual $y)=(x=y)$
by simp
lemma dual-ball [iff?]: $(\forall x \in A . P($ dual $x))=\left(\forall x^{\prime} \in\right.$ dual ' A. $\left.P x^{\prime}\right)$ proof
assume $a: \forall x \in A . P($ dual $x)$
show $\forall x^{\prime} \in d u a l$ ' A. $P x^{\prime}$
proof
fix x^{\prime} assume $x^{\prime}: x^{\prime} \in d u a l$ ' A
have undual $x^{\prime} \in A$
proof -
from x^{\prime} have undual $x^{\prime} \in$ undual' dual ' A by simp
thus undual $x^{\prime} \in A$ by (simp add: image-comp)
qed
with a have $P\left(\right.$ dual (undual $\left.\left.x^{\prime}\right)\right)$..
also have $\ldots=x^{\prime}$ by $\operatorname{sim} p$
finally show $P x^{\prime}$.
qed
next
assume $a: \forall x^{\prime} \in d u a l$ ' $A . P x^{\prime}$
show $\forall x \in A . P($ dual $x)$
proof
fix x assume $x \in A$
hence dual $x \in$ dual ' A by simp
with a show $P($ dual $x)$..
qed
qed

```
lemma range-dual [simp]: surj dual
proof -
    have \(\bigwedge x^{\prime}\). dual (undual \(\left.x^{\prime}\right)=x^{\prime}\) by simp
    thus surj dual by (rule surjI)
qed
lemma dual-all [iff?]: \((\forall x . P(\) dual \(x))=\left(\forall x^{\prime} . P x^{\prime}\right)\)
proof -
    have \((\forall x \in\) UNIV. \(P(\) dual \(x))=\left(\forall x^{\prime} \in\right.\) dual' UNIV. \(\left.P x^{\prime}\right)\)
        by (rule dual-ball)
    thus? ?thesis by simp
qed
lemma dual-ex: \((\exists x . P(\) dual \(x))=\left(\exists x^{\prime} . P x^{\prime}\right)\)
proof -
    have \((\forall x . \neg P(\) dual \(x))=\left(\forall x^{\prime} . \neg P x^{\prime}\right)\)
        by (rule dual-all)
    thus ?thesis by blast
qed
lemma dual-Collect: \(\{\) dual \(x \mid x . P(\) dual \(x)\}=\left\{x^{\prime} . P x^{\prime}\right\}\)
proof -
    have \(\{\) dual \(x \mid x . P(\) dual \(x)\}=\left\{x^{\prime} . \exists x^{\prime \prime} . x^{\prime}=x^{\prime \prime} \wedge P x^{\prime \prime}\right\}\)
    by (simp only: dual-ex [symmetric])
    thus ?thesis by blast
qed
```


1.3 Transforming orders

1.3.1 Duals

The classes of quasi, partial, and linear orders are all closed under formation of dual structures.

```
instance dual :: (quasi-order) quasi-order
proof
    fix \mp@subsup{x}{}{\prime}\mp@subsup{y}{}{\prime}\mp@subsup{z}{}{\prime}::
    have undual \mp@subsup{x}{}{\prime}\sqsubseteq\mathrm{ undual }\mp@subsup{x}{}{\prime}..\mathrm{ thus }\mp@subsup{x}{}{\prime}\sqsubseteq\mp@subsup{x}{}{\prime}..
    assume }\mp@subsup{y}{}{\prime}\sqsubseteq\mp@subsup{z}{}{\prime}\mathrm{ hence undual }\mp@subsup{z}{}{\prime}\sqsubseteq\mathrm{ undual }\mp@subsup{y}{}{\prime}.
    also assume \mp@subsup{x}{}{\prime}\sqsubseteq\mp@subsup{y}{}{\prime}}\mathrm{ hence undual }\mp@subsup{y}{}{\prime}\sqsubseteq\mathrm{ undual }\mp@subsup{x}{}{\prime}.
    finally show }\mp@subsup{x}{}{\prime}\sqsubseteq\mp@subsup{z}{}{\prime}.
qed
instance dual :: (partial-order) partial-order
proof
    fix }\mp@subsup{x}{}{\prime}\mp@subsup{y}{}{\prime}:: 'a::partial-order dual
    assume }\mp@subsup{y}{}{\prime}\sqsubseteq\mp@subsup{x}{}{\prime}\mathrm{ hence undual }\mp@subsup{x}{}{\prime}\sqsubseteq\mathrm{ undual }\mp@subsup{y}{}{\prime}.
    also assume }\mp@subsup{x}{}{\prime}\sqsubseteq\mp@subsup{y}{}{\prime}\mathrm{ hence undual y' }\sqsubseteq\mathrm{ undual }\mp@subsup{x}{}{\prime}.
    finally show }\mp@subsup{x}{}{\prime}=\mp@subsup{y}{}{\prime}.
qed
```

```
instance dual :: (linear-order) linear-order
proof
    fix \(x^{\prime} y^{\prime}::\) 'a::linear-order dual
    show \(x^{\prime} \sqsubseteq y^{\prime} \vee y^{\prime} \sqsubseteq x^{\prime}\)
    proof (rule linear-order-cases)
        assume undual \(y^{\prime} \sqsubseteq\) undual \(x^{\prime}\)
        hence \(x^{\prime} \sqsubseteq y^{\prime}\).. thus ?thesis ..
    next
        assume undual \(x^{\prime} \sqsubseteq\) undual \(y^{\prime}\)
        hence \(y^{\prime} \sqsubseteq x^{\prime}\).. thus ?thesis ..
    qed
qed
```


1.3.2 Binary products

The classes of quasi and partial orders are closed under binary products. Note that the direct product of linear orders need not be linear in general.

```
instantiation prod :: (leq, leq) leq
```

begin
definition
leq-prod-def: $p \sqsubseteq q \equiv$ fst $p \sqsubseteq f s t q \wedge$ snd $p \sqsubseteq$ snd q
instance ..
end
lemma leq-prodI [intro?]:
fst $p \sqsubseteq f s t q \Longrightarrow$ snd $p \sqsubseteq$ snd $q \Longrightarrow p \sqsubseteq q$
by (unfold leq-prod-def) blast
lemma leq-prodE [elim?]:
$p \sqsubseteq q \Longrightarrow($ fst $p \sqsubseteq$ fst $q \Longrightarrow$ snd $p \sqsubseteq$ snd $q \Longrightarrow C) \Longrightarrow C$
by (unfold leq-prod-def) blast
instance prod :: (quasi-order, quasi-order) quasi-order
proof
fix p q r :: ' $a::$ quasi-order \times 'b::quasi-order
show $p \sqsubseteq p$
proof
show fst $p \sqsubseteq$ fst p..
show snd $p \sqsubseteq$ snd p..
qed
assume $p q: p \sqsubseteq q$ and $q r: q \sqsubseteq r$
show $p \sqsubseteq r$
proof
from $p q$ have $f s t p \sqsubseteq$ fst q..
also from $q r$ have $\ldots \sqsubseteq$ fst r..

```
    finally show fst p\sqsubseteqfst r .
    from pq have snd p\sqsubseteq snd q..
    also from qr have ...\sqsubseteq snd r ..
    finally show snd p\sqsubseteq snd r.
qed
qed
instance prod :: (partial-order, partial-order) partial-order
proof
    fix p q :: 'a::partial-order > 'b::partial-order
    assume pq: p\sqsubseteqq and qp:q\sqsubseteqp
    show }p=
    proof
        from pq have fst p\sqsubseteq fst q..
        also from qp have ...\sqsubseteq fst p ..
        finally show fst p=fst q}\mathrm{ .
        from pq have snd p\sqsubseteq snd q..
        also from qp have ...\sqsubseteq snd p ..
        finally show snd p= snd q.
    qed
qed
```


1.3.3 General products

The classes of quasi and partial orders are closed under general products (function spaces). Note that the direct product of linear orders need not be linear in general.

```
instantiation fun :: (type, leq) leq
begin
definition
    leq-fun-def: f\sqsubseteqg\equiv}\equiv\forallx.fx\sqsubseteqg
instance ..
end
lemma leq-funI [intro?]: (\bigwedgex.fx\sqsubseteqg x)\Longrightarrowf\sqsubseteqg
    by (unfold leq-fun-def) blast
lemma leq-funD [dest?]: }f\sqsubseteqg\Longrightarrowfx\sqsubseteqg
    by (unfold leq-fun-def) blast
instance fun :: (type, quasi-order) quasi-order
proof
    fix fgh :: 'a m 'b::quasi-order
    show }f\sqsubseteq
    proof
```

```
    fix }x\mathrm{ show fx}\sqsubseteqfx.
    qed
    assume fg: f\sqsubseteqg and gh:g\sqsubseteqh
    show f}\sqsubseteq
    proof
    fix }x\mathrm{ from fg have f x}\sqsubseteqgx ..
    also from gh have ...\sqsubseteqhx ..
    finally show fx\sqsubseteqhx .
    qed
qed
instance fun :: (type, partial-order) partial-order
proof
    fix f g :: ' }a>>'\mp@code{'b::partial-order
    assume fg: f\sqsubseteqg and gf:g\sqsubseteqf
    show f}=
    proof
        fix }x\mathrm{ from fg have fx}\sqsubseteqgx ..
        also from gf have ...\sqsubseteqfx..
        finally show fx=gx .
    qed
qed
end
```


2 Bounds

theory Bounds imports Orders begin
hide-const (open) inf sup

2.1 Infimum and supremum

Given a partial order, we define infimum (greatest lower bound) and supremum (least upper bound) wrt. \sqsubseteq for two and for any number of elements.

```
definition
    is-inf \(::\) ' \(a::\) :partial-order \(\Rightarrow^{\prime} a \Rightarrow^{\prime} a \Rightarrow\) bool where
is-inf \(x y\) inf \(=(\) inf \(\sqsubseteq x \wedge\) inf \(\sqsubseteq y \wedge(\forall z . z \sqsubseteq x \wedge z \sqsubseteq y \longrightarrow z \sqsubseteq \inf ))\)
```

definition
is-sup :: 'a::partial-order $\Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow$ bool where
is-sup x y sup $=(x \sqsubseteq \sup \wedge y \sqsubseteq \sup \wedge(\forall z . x \sqsubseteq z \wedge y \sqsubseteq z \longrightarrow \sup \sqsubseteq z))$

definition

is-Inf :: ' $a:$:partial-order set $\Rightarrow{ }^{\prime} a \Rightarrow$ bool where
is-Inf A inf $=((\forall x \in A . \inf \sqsubseteq x) \wedge(\forall z .(\forall x \in A . z \sqsubseteq x) \longrightarrow z \sqsubseteq \inf))$
definition

```
is-Sup :: 'a::partial-order set = ' }a=>\mathrm{ bool where
is-Sup A sup = ((\forallx\inA.x\sqsubseteq sup)}\wedge(\forallz.(\forallx\inA.x\sqsubseteqz)\longrightarrowsup\sqsubseteqz)
```

These definitions entail the following basic properties of boundary elements.

```
lemma is-infI [intro?]: inf \sqsubseteq x \Longrightarrow inf \sqsubseteqy\Longrightarrow
    (\bigwedgez.z\sqsubseteqx\Longrightarrowz\sqsubseteqy\Longrightarrowz\sqsubseteqinf)\Longrightarrowis-inf x y inf
    by (unfold is-inf-def) blast
lemma is-inf-greatest [elim ?]:
    is-inf x y inf \Longrightarrowz\sqsubseteqx\Longrightarrowz\sqsubseteqy\Longrightarrowz\sqsubseteqinf
    by (unfold is-inf-def) blast
lemma is-inf-lower [elim?]:
    is-inf x y inf \Longrightarrow(inf\sqsubseteqx 证\sqsubseteqy }\sqsubseteqC)\Longrightarrow
    by (unfold is-inf-def) blast
lemma is-supI [intro?]: }x\sqsubseteq\mathrm{ sup }\Longrightarrowy\sqsubseteqsup
    (\bigwedgez. x\sqsubseteqz\Longrightarrowy\sqsubseteqz\Longrightarrowsup\sqsubseteqz)\Longrightarrowis-sup x y sup
    by (unfold is-sup-def) blast
lemma is-sup-least [elim?]:
    is-sup x y sup \Longrightarrowx\sqsubseteqz\Longrightarrowy\sqsubseteqz\Longrightarrowsup}\sqsubseteq
    by (unfold is-sup-def) blast
lemma is-sup-upper [elim?]:
    is-sup x y sup \Longrightarrow(x\sqsubseteqsup \Longrightarrow }\Longrightarrow\mathrm{ sup }\LongrightarrowC)\Longrightarrow
    by (unfold is-sup-def) blast
lemma is-InfI [intro?]: (\x. x\inA\Longrightarrowinf \sqsubseteqx)\Longrightarrow
    (\bigwedgez. (\forallx\inA.z\sqsubseteqx)\Longrightarrowz\sqsubseteqinf)\Longrightarrowis-Inf A inf
    by (unfold is-Inf-def) blast
lemma is-Inf-greatest [elim?]:
    is-Inf A inf \Longrightarrow(\x. x \inA\Longrightarrowz\sqsubseteqx)\Longrightarrowz\sqsubseteqinf
    by (unfold is-Inf-def) blast
lemma is-Inf-lower [dest?]:
    is-Inf A inf \Longrightarrowx\inA\Longrightarrow inf \sqsubseteqx
    by (unfold is-Inf-def) blast
lemma is-SupI [intro?]: (\x. x }\\mathrm{ \ A \ ¢ sup) #
    (\bigwedgez. (\forallx\inA.x\sqsubseteqz)\Longrightarrow sup\sqsubseteqz)\Longrightarrowis-Sup A sup
    by (unfold is-Sup-def) blast
lemma is-Sup-least [elim?]:
    is-Sup A sup \Longrightarrow(\bigwedgex.x 
```

```
    by (unfold is-Sup-def) blast
lemma is-Sup-upper [dest?]:
    is-Sup A sup \Longrightarrowx\inA\Longrightarrow \Longrightarrow}\sqsubseteq\mathrm{ sup 
    by (unfold is-Sup-def) blast
```


2.2 Duality

Infimum and supremum are dual to each other.

theorem dual-inf [iff?]:

is-inf $($ dual $x)($ dual $y)($ dual sup $)=i s-s u p x y \sup$
by (simp add: is-inf-def is-sup-def dual-all [symmetric] dual-leq)
theorem dual-sup [iff?]:
is-sup $($ dual $x)($ dual $y)($ dual inf $)=i s-i n f x y \inf$
by (simp add: is-inf-def is-sup-def dual-all [symmetric] dual-leq)
theorem dual-Inf [iff?]:
is-Inf (dual'A) (dual sup) $=$ is-Sup A sup
by (simp add: is-Inf-def is-Sup-def dual-all [symmetric] dual-leq)
theorem dual-Sup [iff?]:
is-Sup $($ dual' $A)($ dual inf $)=\operatorname{is-Inf} A \inf$
by (simp add: is-Inf-def is-Sup-def dual-all [symmetric] dual-leq)

2.3 Uniqueness

Infima and suprema on partial orders are unique; this is mainly due to antisymmetry of the underlying relation.

```
theorem is-inf-uniq: is-inf x y inf \Longrightarrow is-inf x y inf' \Longrightarrowinf = inf'
proof -
    assume inf: is-inf x y inf
    assume inf': is-inf x y inf'
    show ?thesis
    proof (rule leq-antisym)
        from inf' show inf \sqsubseteqinf'
        proof (rule is-inf-greatest)
            from inf show inf \sqsubseteq 
            from inf show inf }\sqsubseteqy.
    qed
    from inf show inf'\sqsubseteqinf
    proof (rule is-inf-greatest)
        from inf' show inf' }\sqsubseteqx.
        from inf'show inf'\sqsubseteq }\sqsubseteq.
    qed
    qed
qed
```

```
theorem is-sup-uniq: is-sup \(x\) y sup \(\Longrightarrow\) is-sup \(x\) y sup \({ }^{\prime} \Longrightarrow\) sup \(=\) sup \(^{\prime}\)
proof -
    assume sup: is-sup \(x\) y sup and sup \(^{\prime}\) : is-sup \(x\) y sup \({ }^{\prime}\)
    have dual sup \(=\) dual sup \({ }^{\prime}\)
    proof (rule is-inf-uniq)
        from sup show is-inf (dual \(x\) ) (dual y) (dual sup) ..
        from sup \(^{\prime}\) show is-inf (dual \(x\) ) (dual y) (dual sup \({ }^{\prime}\) ) ..
    qed
    then show \(\sup =\sup ^{\prime}\)..
qed
theorem is-Inf-uniq: is-Inf \(A\) inf \(\Longrightarrow i s\)-Inf \(A\) inf \({ }^{\prime} \Longrightarrow i n f=i n f^{\prime}\)
proof -
    assume inf: is-Inf \(A\) inf
    assume inf': is-Inf \(A\) inf \({ }^{\prime}\)
    show ?thesis
    proof (rule leq-antisym)
        from inf' show inf \(\sqsubseteq i n f '\)
        proof (rule is-Inf-greatest)
            fix \(x\) assume \(x \in A\)
            with inf show inf \(\sqsubseteq x\)..
    qed
    from inf show inf \({ }^{\prime} \sqsubseteq i n f\)
    proof (rule is-Inf-greatest)
            fix \(x\) assume \(x \in A\)
            with \(i n f^{\prime}\) show \(i n f^{\prime} \sqsubseteq x\)..
        qed
    qed
qed
theorem is-Sup-uniq: is-Sup A sup \(\Longrightarrow\) is-Sup \(A\) sup \(^{\prime} \Longrightarrow \sup ^{\prime}=\) sup \(^{\prime}\)
proof -
    assume sup: is-Sup \(A\) sup and sup': is-Sup \(A\) sup \(^{\prime}\)
    have dual sup \(=\) dual sup \({ }^{\prime}\)
    proof (rule is-Inf-uniq)
        from sup show is-Inf (dual' A) (dual sup) ..
        from sup' show is-Inf (dual' \(A\) ) (dual sup') ..
    qed
    then show \(\sup =\sup ^{\prime} .\).
qed
```


2.4 Related elements

The binary bound of related elements is either one of the argument.

```
theorem is-inf-related [elim?]: x\sqsubseteqy\Longrightarrowis-inf x y x
proof -
    assume }x\sqsubseteq
    show ?thesis
    proof
```

```
    show }x\sqsubseteqx\mathrm{ ..
    show }x\sqsubseteqy\mathrm{ by fact
    fix z assume z\sqsubseteqx and z\sqsubseteqy show z\sqsubseteqx by fact
    qed
qed
theorem is-sup-related [elim?]: x\sqsubseteqy\Longrightarrowis-sup x y y
proof -
    assume }x\sqsubseteq
    show ?thesis
    proof
        show }x\sqsubseteqy\mathrm{ by fact
        show }y\sqsubseteqy.
        fix z assume }x\sqsubseteqz\mathrm{ and }y\sqsubseteq
        show }y\sqsubseteqz\mathrm{ by fact
    qed
qed
```


2.5 General versus binary bounds

General bounds of two-element sets coincide with binary bounds.

```
theorem is-Inf-binary: is-Inf {x,y} inf =is-inf x y inf
proof -
    let ?A = {x,y}
    show ?thesis
    proof
        assume is-Inf: is-Inf ?A inf
        show is-inf x y inf
        proof
        have }x\in\mathrm{ ?A by simp
        with is-Inf show inf \sqsubseteq x ..
        have }y\in?A\mathrm{ by simp
        with is-Inf show inf \sqsubseteqy ..
        fix z assume zx:z\sqsubseteqx and zy:z\sqsubseteqy
        from is-Inf show z\sqsubseteqinf
        proof (rule is-Inf-greatest)
            fix }a\mathrm{ assume }a\in
            then have }a=x\veea=y\mathrm{ by blast
            then show z\sqsubseteqa
            proof
                assume a=x
                with zx show ?thesis by simp
                next
                        assume }a=
                with zy show ?thesis by simp
                qed
            qed
        qed
    next
```

```
    assume is-inf: is-inf x y inf
    show is-Inf {x,y} inf
    proof
        fix }a\mathrm{ assume }a\in\mathrm{ ? A
        then have }a=x\veea=y\mathrm{ by blast
        then show inf \sqsubseteqa
        proof
            assume }a=
            also from is-inf have inf \sqsubseteqx..
            finally show ?thesis.
        next
            assume }a=
            also from is-inf have inf \sqsubseteqy ..
            finally show ?thesis .
        qed
    next
        fix z assume z: }\foralla\in?A.z\sqsubseteq
        from is-inf show z\sqsubseteqinf
        proof (rule is-inf-greatest)
            from }z\mathrm{ show }z\sqsubseteqx\mathrm{ by blast
            from }z\mathrm{ show }z\sqsubseteqy\mathrm{ by blast
        qed
    qed
    qed
qed
theorem is-Sup-binary:is-Sup {x,y} sup =is-sup x y sup
proof -
    have is-Sup {x,y} sup =is-Inf (dual' {x,y})(dual sup)
    by (simp only: dual-Inf)
    also have dual' {x,y} = {dual x, dual y}
    by simp
    also have is-Inf ... (dual sup) = is-inf (dual x) (dual y) (dual sup)
        by (rule is-Inf-binary)
    also have ... = is-sup x y sup
    by (simp only:dual-inf)
    finally show ?thesis.
qed
```


2.6 Connecting general bounds

Either kind of general bounds is sufficient to express the other. The least upper bound (supremum) is the same as the the greatest lower bound of the set of all upper bounds; the dual statements holds as well; the dual statement holds as well.

```
theorem Inf-Sup: is-Inf \(\{b . \forall a \in A . a \sqsubseteq b\}\) sup \(\Longrightarrow\) is-Sup \(A\) sup
proof -
    let \(? B=\{b . \forall a \in A . a \sqsubseteq b\}\)
```

```
    assume is-Inf:is-Inf ?B sup
    show is-Sup A sup
    proof
        fix }x\mathrm{ assume }x:x\in
        from is-Inf show x\sqsubseteqsup
        proof (rule is-Inf-greatest)
            fix }y\mathrm{ assume }y\in?
            then have }\foralla\inA.a\sqsubseteqy.
            from this x show }x\sqsubseteqy.
    qed
next
    fix z assume }\forallx\inA.x\sqsubseteq
    then have z & ?B ..
    with is-Inf show sup}\sqsubseteqz.
    qed
qed
theorem Sup-Inf:is-Sup {b.\foralla\inA.b\sqsubseteqa} inf \Longrightarrow is-Inf A inf
proof -
    assume is-Sup {b..}\foralla\inA.b\sqsubseteqa} inf
    then have is-Inf (dual' {b.\foralla\inA.dual a\sqsubseteqdual b})(dual inf)
    by (simp only: dual-Inf dual-leq)
    also have dual ' {b.\foralla\inA. dual }a\sqsubseteq\mathrm{ dual b} ={b'.}\forall\mp@subsup{a}{}{\prime}\indual 'A. a' \sqsubseteq b'
    by (auto iff: dual-ball dual-Collect simp add: image-Collect)
    finally have is-Inf ... (dual inf).
    then have is-Sup (dual ' A) (dual inf)
    by (rule Inf-Sup)
    then show ?thesis ..
qed
end
```


3 Lattices

theory Lattice imports Bounds begin

3.1 Lattice operations

A lattice is a partial order with infimum and supremum of any two elements (thus any finite number of elements have bounds as well).

```
class lattice =
    assumes ex-inf: \existsinf.is-inf x y inf
    assumes ex-sup: \exists}\mathrm{ sup. is-sup x y sup
```

The \sqcap (meet) and \sqcup (join) operations select such infimum and supremum elements.

definition

meet $::$ ' $a:$:lattice $\Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a($ infixl $\sqcap 70)$ where

```
    \(x \sqcap y=(\) THE inf. is-inf \(x\) y inf \()\)
definition
join :: 'a::lattice \(\Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a\) (infixl \(\sqcup 65\) ) where
\(x \sqcup y=(\) THE sup. is-sup \(x\) sup \()\)
```

Due to unique existence of bounds，the lattice operations may be exhibited as follows．

```
lemma meet-equality [elim?]: is-inf \(x y \inf \Longrightarrow x \sqcap y=\inf\)
proof (unfold meet-def)
    assume is-inf \(x\) y inf
    then show (THE inf. is-inf \(x\) y inf) \(=\inf\)
        by (rule the-equality) (rule is-inf-uniq \([O F-\langle i s-i n f x\) y inf \(\rangle])\)
qed
lemma meetI [intro?]:
    inf \(\sqsubseteq x \Longrightarrow \inf \sqsubseteq y \Longrightarrow(\bigwedge z . z \sqsubseteq x \Longrightarrow z \sqsubseteq y \Longrightarrow z \sqsubseteq \inf ) \Longrightarrow x \sqcap y=\inf\)
    by (rule meet-equality, rule is-infI) blast+
lemma join-equality [elim?]: is-sup \(x\) y sup \(\Longrightarrow x \sqcup y=\) sup
proof (unfold join-def)
    assume is-sup x y sup
    then show (THE sup. is-sup \(x\) y sup) \(=\) sup
        by (rule the-equality) (rule is-sup-uniq [OF-〈is-sup \(x\) y sup \(\rangle\) ])
qed
lemma joinI [intro?]: \(x \sqsubseteq\) sup \(\Longrightarrow y \sqsubseteq \sup \Longrightarrow\)
    \((\bigwedge z . x \sqsubseteq z \Longrightarrow y \sqsubseteq z \Longrightarrow \sup \sqsubseteq z) \Longrightarrow x \sqcup y=\sup\)
    by (rule join-equality, rule is-supI) blast+
```

The \sqcap and \sqcup operations indeed determine bounds on a lattice structure.
lemma is-inf-meet [intro?]: is-inf x y $(x \sqcap y)$
proof (unfold meet-def)
from ex-inf obtain inf where is-inf $x y \inf$..
then show is-inf x y (THE inf. is-inf x yinf)
by (rule theI) (rule is-inf-uniq [OF - 〈is-inf x y inf〉])
qed
lemma meet-greatest [intro?]: $z \sqsubseteq x \Longrightarrow z \sqsubseteq y \Longrightarrow z \sqsubseteq x \sqcap y$
by (rule is-inf-greatest) (rule is-inf-meet)
lemma meet-lower1 [intro?]: $x \sqcap y \sqsubseteq x$
by (rule is-inf-lower) (rule is-inf-meet)
lemma meet-lower2 [intro?]: $x \sqcap y \sqsubseteq y$
by (rule is-inf-lower) (rule is-inf-meet)
lemma is-sup-join [intro?]: is-sup x y $(x \sqcup y)$

```
proof (unfold join-def)
    from ex-sup obtain sup where is-sup \(x\) y sup ..
    then show is-sup \(x\) y (THE sup. is-sup \(x\) y sup)
        by (rule theI) (rule is-sup-uniq [OF - 〈is-sup \(x\) y sup〉])
qed
lemma join-least [intro?]: \(x \sqsubseteq z \Longrightarrow y \sqsubseteq z \Longrightarrow x \sqcup y \sqsubseteq z\)
    by (rule is-sup-least) (rule is-sup-join)
lemma join-upper1 [intro?]: \(x \sqsubseteq x \sqcup y\)
    by (rule is-sup-upper) (rule is-sup-join)
lemma join-upper2 [intro?]: \(y \sqsubseteq x \sqcup y\)
    by (rule is-sup-upper) (rule is-sup-join)
```


3.2 Duality

The class of lattices is closed under formation of dual structures. This means that for any theorem of lattice theory, the dualized statement holds as well; this important fact simplifies many proofs of lattice theory.

```
instance dual :: (lattice) lattice
proof
    fix }\mp@subsup{x}{}{\prime}\mp@subsup{y}{}{\prime}:: ' a::lattice dua
    show \existsinf'. is-inf }\mp@subsup{x}{}{\prime}\mp@subsup{y}{}{\prime}\mathrm{ inf'
    proof -
        have \exists sup. is-sup (undual x') (undual y') sup by (rule ex-sup)
        then have \exists sup. is-inf (dual (undual x')) (dual (undual y')) (dual sup)
            by (simp only: dual-inf)
        then show ?thesis by (simp add: dual-ex [symmetric])
    qed
    show \exists sup'. is-sup \mp@subsup{x}{}{\prime}}\mp@subsup{y}{}{\prime}\mp@subsup{\mathrm{ sup }}{}{\prime
    proof -
        have \existsinf.is-inf (undual }\mp@subsup{x}{}{\prime}\mathrm{ ) (undual y') inf by (rule ex-inf)
        then have \existsinf. is-sup (dual (undual x')) (dual (undual y')) (dual inf)
            by (simp only: dual-sup)
        then show ?thesis by (simp add: dual-ex [symmetric])
    qed
qed
```

Apparently, the \sqcap and \sqcup operations are dual to each other.
theorem dual-meet [intro?]: dual $(x \sqcap y)=$ dual $x \sqcup$ dual y
proof -
from is-inf-meet have is-sup (dual x) (dual y) (dual $(x \sqcap y)$)..
then have dual $x \sqcup$ dual $y=$ dual $(x \sqcap y)$..
then show ?thesis ..
qed
theorem dual-join [intro?]: dual $(x \sqcup y)=$ dual $x \sqcap$ dual y

```
proof -
    from is-sup-join have is-inf (dual x) (dual y) (dual (x \sqcupy)) ..
    then have dual }x\sqcap\mathrm{ dual }y=dual (x\sqcupy).
    then show ?thesis ..
qed
```


3.3 Algebraic properties

The \sqcap and \sqcup operations have the following characteristic algebraic properties: associative (A), commutative (C), and absorptive (AB).
theorem meet-assoc: $(x \sqcap y) \sqcap z=x \sqcap(y \sqcap z)$
proof
show $x \sqcap(y \sqcap z) \sqsubseteq x \sqcap y$
proof
show $x \sqcap(y \sqcap z) \sqsubseteq x$..
show $x \sqcap(y \sqcap z) \sqsubseteq y$
proof -
have $x \sqcap(y \sqcap z) \sqsubseteq y \sqcap z .$.
also have $\ldots \sqsubseteq y$..
finally show ?thesis .
qed
qed
show $x \sqcap(y \sqcap z) \sqsubseteq z$
proof -
have $x \sqcap(y \sqcap z) \sqsubseteq y \sqcap z .$.
also have $\ldots \sqsubseteq z$..
finally show ?thesis .
qed
fix w assume $w \sqsubseteq x \sqcap y$ and $w \sqsubseteq z$
show $w \sqsubseteq x \sqcap(y \sqcap z)$
proof
show $w \sqsubseteq x$
proof -
have $w \sqsubseteq x \sqcap y$ by fact
also have $\ldots \sqsubseteq x$..
finally show ?thesis.
qed
show $w \sqsubseteq y \sqcap z$
proof
show $w \sqsubseteq y$
proof -
have $w \sqsubseteq x \sqcap y$ by fact
also have $\ldots \sqsubseteq y$..
finally show ?thesis.
qed
show $w \sqsubseteq z$ by fact
qed
qed
qed

```
theorem join-assoc: \((x \sqcup y) \sqcup z=x \sqcup(y \sqcup z)\)
proof -
    have dual \(((x \sqcup y) \sqcup z)=(\) dual \(x \sqcap\) dual \(y) \sqcap\) dual \(z\)
        by (simp only: dual-join)
    also have \(\ldots=\) dual \(x \sqcap(\) dual \(y \sqcap\) dual \(z)\)
        by (rule meet-assoc)
    also have \(\ldots=\) dual \((x \sqcup(y \sqcup z))\)
        by (simp only: dual-join)
    finally show ?thesis ..
qed
theorem meet-commute: \(x \sqcap y=y \sqcap x\)
proof
    show \(y \sqcap x \sqsubseteq x\)..
    show \(y \sqcap x \sqsubseteq y\)..
    fix \(z\) assume \(z \sqsubseteq y\) and \(z \sqsubseteq x\)
    then show \(z \sqsubseteq y \sqcap x\)..
qed
theorem join-commute: \(x \sqcup y=y \sqcup x\)
proof -
    have dual \((x \sqcup y)=\) dual \(x \sqcap\) dual \(y .\).
    also have \(\ldots=\) dual \(y \sqcap\) dual \(x\)
    by (rule meet-commute)
    also have \(\ldots=\) dual \((y \sqcup x)\)
        by (simp only: dual-join)
    finally show ?thesis ..
qed
theorem meet-join-absorb: \(x \sqcap(x \sqcup y)=x\)
proof
    show \(x \sqsubseteq x\)..
    show \(x \sqsubseteq x \sqcup y\)..
    fix \(z\) assume \(z \sqsubseteq x\) and \(z \sqsubseteq x \sqcup y\)
    show \(z \sqsubseteq x\) by fact
qed
theorem join-meet-absorb: \(x \sqcup(x \sqcap y)=x\)
proof -
    have dual \(x \sqcap(\) dual \(x \sqcup\) dual \(y)=\) dual \(x\)
        by (rule meet-join-absorb)
    then have dual \((x \sqcup(x \sqcap y))=\) dual \(x\)
        by (simp only: dual-meet dual-join)
    then show ?thesis ..
qed
```

Some further algebraic properties hold as well. The property idempotent (I) is a basic algebraic consequence of (AB).

```
theorem meet-idem: \(x \sqcap x=x\)
proof -
    have \(x \sqcap(x \sqcup(x \sqcap x))=x\) by (rule meet-join-absorb)
    also have \(x \sqcup(x \sqcap x)=x\) by (rule join-meet-absorb)
    finally show ?thesis.
qed
theorem join-idem: \(x \sqcup x=x\)
proof -
    have dual \(x \sqcap\) dual \(x=\) dual \(x\)
        by (rule meet-idem)
    then have dual \((x \sqcup x)=\) dual \(x\)
        by (simp only: dual-join)
    then show ?thesis ..
qed
```

Meet and join are trivial for related elements.

```
theorem meet-related [elim?]: \(x \sqsubseteq y \Longrightarrow x \sqcap y=x\)
proof
    assume \(x \sqsubseteq y\)
    show \(x \sqsubseteq x\)..
    show \(x \sqsubseteq y\) by fact
    fix \(z\) assume \(z \sqsubseteq x\) and \(z \sqsubseteq y\)
    show \(z \sqsubseteq x\) by fact
qed
theorem join-related [elim?]: \(x \sqsubseteq y \Longrightarrow x \sqcup y=y\)
proof -
    assume \(x \sqsubseteq y\) then have dual \(y \sqsubseteq\) dual \(x\)..
    then have dual \(y \sqcap\) dual \(x=\) dual \(y\) by (rule meet-related)
    also have dual \(y \sqcap\) dual \(x=\) dual \((y \sqcup x)\) by (simp only: dual-join)
    also have \(y \sqcup x=x \sqcup y\) by (rule join-commute)
    finally show ?thesis ..
qed
```


3.4 Order versus algebraic structure

The \sqcap and \sqcup operations are connected with the underlying \sqsubseteq relation in a canonical manner.
theorem meet-connection: $(x \sqsubseteq y)=(x \sqcap y=x)$
proof
assume $x \sqsubseteq y$
then have is-inf x y x..
then show $x \sqcap y=x$..
next
have $x \sqcap y \sqsubseteq y$..
also assume $x \sqcap y=x$
finally show $x \sqsubseteq y$.

qed

```
theorem join-connection: \((x \sqsubseteq y)=(x \sqcup y=y)\)
proof
    assume \(x \sqsubseteq y\)
    then have is-sup \(x\) y \(y\)..
    then show \(x \sqcup y=y\)..
next
    have \(x \sqsubseteq x \sqcup y\)..
    also assume \(x \sqcup y=y\)
    finally show \(x \sqsubseteq y\).
qed
```

The most fundamental result of the meta-theory of lattices is as follows (we do not prove it here).
Given a structure with binary operations \sqcap and \sqcup such that $(\mathrm{A}),(\mathrm{C})$, and (AB) hold (cf. §3.3). This structure represents a lattice, if the relation $x \sqsubseteq y$ is defined as $x \sqcap y=x$ (alternatively as $x \sqcup y=y$). Furthermore, infimum and supremum with respect to this ordering coincide with the original \sqcap and \sqcup operations.

3.5 Example instances

3.5.1 Linear orders

Linear orders with minimum and maximum operations are a (degenerate) example of lattice structures.

```
definition
    minimum \(::\) ' \(a::\) linear-order \(\Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a\) where
    minimum \(x y=(\) if \(x \sqsubseteq y\) then \(x\) else \(y)\)
definition
    maximum :: 'a::linear-order \(\Rightarrow{ }^{\prime} a \Rightarrow\) ' \(a\) where
    maximum \(x y=(\) if \(x \sqsubseteq y\) then \(y\) else \(x)\)
lemma is-inf-minimum: is-inf \(x\) y (minimum \(x y)\)
proof
    let \(?\) min \(=\) minimum \(x y\)
    from leq-linear show ? min \(\sqsubseteq x\) by (auto simp add: minimum-def)
    from leq-linear show ? min \(\sqsubseteq y\) by (auto simp add: minimum-def)
    fix \(z\) assume \(z \sqsubseteq x\) and \(z \sqsubseteq y\)
    with leq-linear show \(z \sqsubseteq\) ? min by (auto simp add: minimum-def)
qed
lemma is-sup-maximum: is-sup \(x\) y (maximum \(x y)\)
proof
    let \(? \max =\) maximum \(x y\)
    from leq-linear show \(x \sqsubseteq\) ? max by (auto simp add: maximum-def)
```

```
    from leq-linear show y\sqsubseteq?max by (auto simp add: maximum-def)
    fix z assume }x\sqsubseteqz\mathrm{ and }y\sqsubseteq
    with leq-linear show ?max }\sqsubseteqz\mathrm{ by (auto simp add: maximum-def)
qed
instance linear-order \subseteqlattice
proof
    fix x y :: 'a::linear-order
    from is-inf-minimum show \existsinf.is-inf x y inf ..
    from is-sup-maximum show \exists sup. is-sup x y sup ..
qed
```

The lattice operations on linear orders indeed coincide with minimum and maximum.
theorem meet-mimimum: $x \sqcap y=$ minimum $x y$
by (rule meet-equality) (rule is-inf-minimum)
theorem meet-maximum: $x \sqcup y=$ maximum $x y$
by (rule join-equality) (rule is-sup-maximum)

3.5.2 Binary products

The class of lattices is closed under direct binary products (cf. §1.3.2).

```
lemma is-inf-prod: is-inf p q(fst p }\sqcapfst q, snd p \sqcap snd q
proof
    show (fst p}\sqcapf\mathrm{ ft q, snd p }\sqcap\mathrm{ snd q) }\sqsubseteq
    proof -
        have fst p \sqcap fst q}\sqsubseteqfst p ..
        moreover have snd p\sqcap snd q\sqsubseteq snd p ..
        ultimately show ?thesis by (simp add: leq-prod-def)
    qed
    show (fst p \sqcapfst q, snd p\sqcap snd q)\sqsubseteqq
    proof -
        have fst p \sqcapfst q\sqsubseteq fst q ..
        moreover have snd p \sqcap snd q\sqsubseteq snd q ..
        ultimately show ?thesis by (simp add: leq-prod-def)
    qed
    fix r assume rp:r\sqsubseteqp and rq: }\sqsubseteq\sqsubseteq
    show r}\sqsubseteq(fst p\sqcapfst q, snd p\sqcap snd q
    proof -
        have fst r}\sqsubseteqfst p\sqcapfst q
        proof
            from rp show fst r}\sqsubseteqfst p by (simp add: leq-prod-def
            from rq show fst r}\sqsubseteqfst q by (simp add:leq-prod-def
        qed
        moreover have snd r\sqsubseteqsnd p\sqcapsnd q
        proof
            from rp show snd r}\sqsubseteqsnd p by (simp add:leq-prod-def
```

```
            from rq show snd r}\sqsubseteqsnd q by (simp add:leq-prod-def
    qed
    ultimately show ?thesis by (simp add: leq-prod-def)
    qed
qed
lemma is-sup-prod: is-sup p q(fst p \sqcupfst q, snd p \sqcup snd q)
proof
    show }p\sqsubseteq(fst p\sqcupfst q, snd p\sqcup snd q
    proof -
    have fst p\sqsubseteq fst p \sqcupfst q ..
    moreover have snd p\sqsubseteq snd p\sqcup snd q ..
    ultimately show ?thesis by (simp add: leq-prod-def)
    qed
    show q}\sqsubseteq(fst p\sqcupfst q, snd p\sqcupsnd q
    proof -
    have fst q\sqsubseteq fst p \sqcupfst q ..
    moreover have snd q\sqsubseteq snd p\sqcup snd q ..
    ultimately show ?thesis by (simp add: leq-prod-def)
    qed
    fix r assume pr:p\sqsubseteqr and qr:q\sqsubseteqr
    show (fst p\sqcup fst q, snd p\sqcupsnd q)\sqsubseteqr
    proof -
    have fst p \sqcupfst q\sqsubseteq fst r
    proof
            from pr show fst p\sqsubseteqfst r by (simp add: leq-prod-def)
            from qr show fst q}\sqsubseteqfstr by (simp add: leq-prod-def
    qed
    moreover have snd p\sqcup snd q\sqsubseteq snd r
    proof
            from pr show snd p\sqsubseteq snd r by (simp add: leq-prod-def)
            from qr show snd q\sqsubseteq snd r by (simp add:leq-prod-def)
    qed
    ultimately show ?thesis by (simp add: leq-prod-def)
    qed
qed
instance prod :: (lattice, lattice) lattice
proof
    fix p q :: 'a::lattice > 'b::lattice
    from is-inf-prod show \existsinf. is-inf p q inf ..
    from is-sup-prod show \exists sup. is-sup p q sup ..
qed
```

The lattice operations on a binary product structure indeed coincide with the products of the original ones.
theorem meet-prod: $p \sqcap q=($ fst $p \sqcap f s t q$, snd $p \sqcap$ snd $q)$
by (rule meet-equality) (rule is-inf-prod)

```
theorem join-prod: \(p \sqcup q=(\) fst \(p \sqcup\) fst \(q\), snd \(p \sqcup\) snd \(q)\)
    by (rule join-equality) (rule is-sup-prod)
```


3.5.3 General products

The class of lattices is closed under general products (function spaces) as well (cf. §1.3.3).
lemma is-inf-fun: is-inffg $(\lambda x . f x \sqcap g x)$
proof
show $(\lambda x . f x \sqcap g x) \sqsubseteq f$
proof
fix x show $f x \sqcap g x \sqsubseteq f x .$.
qed
show $(\lambda x . f x \sqcap g x) \sqsubseteq g$
proof
fix x show $f x \sqcap g x \sqsubseteq g x$..
qed
fix h assume $h f: h \sqsubseteq f$ and $h g: h \sqsubseteq g$
show $h \sqsubseteq(\lambda x . f x \sqcap g x)$
proof
fix x
show $h x \sqsubseteq f x \sqcap g x$ proof
from $h f$ show $h x \sqsubseteq f x$.. from $h g$ show $h x \sqsubseteq g x$.. qed
qed
qed
lemma is-sup-fun: is-sup fg($\lambda x . f x \sqcup g x)$
proof
show $f \sqsubseteq(\lambda x . f x \sqcup g x)$
proof
fix x show $f x \sqsubseteq f x \sqcup g x$..
qed
show $g \sqsubseteq(\lambda x . f x \sqcup g x)$
proof
fix x show $g x \sqsubseteq f x \sqcup g x$..
qed
fix h assume $f h: f \sqsubseteq h$ and $g h: g \sqsubseteq h$
show $(\lambda x . f x \sqcup g x) \sqsubseteq h$
proof
fix x
show $f x \sqcup g x \sqsubseteq h x$
proof
from fh show $f x \sqsubseteq h x$..
from $g h$ show $g x \sqsubseteq h x$..
qed
qed

qed

```
instance fun :: (type, lattice) lattice
proof
    fix \(f g::\) ' \(a \Rightarrow{ }^{\prime} b::\) lattice
    show \(\exists\) inf. is-inf \(f g\) inf by rule (rule is-inf-fun)
    show \(\exists\) sup. is-sup \(f g\) sup by rule (rule is-sup-fun)
qed
```

The lattice operations on a general product structure (function space) indeed emerge by point-wise lifting of the original ones.

```
theorem meet-fun: f}\sqcapg=(\lambdax.fx\sqcapgx
    by (rule meet-equality) (rule is-inf-fun)
theorem join-fun: f \sqcupg=(\lambdax.fx\sqcupg x)
    by (rule join-equality) (rule is-sup-fun)
```


3.6 Monotonicity and semi-morphisms

The lattice operations are monotone in both argument positions. In fact, monotonicity of the second position is trivial due to commutativity.

```
theorem meet-mono: \(x \sqsubseteq z \Longrightarrow y \sqsubseteq w \Longrightarrow x \sqcap y \sqsubseteq z \sqcap w\)
proof -
    \{
    fix \(a b c\) :: 'a::lattice
    assume \(a \sqsubseteq c\) have \(a \sqcap b \sqsubseteq c \sqcap b\)
    proof
            have \(a \sqcap b \sqsubseteq a\)..
            also have \(\ldots \sqsubseteq c\) by fact
            finally show \(a \sqcap b \sqsubseteq c\).
            show \(a \sqcap b \sqsubseteq b\)..
    qed
    \(\}\) note this [elim?
    assume \(x \sqsubseteq z\) then have \(x \sqcap y \sqsubseteq z \sqcap y\)..
    also have \(\ldots=y \sqcap z\) by (rule meet-commute)
    also assume \(y \sqsubseteq w\) then have \(y \sqcap z \sqsubseteq w \sqcap z\)..
    also have \(\ldots=z \sqcap w\) by (rule meet-commute)
    finally show? thesis.
qed
theorem join-mono: \(x \sqsubseteq z \Longrightarrow y \sqsubseteq w \Longrightarrow x \sqcup y \sqsubseteq z \sqcup w\)
proof -
    assume \(x \sqsubseteq z\) then have dual \(z \sqsubseteq\) dual \(x\)..
    moreover assume \(y \sqsubseteq w\) then have dual \(w \sqsubseteq\) dual \(y\)..
    ultimately have dual \(z \sqcap\) dual \(w \sqsubseteq\) dual \(x \sqcap\) dual \(y\)
        by (rule meet-mono)
    then have dual \((z \sqcup w) \sqsubseteq\) dual \((x \sqcup y)\)
    by (simp only: dual-join)
```

```
    then show ?thesis ..
qed
```

A semi-morphisms is a function f that preserves the lattice operations in the following manner: $f(x \sqcap y) \sqsubseteq f x \sqcap f y$ and $f x \sqcup f y \sqsubseteq f(x \sqcup y)$, respectively. Any of these properties is equivalent with monotonicity.
theorem meet-semimorph:
$(\bigwedge x y . f(x \sqcap y) \sqsubseteq f x \sqcap f y) \equiv(\bigwedge x y . x \sqsubseteq y \Longrightarrow f x \sqsubseteq f y)$
proof
assume morph: $\bigwedge x y . f(x \sqcap y) \sqsubseteq f x \sqcap f y$
fix $x y$:: 'a::lattice
assume $x \sqsubseteq y$
then have $x \sqcap y=x$..
then have $x=x \sqcap y$..
also have $f \ldots \sqsubseteq f x \sqcap f y$ by (rule morph)
also have...$\sqsubseteq f y$..
finally show $f x \sqsubseteq f y$.
next
assume mono: $\bigwedge x y . x \sqsubseteq y \Longrightarrow f x \sqsubseteq f y$
show $\bigwedge x y . f(x \sqcap y) \sqsubseteq f x \sqcap f y$
proof -
fix $x y$
show $f(x \sqcap y) \sqsubseteq f x \sqcap f y$
proof
have $x \sqcap y \sqsubseteq x .$. then show $f(x \sqcap y) \sqsubseteq f x$ by (rule mono) have $x \sqcap y \sqsubseteq y$.. then show $f(x \sqcap y) \sqsubseteq f y$ by (rule mono)
qed
qed
qed
lemma join-semimorph:
$(\bigwedge x y . f x \sqcup f y \sqsubseteq f(x \sqcup y)) \equiv(\bigwedge x y . x \sqsubseteq y \Longrightarrow f x \sqsubseteq f y)$
proof
assume morph: $\bigwedge x y . f x \sqcup f y \sqsubseteq f(x \sqcup y)$
fix $x y$:: 'a::lattice
assume $x \sqsubseteq y$ then have $x \sqcup y=y$..
have $f x \sqsubseteq f x \sqcup f y$..
also have $\ldots \sqsubseteq f(x \sqcup y)$ by (rule morph)
also from $\langle x \sqsubseteq y\rangle$ have $x \sqcup y=y$..
finally show $f x \sqsubseteq f y$.
next
assume mono: $\bigwedge x y . x \sqsubseteq y \Longrightarrow f x \sqsubseteq f y$
show $\bigwedge x y . f x \sqcup f y \sqsubseteq f(x \sqcup y)$
proof -
fix $x y$
show $f x \sqcup f y \sqsubseteq f(x \sqcup y)$
proof
have $x \sqsubseteq x \sqcup y$.. then show $f x \sqsubseteq f(x \sqcup y)$ by (rule mono) have $y \sqsubseteq x \sqcup y$.. then show $f y \sqsubseteq f(x \sqcup y)$ by (rule mono)

```
    qed
    qed
qed
end
```


4 Complete lattices

theory CompleteLattice imports Lattice begin

4.1 Complete lattice operations

A complete lattice is a partial order with general (infinitary) infimum of any set of elements. General supremum exists as well, as a consequence of the connection of infinitary bounds (see §2.6).
class complete-lattice $=$
assumes ex-Inf: $\exists i n f$. is-Inf $A \inf$
theorem ex-Sup: \exists sup::'a::complete-lattice. is-Sup A sup
proof -
from ex-Inf obtain sup where $\operatorname{is-Inf}\{b . \forall a \in A . a \sqsubseteq b\}$ sup by blast
then have $i s$-Sup A sup by (rule Inf-Sup)
then show? thesis ..
qed
The general Π (meet) and \sqcup (join) operations select such infimum and supremum elements.

definition

```
    Meet :: 'a::complete-lattice set => 'a (П-[90] 90) where
    \rceil A = ( T H E ~ i n f . ~ i s - I n f ~ A ~ i n f ) ~
definition
    Join :: 'a::complete-lattice set = 'a (\- [90] 90) where
    \bigsqcup A = ( T H E ~ s u p . ~ i s - S u p ~ A ~ s u p )
```

Due to unique existence of bounds, the complete lattice operations may be exhibited as follows.

```
lemma Meet-equality [elim?]: is-Inf \(A \inf \Longrightarrow \Pi A=\inf\)
proof (unfold Meet-def)
    assume is-Inf \(A\) inf
    then show (THE inf. is-Inf A inf) \(=\inf\)
        by (rule the-equality) (rule is-Inf-uniq [OF - 〈is-Inf A inf〉])
qed
lemma MeetI [intro?]:
    \((\bigwedge a . a \in A \Longrightarrow \inf \sqsubseteq a) \Longrightarrow\)
        \((\bigwedge b . \forall a \in A . b \sqsubseteq a \Longrightarrow b \sqsubseteq i n f) \Longrightarrow\)
        \(\sqcap A=i n f\)
```

```
    by (rule Meet-equality, rule is-InfI) blast+
lemma Join-equality [elim?]: is-Sup \(A\) sup \(\Longrightarrow \bigsqcup A=\) sup
proof (unfold Join-def)
    assume is-Sup A sup
    then show (THE sup. is-Sup A sup) \(=\) sup
        by (rule the-equality) (rule is-Sup-uniq [OF - 〈is-Sup A sup \(\rangle\) ])
qed
lemma JoinI [intro?]:
    \((\bigwedge a . a \in A \Longrightarrow a \sqsubseteq \sup ) \Longrightarrow\)
        \((\bigwedge b . \forall a \in A . a \sqsubseteq b \Longrightarrow \sup \sqsubseteq b) \Longrightarrow\)
    \(\bigsqcup A=\sup\)
    by (rule Join-equality, rule is-SupI) blast+
```

The Π and \bigsqcup operations indeed determine bounds on a complete lattice structure．
lemma is-Inf-Meet [intro?]: is-Inf $A(\sqcap A)$
proof (unfold Meet-def)
from ex-Inf obtain inf where is-Inf A inf ..
then show is-Inf A (THE inf. is-Inf A inf)
by (rule theI) (rule is-Inf-uniq [OF - 〈is-Inf A inf〉])
qed
lemma Meet-greatest [intro?]: $(\bigwedge a . a \in A \Longrightarrow x \sqsubseteq a) \Longrightarrow x \sqsubseteq \Pi A$
by (rule is-Inf-greatest, rule is-Inf-Meet) blast
lemma Meet-lower [intro?]: $a \in A \Longrightarrow \Pi A \sqsubseteq a$
by (rule is-Inf-lower) (rule is-Inf-Meet)
lemma is-Sup-Join [intro?]: is-Sup A $\left(\begin{array}{l} \\ \text { A })\end{array}\right.$
proof (unfold Join-def)
from ex-Sup obtain sup where is-Sup A sup ..
then show is-Sup A (THE sup. is-Sup A sup)
by (rule theI) (rule is-Sup-uniq [OF - 〈is-Sup A sup〉])
qed
lemma Join-least [intro?]: ($\bigwedge a . a \in A \Longrightarrow a \sqsubseteq x) \Longrightarrow \bigsqcup A \sqsubseteq x$
by (rule is-Sup-least, rule is-Sup-Join) blast
lemma Join-lower [intro?]: $a \in A \Longrightarrow a \sqsubseteq \bigsqcup A$
by (rule is-Sup-upper) (rule is-Sup-Join)

4．2 The Knaster－Tarski Theorem

The Knaster－Tarski Theorem（in its simplest formulation）states that any monotone function on a complete lattice has a least fixed－point（see［2，pages 93－94］for example）．This is a consequence of the basic boundary properties
of the complete lattice operations.
theorem Knaster-Tarski:

$$
\text { assumes mono: } \bigwedge x y . x \sqsubseteq y \Longrightarrow f x \sqsubseteq f y
$$

obtains a :: ' a ::complete-lattice where $f a=a$ and $\bigwedge a^{\prime} . f a^{\prime}=a^{\prime} \Longrightarrow a \sqsubseteq a^{\prime}$
proof
let ? $H=\{u . f u \sqsubseteq u\}$
let $? a=\Pi$? H
show $f ? a=? a$
proof -
have $g e: f ? a \sqsubseteq ? a$
proof
fix x assume $x: x \in ? H$
then have ? $a \sqsubseteq x$..
then have $f ? a \sqsubseteq f x$ by (rule mono)
also from x have $\ldots \sqsubseteq x$..
finally show $f ? a \sqsubseteq x$.
qed
also have ? $a \sqsubseteq f$? a
proof
from $g e$ have $f(f ? a) \sqsubseteq f ? a$ by (rule mono)
then show $f ? a \in ? H$..
qed
finally show? thesis .
qed
fix a^{\prime}
assume $f a^{\prime}=a^{\prime}$
then have $f a^{\prime} \sqsubseteq a^{\prime}$ by (simp only: leq-refl)
then have $a^{\prime} \in ? H$..
then show ? $a \sqsubseteq a^{\prime}$..
qed
theorem Knaster-Tarski-dual:
assumes mono: $\bigwedge x y . x \sqsubseteq y \Longrightarrow f x \sqsubseteq f y$
obtains a :: ' $a::$ complete-lattice where
$f a=a$ and $\bigwedge a^{\prime} . f a^{\prime}=a^{\prime} \Longrightarrow a^{\prime} \sqsubseteq a$
proof
let $? H=\{u . u \sqsubseteq f u\}$
let ? $a=\bigsqcup$? H
show $f ? a=? a$
proof -
have $l e$: ? $a \sqsubseteq f ? a$
proof
fix x assume $x: x \in ? H$
then have $x \sqsubseteq f x$..
also from x have $x \sqsubseteq ? a$..
then have $f x \sqsubseteq f$? a by (rule mono)
finally show $x \sqsubseteq f ? a$.

```
    qed
    have \(f\) ? \(a \sqsubseteq\) ? \(a\)
    proof
        from le have \(f\) ? \(a \sqsubseteq f(f\) ? \(a\) ) by (rule mono)
        then show \(f ? a \in ? H\)..
    qed
    from this and le show?thesis by (rule leq-antisym)
qed
fix \(a^{\prime}\)
assume \(f a^{\prime}=a^{\prime}\)
then have \(a^{\prime} \sqsubseteq f a^{\prime}\) by (simp only: leq-refl)
then have \(a^{\prime} \in\) ? \(H\)..
then show \(a^{\prime} \sqsubseteq ? a\)..
qed
```


4.3 Bottom and top elements

With general bounds available, complete lattices also have least and greatest elements.

definition

```
bottom :: 'a::complete-lattice ( }\perp\mathrm{ ) where
```

$\perp=\Pi$ UNIV

definition

top :: 'a::complete-lattice (T) where $\top=\bigsqcup U N I V$
lemma bottom-least [intro?]: $\perp \sqsubseteq x$ proof (unfold bottom-def)
have $x \in$ UNIV then show Π UNIV $\sqsubseteq x$..
qed
lemma bottomI [intro?]: $(\backslash a . x \sqsubseteq a) \Longrightarrow \perp=x$
proof (unfold bottom-def)
assume $\wedge a . x \sqsubseteq a$
show Π UNIV $=x$
proof
fix a show $x \sqsubseteq a$ by fact
next
fix $b::$ 'a::complete-lattice
assume $b: \forall a \in U N I V . b \sqsubseteq a$
have $x \in$ UNIV ..
with b show $b \sqsubseteq x$..
qed
qed
lemma top-greatest [intro?]: $x \sqsubseteq \top$

```
proof (unfold top-def)
    have \(x \in U N I V\)..
    then show \(x \sqsubseteq \bigsqcup U N I V\)..
qed
lemma topI [intro?]: \((\bigwedge a . a \sqsubseteq x) \Longrightarrow \top=x\)
proof (unfold top-def)
    assume \(\wedge a\). \(a \sqsubseteq x\)
    show \(\bigsqcup U N I V=x\)
    proof
        fix \(a\) show \(a \sqsubseteq x\) by fact
    next
        fix \(b\) :: ' \(a\) ::complete-lattice
        assume \(b: \forall a \in U N I V . a \sqsubseteq b\)
        have \(x \in U N I V\)..
        with \(b\) show \(x \sqsubseteq b\)..
    qed
qed
```


4.4 Duality

The class of complete lattices is closed under formation of dual structures.

```
instance dual :: (complete-lattice) complete-lattice
proof
    fix A' :: 'a::complete-lattice dual set
    show \existsinf'. is-Inf A' inf'
    proof -
        have \existssup. is-Sup (undual ' A') sup by (rule ex-Sup)
        then have \exists sup. is-Inf (dual 'undual ' A') (dual sup) by (simp only: dual-Inf)
        then show ?thesis by (simp add: dual-ex [symmetric] image-comp)
    qed
qed
```

Apparently, the Π and \bigsqcup operations are dual to each other.
theorem dual-Meet [intro?]: dual $(\Pi A)=\bigsqcup($ dual' $A)$
proof -
from is-Inf-Meet have is-Sup (dual ' A) (dual $(\Pi A))$..
then have $\bigsqcup(d u a l ' A)=\operatorname{dual}(\Pi A)$..
then show ?thesis ..
qed
theorem dual-Join [intro?]: dual $(\square A)=\Pi($ dual ' $A)$
proof -
from is-Sup-Join have $i s$-Inf (dual' $A)($ dual $(\bigsqcup A))$..
then have $\Pi\left(\right.$ dual $\left.{ }^{\prime} A\right)=$ dual $(\bigsqcup A)$..
then show ?thesis ..
qed

Likewise are \perp and \top duals of each other.

```
theorem dual-bottom [intro?]: dual \(\perp=\top\)
proof -
    have \(\top=\) dual \(\perp\)
    proof
        fix \(a^{\prime}\) have \(\perp \sqsubseteq\) undual \(a^{\prime}\)..
        then have dual (undual \(a^{\prime}\) ) \(\sqsubseteq d u a l ~ \perp .\).
        then show \(a^{\prime} \sqsubseteq d u a l \perp\) by simp
    qed
    then show ?thesis ..
qed
theorem dual-top [intro?]: dual \(\top=\perp\)
proof -
    have \(\perp=\) dual \(\top\)
    proof
        fix \(a^{\prime}\) have undual \(a^{\prime} \sqsubseteq \top\)..
        then have dual \(\top \sqsubseteq\) dual (undual \(a^{\prime}\) ) ..
        then show dual \(T \sqsubseteq a^{\prime}\) by simp
    qed
    then show ?thesis ..
qed
```


4.5 Complete lattices are lattices

Complete lattices (with general bounds available) are indeed plain lattices as well. This holds due to the connection of general versus binary bounds that has been formally established in §2.5.

```
lemma is-inf-binary:is-inf x y (П{x,y})
proof -
    have is-Inf {x,y} (П{x,y}) ..
    then show ?thesis by (simp only: is-Inf-binary)
qed
lemma is-sup-binary:is-sup x y ( }\downarrow{x,y}
proof -
    have is-Sup {x,y}(\bigsqcup{x,y})..
    then show ?thesis by (simp only: is-Sup-binary)
qed
instance complete-lattice }\subseteqlattic
proof
    fix x y :: 'a::complete-lattice
    from is-inf-binary show \existsinf. is-inf x y inf ..
    from is-sup-binary show \exists sup. is-sup x y sup ..
qed
theorem meet-binary: }x\sqcapy=\Pi{x,y
    by (rule meet-equality) (rule is-inf-binary)
```

```
theorem join-binary: }x\sqcupy=\bigsqcup{x,y
    by (rule join-equality) (rule is-sup-binary)
```


4.6 Complete lattices and set-theory operations

The complete lattice operations are (anti) monotone wrt. set inclusion.

```
theorem Meet-subset-antimono: \(A \subseteq B \Longrightarrow \sqcap B \sqsubseteq \sqcap A\)
proof (rule Meet-greatest)
    fix \(a\) assume \(a \in A\)
    also assume \(A \subseteq B\)
    finally have \(a \in B\).
    then show \(\Pi B \sqsubseteq a\)..
qed
theorem Join-subset-mono: \(A \subseteq B \Longrightarrow \bigsqcup A \sqsubseteq \bigsqcup B\)
proof -
    assume \(A \subseteq B\)
    then have dual ' \(A \subseteq\) dual ' \(B\) by blast
    then have \(\Pi(\) dual ' \(B) \sqsubseteq \Pi\) (dual ' \(A\) ) by (rule Meet-subset-antimono)
    then have dual \((\bigsqcup B) \sqsubseteq\) dual \((\bigsqcup A)\) by (simp only: dual-Join)
    then show?thesis by (simp only: dual-leq)
qed
```

Bounds over unions of sets may be obtained separately.

```
theorem Meet-Un: \(\rceil(A \cup B)=\sqcap A \sqcap \sqcap B\)
proof
    fix \(a\) assume \(a \in A \cup B\)
    then show \(\Pi A \sqcap \sqcap B \sqsubseteq a\)
    proof
        assume \(a: a \in A\)
        have \(\Pi A \sqcap \sqcap B \sqsubseteq \Pi A\)..
        also from \(a\) have ... \(\sqsubseteq a .\).
        finally show? ?thesis.
    next
        assume \(a: a \in B\)
        have \(\Pi A \sqcap \sqcap B \sqsubseteq \sqcap B .\).
    also from \(a\) have \(\ldots \sqsubseteq a\).
    finally show?thesis.
    qed
next
    fix \(b\) assume \(b: \forall a \in A \cup B . b \sqsubseteq a\)
    show \(b \sqsubseteq \sqcap A \sqcap \sqcap B\)
    proof
        show \(b \sqsubseteq \sqcap A\)
        proof
            fix \(a\) assume \(a \in A\)
            then have \(a \in A \cup B\)..
```

```
        with b show b}\sqsubseteqa.
        qed
        show }b\sqsubseteqП
        proof
            fix }a\mathrm{ assume }a\in
        then have }a\inA\cupB.
        with b show b}\sqsubseteqa..
        qed
    qed
qed
```

theorem Join-Un: $\bigsqcup(A \cup B)=\bigsqcup A \sqcup \bigsqcup B$
proof -
have dual $(\bigsqcup(A \cup B))=\Pi($ dual ' $A \cup$ dual' $B)$
by (simp only: dual-Join image-Un)
also have $\ldots=\Pi($ dual ' $A) \sqcap \Pi($ dual ' $B)$
by (rule Meet-Un)
also have $\ldots=$ dual $(\square A \sqcup \bigsqcup B)$
by (simp only: dual-join dual-Join)
finally show ?thesis ..
qed

Bounds over singleton sets are trivial.

```
theorem Meet-singleton: \(\rceil\{x\}=x\)
proof
    fix \(a\) assume \(a \in\{x\}\)
    then have \(a=x\) by simp
    then show \(x \sqsubseteq a\) by (simp only: leq-refl)
next
    fix \(b\) assume \(\forall a \in\{x\} . b \sqsubseteq a\)
    then show \(b \sqsubseteq x\) by simp
qed
theorem Join-singleton: \(\bigsqcup\{x\}=x\)
proof -
    have dual \((\bigsqcup\{x\})=\Pi\{\) dual \(x\}\) by (simp add: dual-Join)
    also have \(\ldots=\) dual \(x\) by (rule Meet-singleton)
    finally show ?thesis ..
qed
```

Bounds over the empty and universal set correspond to each other.

```
theorem Meet-empty:}\rceil{}=\bigsqcupUNI
proof
    fix a :: 'a::complete-lattice
    assume a\in{}
    then have False by simp
    then show \bigsqcupUNIV}\sqsubseteqa ..
next
    fix b :: 'a::complete-lattice
```

```
    have b\inUNIV ..
    then show b}\sqsubseteq\bigsqcupUNIV ..
qed
theorem Join-empty: }\downarrow{}=\Pi\mathrm{ UNIV
proof -
    have dual (\bigsqcup{})=П{} by (simp add: dual-Join)
    also have ...=\bigsqcupUNIV by (rule Meet-empty)
    also have ... = dual (ПUNIV) by (simp add:dual-Meet)
    finally show ?thesis ..
qed
end
```


References

[1] G. Bauer and M. Wenzel. Computer-assisted mathematics at work the Hahn-Banach theorem in Isabelle/Isar. In T. Coquand, P. Dybjer, B. Nordström, and J. Smith, editors, Types for Proofs and Programs: TYPES'99, LNCS, 2000.
[2] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge University Press, 1990.
[3] M. Wenzel. Isar - a generic interpretative approach to readable formal proof documents. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L. Thery, editors, Theorem Proving in Higher Order Logics: TPHOLs '99, volume 1690 of $L N C S, 1999$.
[4] M. Wenzel. The Isabelle/Isar Reference Manual, 2000. https://isabelle. in.tum.de/doc/isar-ref.pdf.
[5] M. Wenzel. Using Axiomatic Type Classes in Isabelle, 2000. https: //isabelle.in.tum.de/doc/axclass.pdf.

