addftinfo(1) General Commands Manual addftinfo(1)

Name
addftinfo — add font metrics to troff fonts for use with groff

Synopsis
addftinfo [-asc—height n] [-body—depth n] [-body-height r] [-cap-height 1] [-comma—depth]
[-desc—depth] [-fig—height n] [-x—height 1] resolution unit-width font
addftinfo ——help

addftinfo —v
addftinfo ——version

Description
addftinfo reads an AT&T troff font description file font, adds additional font metric information required
by GNU troff (1), and writes the combined result to the standard output. The information added is derived
from the font’s existing parameters and assumptions about traditional troff names for characters. Among
the font metrics added are the heights and depths of characters (how far each extends vertically above and
below the baseline). The resolution and unit-width arguments should be the same as the corresponding pa-
rameters in the DESC file. font is the name of the file describing the font; if font ends with “I”, the font is
assumed to be oblique (or italic).

Options
—-help displays a usage message, while —v and ——version show version information; all exit afterward.
All other options change parameters that are used to derive the heights and depths. Like the existing quan-
tities in the font description file, each value n is in scaled points, inches/resolution for a font whose type
size is unit-width; see groff_font(5).
—asc—height n

height of characters with ascenders, such as “b”, “d”, or “1”
—body-depth n

depth of characters such as parentheses
—body-height n

height of characters such as parentheses
—cap-height n

height of uppercase letters such as “A”

—comma-—depth n
depth of a comma

—desc—depth n
depth of characters with descenders, such as “p”, “q”, or “‘y”
—fig—height
height of figures (numerals)
—x—height n
height of lowercase letters without ascenders such as “x”
addftinfo makes no attempt to use the specified parameters to infer unspecified parameters. If a parameter

is not specified, the default will be used. The defaults are chosen to produce reasonable values for a Times
font.

See also
groff_font(5), groff (1), groff_char(7)

groff 1.23.0 5 August 2023 1

afimtodit(1) General Commands Manual afmtodit(1)

Name

afmtodit — adapt Adobe Font Metrics files for groff’ PostScript and PDF output

Synopsis

afmtodit [-ckmnsx] [-a slant] [-d device-description-file] [—e encoding-file] [—f internal-name]
[italic-correction-factor] [—o output-file] [-w space-width] afm-file map-file font-description-
file

afmtodit ——help

afmtodit —v
afmtodit ——version

Description

afmtodit adapts an Adobe Font Metric file, afim-file, for use with the ps and pdf output devices of troff (1).
map-file associates a groff ordinary or special character name with a PostScript glyph name. Output is
written in groff font(5) format to font-description-file, a file named for the intended groff font name (but
see the —o option).

map-file should contain a sequence of lines of the form

ps—glyph groff-char
where ps-glyph is the PostScript glyph name and groff-char is a groff ordinary (if of unit length) or special
(if longer) character identifier. The same ps-glyph can occur multiple times in the file; each groff-char
must occur at most once. Lines starting with “#” and blank lines are ignored. If the file isn’t found in the
current directory, it is sought in the devps/generate subdirectory of the default font directory.

If a PostScript glyph is not mentioned in map-file, and a groff character name can’t be deduced using the
Adobe Glyph List (AGL, built into afmtodit), then afintodit puts the PostScript glyph into the groff font de-
scription file as an unnamed glyph which can only be accessed by the “\N” escape sequence in a roff docu-
ment. In particular, this is true for glyph variants named in the form * foo.bar”; all glyph names containing
one or more periods are mapped to unnamed entities. Unless —e is specified, the encoding defined in the
AFM file (i.e., entries with non-negative codes) is used. Refer to section “Using Symbols” in Groff: The
GNU Implementation of troff , the groff Texinfo manual, or groff _char(7), which describe how groff char-
acter identifiers are constructed.

Glyphs not encoded in the AFM file (i.e., entries indexed as “—17) are still available in groff’; they get glyph
index values greater than 255 (or greater than the biggest code used in the AFM file in the unlikely case that
it is greater than 255) in the groff font description file. Unencoded glyph indices don’t have a specific or-
der; it is best to access them only via special character identifiers.

If the font file proper (not just its metrics) is available, listing it in the files /usr/share/groff/1.23.0/font/
devps/download and /usr/share/groff/1.23.0/font/devpdf/download enables it to be embedded in the output
produced by grops(1) and gropdf (1), respectively.

If the —i option is used, afintodit automatically generates an italic correction, a left italic correction, and a
subscript correction for each glyph (the significance of these is explained in groff font(5)); they can be
specified for individual glyphs by adding to the afin-file lines of the form:

italicCorrection ps-glyph n

leftItalicCorrection ps—-glyph n

subscriptCorrection ps—-glyph n
where ps-glyph is the PostScript glyph name, and n is the desired value of the corresponding parameter in
thousandths of an em. Such parameters are normally needed only for italic (or oblique) fonts.

The —s option should be given if the font is “special”’, meaning that groff should search it whenever a glyph
is not found in the current font. In that case, font-description-file should be listed as an argument to the
fonts directive in the output device’s DESC file; if it is not special, there is no need to do so, since troff (1)
will automatically mount it when it is first used.

groff 1.23.0 5 August 2023 2

afimtodit(1) General Commands Manual afmtodit(1)

Options

—-help displays a usage message, while —v and ——version show version information; all exit afterward.

—a slant
Use slant as the slant (“angle”) parameter in the font description file; this is used by groff in the
positioning of accents. By default afimtodit uses the negative of the ItalicAngle specified in the
AFM file; with true italic fonts it is sometimes desirable to use a slant that is less than this. If you
find that an italic font places accents over base glyphs too far to the right, use —a to give it a
smaller slant.

—-C Include comments in the font description file identifying the PostScript font.

—d device-description-file
The device description file is desc-file rather than the default DESC. If not found in the current di-
rectory, the devps subdirectory of the default font directory is searched (this is true for both the de-
fault device description file and a file given with option —d).

—e encoding-file
The PostScript font should be reencoded to use the encoding described in enc-file. The format of
enc-file is described in grops(1). If not found in the current directory, the devps subdirectory of
the default font directory is searched.

—f internal-name
The internal name of the groff font is set to name.

—i italic-correction-factor
Generate an italic correction for each glyph so that its width plus its italic correction is equal to
italic-correction-factor thousandths of an em plus the amount by which the right edge of the
glyph’s bounding box is to the right of its origin. If this would result in a negative italic correc-
tion, use a zero italic correction instead.

Also generate a subscript correction equal to the product of the tangent of the slant of the font and
four fifths of the x-height of the font. If this would result in a subscript correction greater than the
italic correction, use a subscript correction equal to the italic correction instead.

Also generate a left italic correction for each glyph equal to italic-correction-factor thousandths of
an em plus the amount by which the left edge of the glyph’s bounding box is to the left of its ori-
gin. The left italic correction may be negative unless option —m is given.

This option is normally needed only with italic (or oblique) fonts. The font description files dis-
tributed with groff were created using an option of —iS0 for italic fonts.

-0 output-file
Write to output-file instead of font-description-file.

-k Omit any kerning data from the groff font; use only for monospaced (constant-width) fonts.

-m Prevent negative left italic correction values. Font description files for roman styles distributed
with groff were created with “—i0 —m” to improve spacing with egn(1).

-n Don’t output a ligatures command for this font; use with monospaced (constant-width) fonts.
-s Add the special directive to the font description file.

—w space-width
Use space-width as the with of inter-word spaces.

-X Don’t use the built-in Adobe Glyph List.

Files
/usr/share/groff/1.23.0/font/devps/DESC
describes the ps output device.

groff 1.23.0 5 August 2023 3

afimtodit(1)

General Commands Manual afmtodit(1)

/usr/share/groff/1.23.0/font/devps/F

describes the font known as F' on device ps.

/usr/share/groff/1.23.0/font/devps/download

lists fonts available for embedding within the PostScript document (or download to the device).

/usr/share/groff/1.23.0/font/devps/generate/dingbats.map
/usr/share/groff/1.23.0/font/devps/generate/dingbats—reversed.map
/usr/share/groff/1.23.0/font/devps/generate/slanted—symbol. map
/usr/share/groff/1.23.0/font/devps/generate/symbol.map
/usr/share/groff/1.23.0/font/devps/generate/text.map

Diagnostics

map names in the Adobe Glyph List to groff special character identifiers for Zapf Dingbats (ZD),
reversed Zapf Dingbats (ZDR), slanted symbol (SS), symbol (S), and text fonts, respectively.
These map-files are used to produce the font description files provided with groff for the grops
output driver.

AGL name 'x' already mapped to groff name 'y'; ignoring AGL name 'uni XXXX"

See also

You can disregard these if they’re in the form shown, where the ignored AGL name contains four
hexadecimal digits XXXX. The Adobe Glyph List (AGL) has its own names for glyphs; they are
often different from groff’s special character names. afmtodit is constructing a mapping from
groff special character names to AGL names; this can be a one-to-one or many-to-one mapping,
but one-to-many will not work, so afimtodit discards the excess mappings. For example, if x is *D,
y is Delta, and z is uni0394, afintodit is telling you that the groff font description that it is writing
cannot map the groff special character \[*D] to AGL glyphs Delta and uni0394 at the same time.

If you get a message like this but are unhappy with which mapping is ignored, a remedy is to craft
an alternative map-file and re-run afintodit using it.

Groff: The GNU Implementation of troff, by Trent A. Fisher and Werner Lemberg, is the primary groff
manual. Section “Using Symbols” may be of particular note. You can browse it interactively with “info

'(groff)Using Symbols™”.

[ER)

groff (1), gropdf (1), grops(1), groff_font(5)

groff 1.23.0

5 August 2023 4

chem(1) General Commands Manual chem(1)

Name
chem — embed chemical structure diagrams in groff documents
Synopsis
chem [—] [file .. .]
chem -h
chem —help
chem —v
chem ——version
Description
chem produces chemical structure diagrams. Today’s version is best suited for organic chemistry (bonds,
rings). The chem program is a groff preprocessor like egn, pic, tbl, etc. It generates pic output such that
all chem parts are translated into diagrams of the pic language.
If no operands are given, or if file is “=", chem reads the standard input stream. —h and ——help display a
usage message, whereas —v and ——version display version information; all exit.
The program chem originates from the Perl source file chem.pl. It tells pic to include a copy of the macro
file chem.pic. Moreover the groff source file pic.tmac is loaded.
In a style reminiscent of egn and pic, the chem diagrams are written in a special language.
A set of chem lines looks like this
.cstart
chem data
.cend
Lines containing the keywords .cstart and .cend start and end the input for chem, respectively. In pic con-
text, i.e., after the call of .PS, chem input can optionally be started by the line begin chem and ended by the
line with the single word end instead.
Anything outside these initialization lines is copied through without modification; all data between the ini-
tialization lines is converted into pic commands to draw the diagram.
As an example,
.cstart
CH3
bond
CH3
.cend
prints two CH3 groups with a bond between them.
If you want to create just groff output, you must run chem followed by groff with the option —p for the ac-
tivation of pic:
chem [file ...]| groff —p ...
Language
The chem input language is rather small. It provides rings of several styles and a way to glue them together
as desired, bonds of several styles, moieties (e.g., C, NH3, ..., and strings.

Setting variables
There are some variables that can be set by commands. Such commands have two possible forms, either

variable value
or
variable = value

This sets the given variable to the argument value. If more arguments are given only the last argument is
taken, all other arguments are ignored.

groff 1.23.0 5 August 2023 5

chem(1) General Commands Manual chem(1)

There are only a few variables to be set by these commands:

textht arg
Set the height of the text to arg; default is 0.16.

cwid arg
Set the character width to arg; default is 0.12.

db arg Set the bond length to arg; default is 0.2.

size arg
Scale the diagram to make it look plausible at point size arg; default is 10 point.

Bonds
This

bond [direction] [length n] [from Name|picstuff]

draws a single bond in direction from nearest corner of Name. bond can also be double bond, front bond,
back bond, etc. (We will get back to Name soon.)

direction is the angle in degrees (0 up, positive clockwise) or a direction word like up, down, sw (= south-
west), etc. If no direction is specified, the bond goes in the current direction (usually that of the last bond).

Normally the bond begins at the last object placed; this can be changed by naming a from place. For in-
stance, to make a simple alkyl chain:

CH3

bond (this one goes right from the CH3)
C (at the right end of the bond)
double bond up (from the C)

(0] (at the end of the double bond)
bond right from C

CH3

A length in inches may be specified to override the default length. Other pic commands can be tacked on
to the end of a bond command, to created dotted or dashed bonds or to specify a to place.

Rings
There are lots of rings, but only five- and six-sided rings get much support. ring by itself is a six-sided
ring; benzene is the benzene ring with a circle inside. aromatic puts a circle into any kind of ring.

ring [pointing (up|right|left|down)] [aromatic] [put Mol at] [double i,j k,I ... [picstuff]

The vertices of a ring are numbered 1, 2, ... from the vertex that points in the natural compass direction.
So for a hexagonal ring with the point at the top, the top vertex is 1, while if the ring has a point at the east
side, that is vertex 1. This is expressed as

Rl: ring pointing up
R2: ring pointing right

The ring vertices are named .V1, ..., .Vn, with .V1 in the pointing direction. So the corners of R1 are
R1.V1 (the top), R1.V2, R1.V3, R1.V4 (the bottom), etc., whereas for R2, R2.V1 is the rightmost vertex
and R2.V4 the leftmost. These vertex names are used for connecting bonds or other rings. For example,

R1l: benzene pointing right
R2: benzene pointing right with .V6 at R1.V2

creates two benzene rings connected along a side.

Interior double bonds are specified as double nil,n2 n3,n4 ...; each number pair adds an interior bond. So
the alternate form of a benzene ring is

ring double 1,2 3,4 5,6

Heterocycles (rings with something other than carbon at a vertex) are written as put X at V, as in

groff 1.23.0 5 August 2023 6

chem(1) General Commands Manual chem(1)

R: ring put N at 1 put O at 2
In this heterocycle, R.N and R.O become synonyms for R.V1 and R.V2.

There are two five-sided rings. ring5 is pentagonal with a side that matches the six-sided ring; it has four
natural directions. A flatring is a five-sided ring created by chopping one corner of a six-sided ring so that
it exactly matches the six-sided rings.

The description of a ring has to fit on a single line.

Moieties and strings
A moiety is a string of characters beginning with a capital letter, such as N(C2H5)2. Numbers are con-
verted to subscripts (unless they appear to be fractional values, as in N2.5H). The name of a moiety is de-
termined from the moiety after special characters have been stripped out: e.g., N(C2HS5)2) has the name
NC2H52.

Moieties can be specified in two kinds. Normally a moiety is placed right after the last thing mentioned,
separated by a semicolon surrounded by spaces, e.g.,

B1: bond ; OH

Here the moiety is OH, it is set after a bond.

As the second kind a moiety can be positioned as the first word in a pic-like command, e.g.,
CH3 at C + (0.5,0.5)

Here the moiety is CH3. It is placed at a position relative to C, a moiety used earlier in the chemical struc-
ture.

So moiety names can be specified as chem positions everywhere in the chem code. Beneath their printing
moieties are names for places.

The moiety BP is special. It is not printed but just serves as a mark to be referred to in later chem com-
mands. For example,

bond ; BP

sets a mark at the end of the bond. This can be used then for specifying a place. The name BP is derived
from branch point (i.e., line crossing).

A string within double quotes " is interpreted as a part of a chem command. It represents a string that
should be printed (without the quotes). Text within quotes "'..." is treated more or less like a moiety except
that no changes are made to the quoted part.

Names
In the alkyl chain above, notice that the carbon atom C was used both to draw something and as the name
for a place. A moiety always defines a name for a place; you can use your own names for places instead,
and indeed, for rings you will have to. A name is just

Name: . ..

Name is often the name of a moiety like CH3, but it need not to be. Any name that begins with a capital
letter and which contains only letters and numbers is valid:

First: bond
bond 30 from First

Miscellaneous
The specific construction

bond ... ; moiety
is equivalent to

bond
moiety

Otherwise, each item has to be on a separate line (and only one line). Note that there must be whitespace

groff 1.23.0 5 August 2023 7

chem(1) General Commands Manual chem(1)

after the semicolon which separates the commands.

A period character . or a single quote
copied through as-is.

in the first column of a line signals a froff command, which is

A line whose first non-blank character is a hash character (#) is treated as a comment and thus ignored.
However, hash characters within a word are kept.

A line whose first word is pic is copied through as-is after the word pic has been removed.
The command
size n
scales the diagram to make it look plausible at point size n (default is 10 point).
Anything else is assumed to be pic code, which is copied through with a label.

Since chem is a pic preprocessor, it is possible to include pic statements in the middle of a diagram to draw
things not provided for by chem itself. Such pic statements should be included in chem code by adding pic
as the first word of this line for clarity.

The following pic commands are accepted as chem commands, so no pic command word is needed:

define Start the definition of pic macro within chem.

[Start a block composite.
] End a block composite.
{ Start a macro definition block.
} End a macro definition block.

The macro names from define statements are stored and their call is accepted as a chem command as well.

Wish list
This TODO list was collected by Brian Kernighan.

Error checking is minimal; errors are usually detected and reported in an oblique fashion by pic.
There is no library or file inclusion mechanism, and there is no shorthand for repetitive structures.

The extension mechanism is to create pic macros, but these are tricky to get right and don’t have all the
properties of built-in objects.

There is no in-line chemistry yet (e.g., analogous to the $...$ construct of egn).

There is no way to control entry point for bonds on groups. Normally a bond connects to the carbon atom
if entering from the top or bottom and otherwise to the nearest corner.

Bonds from substituted atoms on heterocycles do not join at the proper place without adding a bit of pic.
There is no decent primitive for brackets.

Text (quoted strings) doesn’t work very well.

A squiggle bond is needed.

Files
/usr/share/groff/1.23.0/pic/chem.pic
A collection of pic macros needed by chem.

/usr/share/groff/1.23.0/tmac/pic.tmac
A macro file which redefines .PS, .PE, and .PF to center pic diagrams.

/usr/share/doc/groff—1.23.0/examples/chem/* .chem
Example files for chem.

/usr/share/doc/groff—1.23.0/examples/chem/122/* .chem
Example files from the chem article by its authors, “CHEM—A Program for Typesetting Chemical
Structure Diagrams: User Manual” (CSTR #122).

groff 1.23.0 5 August 2023 8

chem(1) General Commands Manual chem(1)

Authors
The GNU version of chem was written by Bernd Warken {groff—bernd.warken—72@web.de). It is based on
the documentation of Brian Kernighan’s original awk version of chem.

See also
“CHEM—A Program for Typesetting Chemical Diagrams: User Manual” by Jon L. Bentley, Lynn W. Jelin-
ski, and Brian W. Kernighan, 1992, AT&T Bell Laboratories Computing Science Technical Report No. 122

groff (1), pic(1)

groff 1.23.0 5 August 2023 9

eqn(1) General Commands Manual eqn(1)

Name
eqn — format mathematics (equations) for groff or MathML
Synopsis
eqn [-CNrR] [-d xy] [-f F] [-m n] [-M dir] [-p n] [-s n] [-T dev] [file .. .]
eqn —help
eqn —v
eqn ——version
Description

The GNU implementation of egn is part of the groff (7) document formatting system. egn is a troff (1) pre-
processor that translates expressions in its own language, embedded in roff (7) input files, into mathematical
notation typeset by froff (1). It copies each file’s contents to the standard output stream, translating each
equation between lines starting with .EQ and .EN, or within a pair of user-specified delimiters. Normally,
eqn is not executed directly by the user, but invoked by specifying the —e option to groff(1). While GNU
eqn’s input syntax is highly compatible with AT&T egn, the output egn produces cannot be processed by
AT&T troff; GNU troff (or a troff implementing relevant GNU extensions) must be used. If no file
operands are given on the command line, or if file is “~", eqn reads the standard input stream.

Unless the —R option is used, egn searches for the file egnrc in the directories given with the —M option
first, then in /usr/share/groff/site—tmac, and finally in the standard macro directory /usr/share/groff/1.23.0/
tmac. If it exists and is readable, egn processes it before any input files.

This man page primarily discusses the differences between GNU egn and AT&T egn. Most of the new fea-

tures of the GNU egn input language are based on TgX. There are some references to the differences be-

tween TeX and GNU egn below; these may safely be ignored if you do not know TgX.

Three points are worth special note.

* GNU egn emits Presentation MathML output when invoked with the “~T MathML” option.

* GNU egn does not support terminal devices well, though it may suffice for simple inputs.

* GNU egn sets the input token “...” as an ellipsis on the text baseline, not the three centered dots of
AT&T egn. Set an ellipsis on the math axis with the GNU extension macro cdots.

Anatomy of an equation
eqn input consists of tokens. Consider a form of Newton’s second law of motion. The input

.EQ

.EN

becomes F = ma. Each of F, =, m, and a is a token. Spaces and newlines are interchangeable; they sepa-
rate tokens but do not break lines or produce space in the output.

The following input characters not only separate tokens, but manage their grouping and spacing as well.

{} Braces perform grouping. Whereas “e sup a b” expresses e“b, “e sup { a b }” means ¢*’. When
immediately preceded by a “left” or “right” primitive, a brace loses its special meaning.

A~ are the half space and full space, respectively. Use them to tune the appearance of the output.

Tab and leader characters separate tokens as well as advancing the drawing position to the next tab stop, but
are seldom used in egn input. When they occur, they must appear at the outermost lexical scope. This
roughly means that they can’t appear within braces that are necessary to disambiguate the input; egn will
diagnose an error in this event. (See subsection “Macros” below for additional token separation rules.)

Other tokens are primitives, macros, an argument to either of the foregoing, or components of an equation.

groff 1.23.0 5 August 2023 10

eqn(1)

General Commands Manual eqn(1)

Primitives are fundamental keywords of the egn language. They can configure an aspect of the preproces-
sor’s state, as when setting a “global” font selection or type size (gfont and gsize), or declaring or deleting
macros (“define” and undef); these are termed commands. Other primitives perform formatting operations
on the tokens after them (as with fat, over, sqrt, or up).

Equation components include mathematical variables, constants, numeric literals, and operators. egn
remaps some input character sequences to groff special character escape sequences for economy in equa-
tion entry and to ensure that glyphs from an unstyled font are used; see groff_char(7).

+ \[pl] ! \ [fm]
\ [mi] <= \[<=]
= \l[eq] >= \[>=]

Macros permit primitives, components, and other macros to be collected and referred to by a single token.
Predefined macros make convenient the preparation of egn input in a form resembling its spoken expres-
sion; for example, consider cos, hat, inf, and lim.

Spacing and typeface

GNU egn imputes types to the components of an equation, adjusting the spacing between them accordingly.
Recognized types are as follows; most affect spacing only, whereas the “letter” subtype of “ordinary” also
assigns a style.

ordinary character such as “1”, “a”, or “!”
letter character to be italicized by default
digit n/a

operator large operator such as “«

binary binary operator such as “+”

relation relational operator such as “="

opening opening bracket such as “(”

closing closing bracket such as *)”

punctuation punctuation character such as “,”

inner sub-formula contained within brackets

suppress component to which automatic spacing is not applied

Two primitives apply types to equation components.
type t e Apply type f to expression e.

chartype ¢ fext
Assign each character in (unquoted) fext type ¢, persistently.

eqn sets up spacings and styles as if by the following commands.

chartype "letter" abcdefghiklmnopgrstuvwxyz
chartype "letter" ABCDEFGHIKLMNOPQRSTUVWXYZ
chartype "letter" N[*al\N[*DIN[*gI\[*d]\[*e]l\[*z]
chartype "letter" NI*YINIFRIN[*LIN[*RIN[*1]\ [*m]
chartype "letter" \NI*nIN[*cIN[*oI\N[*pI\[*r]\[*s]
chartype "letter" NIFEINT*uIN[*EIN[*=IN[*g] \ [*w]
chartype "binary" *\[pl]\[mi]

chartype "relation" <>\[eg]\[<=]\[>=]

chartype "opening" { ([

chartype "closing" 1)]

chartype "punctuation" ,;:.

chartype "suppress" N

egn assigns all other ordinary and special roff characters, including numerals 0-9, the “ordinary” type.
(The “digit” type is not used, but is available for customization.) In keeping with common practice in
mathematical typesetting, lowercase, but not uppercase, Greek letters are assigned the “letter” type to style
them in italics. The macros for producing ellipses, “...”, cdots, and ldots, use the “inner” type.

groff 1.23.0 5 August 2023 11

eqn(1)

General Commands Manual eqn(1)

Primitives

eqn supports without alteration the AT&T egn primitives above, back, bar, bold, define, down, fat, font,
from, fwd, gfont, gsize, italic, left, lineup, mark, matrix, ndefine, over, right, roman, size, sqrt, sub,
sup, tdefine, to, under, and up.

New primitives

The GNU extension primitives “type” and chartype are discussed in subsection “Spacing and typeface”
above; “set” in subsection “Customization” below; and grfont and gbfont in subsection “Fonts” below. In
the following synopses, X can be any character not appearing in the parameter thus bracketed.

el accent e2
Set e2 as an accent over e/. e2 is assumed to be at the appropriate height for a lowercase letter
without an ascender; egn vertically shifts it depending on e/’s height. For example, hat is defined
as follows.

accent { """ }
dotdot, dot, tilde, vec, and dyad are also defined using the accent primitive.

big e Enlarge the expression e; semantics like those of CSS “large” are intended. In troff output, the
type size is increased by 5 scaled points. MathML output emits the following.

<mstyle mathsize='big'>

copy file
include file

Interpolate the contents of file, omitting lines beginning with .EQ or .EN. If a relative path name,
file is sought relative to the current working directory.

ifdef name X anything X
If name is defined as a primitive or macro, interpret anything.

nosplit rext
As "text", but since text is not quoted it is subject to macro expansion; it is not split up and the
spacing between characters not adjusted per subsection “Spacing and typeface” above.

¢ opprime
As prime, but set the prime symbol as an operator on e. In the input “A opprime sub 17, the “1”
is tucked under the prime as a subscript to the “A” (as is conventional in mathematical typeset-
ting), whereas when prime is used, the “1” is a subscript to the prime character. The precedence
of opprime is the same as that of bar and “under”, and higher than that of other primitives except
accent and uaccent. In unquoted text, a neutral apostrophe (') that is not the first character on the
input line is treated like opprime.

sdefine name X anything X
As “define”, but name is not recognized as a macro if called with arguments.

el smallover e2
As over, but reduces the type size of el and e2, and puts less vertical space between el and e2 and
the fraction bar. The over primitive corresponds to the TgX \over primitive in displayed equation
styles; smallover corresponds to \over in non-display (“inline”) styles.

space n
Set extra vertical spacing around the equation, replacing the default values, where #n is an integer
in hundredths of an em. If positive, n increases vertical spacing before the equation; if negative, it
does so after the equation. This primitive provides an interface to groff’s \x escape sequence, but
with the opposite sign convention. It has no effect if the equation is part of a pic(1) picture.

special troff-macro e
Construct an object by calling troff-macro on e. The troff string 0s contains the egn output for e,
and the registers Ow, Oh, 0d, Oskern, and Oskew the width, height, depth, subscript kern, and skew
of e, respectively. (The subscript kern of an object indicates how much a subscript on that object
should be “tucked in”, or placed to the left relative to a non-subscripted glyph of the same size.

groff 1.23.0 5 August 2023 12

eqn(1) General Commands Manual eqn(1)

The skew of an object is how far to the right of the center of the object an accent over it should be
placed.) The macro must modify Os so that it outputs the desired result, returns the drawing posi-
tion to the text baseline at the beginning of e, and updates the foregoing registers to correspond to
the new dimensions of the result.

Suppose you want a construct that “cancels” an expression by drawing a diagonal line through it.

.de Ca
ds 0s \
\NZ"* (0s'\
\v'\\n (0du"'\
\D'1l \\n(Owu —-\\n(Ohu-\\n (0du'\
\v'\\n (Ohu"
.EQ
special Ca "x \[mi] 3 \[pl] x" ~ 3
.EN

We use the \[mi] and \[pl] special characters instead of + and — because they are part of the argu-
ment to a troff macro, so egn does not transform them to mathematical glyphs for us. Here’s a
more complicated construct that draws a box around an expression; the bottom of the box rests on
the text baseline. We define the eqn macro box to wrap the call of the troff macro Bx.

.de Bx

.ds 0s \
\Z'"\\h'"In"*[0s] "\

\v'\\n (0du+1n"'\

\D'1l \\n (Owu+2n 0'\

\D'1 0 -\\n(Ohu-\\n(0du-2n'\
\D'l -\\n(Owu-2n 0'\

\D'1 0 \\n (Ohu+\\n (0du+2n"'\
\h'\\n (Owu+2n"

.nr Ow +2n

.nr 0d +1n

.nr Oh +1n

.EQ

define box ' special Bx $1 '
box (foo) ~ "bar"
.EN

split ""text"
As text, but since fext is quoted, it is not subject to macro expansion; it is split up and the spacing
between characters adjusted per subsection “Spacing and typeface” above.

el uaccent e2
Set e2 as an accent under e/. e2 is assumed to be at the appropriate height for a letter without a
descender; egn vertically shifts it depending on whether e/ has a descender. utilde is predefined
using uaccent as a tilde accent below the baseline.

undef name
Remove definition of macro or primitive name, making it undefined.

vcenter e
Vertically center e about the math axis, a horizontal line upon which fraction bars and characters
such as “+” and “—” are aligned. MathML already behaves this way, so egn ignores this primitive

when producing that output format. The built-in sum macro is defined as if by the following.

define sum ! { type "operator" vcenter size +5 \(*S } !

groff 1.23.0 5 August 2023 13

eqn(1)

Extended primitives
GNU egn extends the syntax of some AT&T egn primitives, introducing one deliberate incompatibility.

delim on
egn recognizes an “on” argument to the delim primitive specially, restoring any delimiters previ-
ously disabled with “delim off”. If delimiters haven’t been specified, neither command has effect.

General Commands Manual eqn(1)

€9

Few egn documents are expected to use “0” and “n” as left and right delimiters, respectively. If
yours does, consider swapping them, or select others.

coln{...}
ceoln {..
Icoln { ..

)
)
reoln{...}
-}

pilen{..
cpilen{...}
Ipilen{...}
rpilen{...}
The integer value n (in hundredths of an em) increases the vertical spacing between rows, using
groff’s \x escape sequence (the value has no effect in MathML mode). Negative values are ac-
cepted but have no effect. If more than one n occurs in a matrix or pile, the largest is used.

Customization
When eqn generates troff input, the appearance of equations is controlled by a large number of parameters.
They have no effect when generating MathML, which delegates typesetting to a MathML rendering engine.
Configure these parameters with the set primitive.

set p n assigns parameter p the integer value n; n is interpreted in units of hundredths of an em unless
otherwise stated. For example,

groff 1.23.0

set x_height 45

says that egn should assume that the font’s x-height is 0.45 ems.

Available parameters are as follows; defaults are shown in parentheses. We intend these descrip-
tions to be expository rather than rigorous.

minimum_size

fat_offset

over_hang

accent_width

delimiter_factor

delimiter_shortfall

sets a floor for the type size (in scaled points) at which equations are set (5).

The fat primitive emboldens an equation by overprinting two copies of the
equation horizontally offset by this amount (4). In MathML mode, compo-
nents to which fat_offset applies instead use the following.

<mstyle mathvariant='double-struck'>

A fraction bar is longer by twice this amount than the maximum of the
widths of the numerator and denominator; in other words, it overhangs the
numerator and denominator by at least this amount (0).

When bar or under is applied to a single character, the line is this long (31).
Normally, bar or under produces a line whose length is the width of the ob-
ject to which it applies; in the case of a single character, this tends to produce
a line that looks too long.

Extensible delimiters produced with the left and right primitives have a com-
bined height and depth of at least this many thousandths of twice the maxi-
mum amount by which the sub-equation that the delimiters enclose extends
away from the axis (900).

Extensible delimiters produced with the left and right primitives have a com-
bined height and depth not less than the difference of twice the maximum
amount by which the sub-equation that the delimiters enclose extends away
from the axis and this amount (50).

5 August 2023 14

eqn(1)

groff 1.23.0

General Commands Manual eqn(1)

null_delimiter_space

script_space

thin_space

medium_space

thick_space

x_height
axis_height

This much horizontal space is inserted on each side of a fraction (12).
The width of subscripts and superscripts is increased by this amount (5).

This amount of space is automatically inserted after punctuation characters.
It also configures the width of the space produced by the ” token (17).

This amount of space is automatically inserted on either side of binary opera-
tors (22).

This amount of space is automatically inserted on either side of relations. It
also configures the width of the space produced by the ~ token (28).

The height of lowercase letters without ascenders such as “x” (45).

The height above the baseline of the center of characters such as “+” and “-”
(26). Itis important that this value is correct for the font you are using.

default_rule_thickness

numl
num2
denoml

denom2

supl

sup2

sup3

subl

sub2

sup_drop

sub_drop

big_op_spacingl

big_op_spacing2

big_op_spacing3

big_op_spacing4

big_op_spacing5

This should be set to the thickness of the \[ru] character, or the thickness of
horizontal lines produced with the \D escape sequence (4).

The over primitive shifts up the numerator by at least this amount (70).
The smallover primitive shifts up the numerator by at least this amount (36).
The over primitive shifts down the denominator by at least this amount (70).

The smallover primitive shifts down the denominator by at least this amount

(36).
Normally superscripts are shifted up by at least this amount (42).

Superscripts within superscripts or upper limits or numerators of smallover
fractions are shifted up by at least this amount (37). Conventionally, this is
less than supl.

Superscripts within denominators or square roots or subscripts or lower limits
are shifted up by at least this amount (28). Conventionally, this is less than
sup2.

Subscripts are normally shifted down by at least this amount (20).

When there is both a subscript and a superscript, the subscript is shifted down
by at least this amount (23).

The baseline of a superscript is no more than this much below the top of the
object on which the superscript is set (38).

The baseline of a subscript is at least this much below the bottom of the ob-
ject on which the subscript is set (5).

The baseline of an upper limit is at least this much above the top of the object
on which the limit is set (11).

The baseline of a lower limit is at least this much below the bottom of the ob-
ject on which the limit is set (17).

The bottom of an upper limit is at least this much above the top of the object
on which the limit is set (20).

The top of a lower limit is at least this much below the bottom of the object
on which the limit is set (60).

This much vertical space is added above and below limits (10).

5 August 2023 15

eqn(1)

General Commands Manual eqn(1)

baseline_sep The baselines of the rows in a pile or matrix are normally this far apart (140).
Usually equal to the sum of num1 and denom1.

shift_down The midpoint between the top baseline and the bottom baseline in a matrix or
pile is shifted down by this much from the axis (26). Usually equal to
axis_height.

column_sep This much space is added between columns in a matrix (100).
matrix_side_sep This much space is added at each side of a matrix (17).

draw_lines If non-zero, egn draws lines using the froff \D escape sequence, rather than
the \l escape sequence and the \[ru] special character. The egnrc file sets the
default: 1 on ps, html, and the X11 devices, otherwise 0.

body_height is the presumed height of an equation above the text baseline; egn adds any
excess as extra pre-vertical line spacing with #roff ’s \x escape sequence (85).

body_depth is the presumed depth of an equation below the text baseline; egn adds any
excess as extra post-vertical line spacing with #roff’s \x escape sequence (35).

nroff If non-zero, then ndefine behaves like define and tdefine is ignored, other-
wise tdefine behaves like define and ndefine is ignored. The egnrc file sets
the default: 1 on ascii, latin1, utf8, and cp1047 devices, otherwise 0.

Macros

In GNU egn, macros can take arguments. A word defined by any of the define, ndefine, or tdefine primi-
tives followed immediately by a left parenthesis is treated as a parameterized macro call: subsequent to-
kens up to a matching right parenthesis are treated as comma-separated arguments. In this context only,
commas and parentheses also serve as token separators. A macro argument is not terminated by a comma
inside parentheses nested within it. In a macro definition, $n, where n is between 1 and 9 inclusive, is re-
placed by the nth argument; if there are fewer than n arguments, it is replaced by nothing.

Predefined macros

GNU egn supports the predefined macros offered by AT&T egn: and, approx, arc, cos, cosh, del, det, dot,
dotdot, dyad, exp, for, grad, half, hat, if, inter, Im, inf, int, lim, In, log, max, min, nothing, partial,
prime, prod, Re, sin, sinh, sum, tan, tanh, tilde, times, union, vec, ==, !=, +=, —=>, <—, <<, >>, and “...”.
The lowercase classical Greek letters are available as alpha, beta, chi, delta, epsilon, eta, gamma, iota,
kappa, lambda, mu, nu, omega, omicron, phi, pi, psi, rho, sigma, tau, theta, upsilon, xi, and zeta.
Spell them with an initial capital letter (Alpha) or in full capitals (ALPHA) to obtain uppercase forms.

GNU egn further defines the macros cdot, cdots, and utilde (all discussed above), dollar, which sets a dol-
lar sign, and ldots, which sets an ellipsis on the text baseline.

Fonts

eqn uses up to three typefaces to set an equation: italic (oblique), roman (upright), and bold. Assign each a
groff typeface with the primitives gfont, grfont, and gbfont. The defaults are the styles I, R, and B (ap-
plied to the current font family). The chartype primitive (see above) sets a character’s type, which deter-
mines the face used to set it. The “letter” type is set in italics; others are set in roman. Use the bold primi-
tive to select an (upright) bold style.

gbfont f
Select f as the bold font. This is a GNU extension.

gfont f
Select f as the italic font.

grfont f
Select f as the roman font. This is a GNU extension.

groff 1.23.0 5 August 2023 16

eqn(1)

General Commands Manual eqn(1)

Options

Files

—-help displays a usage message, while —v and ——version show version information; all exit afterward.
-C Recognize .EQ and .EN even when followed by a character other than space or newline.

—d xy Specify delimiters x for left and y for right ends of equations not bracketed by .EQ/.EN. x and y
need not be distinct. Any “delim xy” statements in the source file override this option.

—f F isequivalent to “gfont F”.
-mn isequivalent to “set minimum_size n”.
—M dir Search dir for egnrc before those listed in section “Description” above.

-N Prohibit newlines within delimiters. This option allows egn to recover better from missing closing
delimiters.

—pn Set sub- and superscripts n points smaller than the surrounding text. This option is deprecated.
eqn normally sets sub- and superscripts at 70% of the type size of the surrounding text.

-r Reduce the type size of subscripts at most once relative to the base type size for the equation.
-R Don’t load egnrc.
-sn is equivalent to “gsize n”. This option is deprecated.

=T dev Prepare output for the device dev. In most cases, the effect of this is to define a macro dev with a
value of 1; egnrc uses this to provide definitions appropriate for the device. However, if the speci-
fied driver is “MathML”, the output is MathML markup rather than #roff input, and egnrc is not
loaded at all. The default output device is ps.

/usr/share/groff/1.23.0/tmac/eqnrc
Initialization file.

MathML mode limitations

MathML is designed on the assumption that it cannot know the exact physical characteristics of the media
and devices on which it will be rendered. It does not support control of motions and sizes to the same de-
gree troff does.

* egn customization parameters have no effect on generated MathML.

* The special, up, down, fwd, and back primitives cannot be implemented, and yield a MathML
“<merror>” message instead.

» The vcenter primitive is silently ignored, as centering on the math axis is the MathML default.

* Characters that egn sets extra large in troff mode—notably the integral sign—may appear too small and
need to have their “<mstyle>” wrappers adjusted by hand.

As in its troff mode, egn in MathML mode leaves the .EQ and .EN tokens in place, but emits nothing cor-
responding to delim delimiters. They can, however, be recognized as character sequences that begin with
“$”, end with “$", and do not cross line boundaries.

Caveats

Tokens must be double-quoted in egn input if they are not to be recognized as names of macros or primi-
tives, or if they are to be interpreted by troff. In particular, short ones, like “pi” and “PI”, can collide with
troff identifiers. For instance, the egn command “gfont PI” does not select groff’s Palatino italic font for
the global italic face; you must use “gfont '""PI''” instead.

Delimited equations are set at the type size current at the beginning of the input line, not necessarily that
immediately preceding the opening delimiter.

Unlike TEX, egn does not inherently distinguish displayed and inline equation styles; see the smallover
primitive above. However, macro packages frequently define EQ and EN macros such that the equation
within is displayed. These macros may accept arguments permitting the equation to be labeled or cap-
tioned; see the package’s documentation.

groff 1.23.0 5 August 2023 17

eqn(1) General Commands Manual eqn(1)

Bugs
eqn abuses terminology—its “equations” can be inequalities, bare expressions, or unintelligible gibberish.
But there’s no changing it now.
In nroff mode, lowercase Greek letters are rendered in roman instead of italic style.
In MathML mode, the mark and lineup features don’t work. These could, in theory, be implemented with
“<maligngroup>” elements.
In MathML mode, each digit of a numeric literal gets a separate “<mn></mn>” pair, and decimal points are
tagged with “<mo></mo>”. This is allowed by the specification, but inefficient.
Examples
We first illustrate egn usage with a trigonometric identity.
.EQ
sin (alpha + beta) = sin alpha cos beta + cos alpha sin beta
.EN
sin(a+ B) = sin acos S+ cos asin B
It can be convenient to set up delimiters if mathematical content will appear frequently in running text.
.EQ
delim $3
.EN
Having cached a table of logarithms,
the property $1ln (x y) = 1ln x + 1n y$ sped calculations.
Having cached a table of logarithms, the property In(xy) = In x + In y sped calculations.
The quadratic formula illustrates use of fractions and radicals, and affords an opportunity to use the full
space token ~.
.EQ
x={ —-b ~\[+-] ~ sgrt { b sup 2 - 4 ac } } over { 2 a }
.EN
—b £Nb? —4ac
X=———
2a
Alternatively, we could define the plus-minus sign as a binary operator. Automatic spacing puts 0.06 em
less space on either side of the plus-minus than ~ does, this being the difference between the widths of the
medium_space parameter used by binary operators and that of the full space. Independently, we can de-
fine a macro “frac” for setting fractions.
.EQ
chartype "binary" \[+-]
define frac ! { $1 } over { $2 } !
x = frac(- b \[+-] sqgrt { b sup 2 - 4 a c }, 2 a)
.EN
—b b2 —4ac
X=——
2a
See also

“Typesetting Mathematics—User’s Guide” (2nd edition), by Brian W. Kernighan and Lorinda L. Cherry,
1978, AT&T Bell Laboratories Computing Science Technical Report No. 17.

The TgXbook, by Donald E. Knuth, 1984, Addison-Wesley Professional. Appendix G discusses many of
the parameters from section “Customization” above in greater detail.

groff_char(7), particularly subsections “Logical symbols”, “Mathematical symbols”, and “Greek glyphs”,
documents a variety of special character escape sequences useful in mathematical typesetting.

groff (1), troff (1), pic(1), groff_font(5)

groff 1.23.0 5 August 2023 18

eqn2graph(l) General Commands Manual eqn2graph(l)

Name
eqn2graph — convert an egn equation into a cropped image

Synopsis

eqn2graph [-format output-format] [convert-argument . . .]
eqn2graph —help

eqn2graph —v
eqn2graph ——version
Description
eqn2graph reads a one-line egn(1) equation from the standard input and writes an image file, by default in
Portable Network Graphics (PNG) format, to the standard output.

The input EQN code should not be preceded by the .EQ macro that normally precedes it within groff (1)
macros; nor do you need to have dollar-sign or other delimiters around the equation.

Arguments not recognized by egn2graph are passed to the ImageMagick or GraphicsMagick program
convert(1l). By specifying these, you can give your image a border, set the image’s pixel density, or per-
form other useful transformations.

The output image is clipped using convert’s —trim option to the smallest possible bounding box that con-
tains all the black pixels.
Options

—-help displays a usage message, while —v and ——version show version information; all exit afterward.

—format output-format
Write the image in output-format, which must be understood by convert; the default is PNG.

Environment
GROFF_TMPDIR
TMPDIR
T™P
TEMP These environment variables are searched in the given order to determine the directory where tem-
porary files will be created. If none are set, /tmp is used.

Authors
eqn2graph was written by Eric S. Raymond {esr@thyrsus.com), based on a recipe for pic2graph(1), by W.
Richard Stevens.

See also
pic2graph(1), grap2graph(1), eqn(1), groff (1), convert(1)

groff 1.23.0 5 August 2023 19

gdiffmk(1) General Commands Manual gdiffimk(1)

Name

gdiffmk — mark differences between groff /nroff /troff files

Synopsis

gdiffmk [-a add-mark] [-c change-mark] [—-d delete-mark] [-x diff-command] [-D [-B] [-M markl
mark2]] [—-] filel file2 [output]

gdiffmk —help

gdiffmk —version

Description

gdiffmk compares two roff (7) documents, filel and file2, and creates a roff document consisting of file2
with added margin character (.mc) requests indicating output lines that differ from filel. If the filel or
file2 argument is “~”, gdiffmk reads the standard input stream for that input. If the output operand is
present, gdiffmk writes output to a file of that name. If it is “~” or absent, gdiffink writes output to the stan-
dard output stream. “—” cannot be both an input and output operand.

Options

Bugs

—-help displays a usage message and ——version shows version information; both exit afterward.

—a add-mark
Use add-mark for source lines not in filel but present in file2. Default: “+”.

-B By default, the deleted texts marked by the —D option end with an added roff break request, .br, to
ensure that the deletions are marked properly. This is the only way to guarantee that deletions and
small changes get flagged. This option directs the program not to insert these breaks; it makes no
sense to use it without —D.

—c change-mark
Use change-mark for changed source lines. Default: “|”.

—d delete-mark
Use the delete-mark for deleted source lines. Default: “*”.

-D Show the deleted portions from changed and deleted text.

-M markl mark?2
Change the delimiting marks for the —D option. It makes no sense to use this option without —D.
Default delimiting marks: “[[” ... “]]”.

=X diff-command
Use the diff-command command to perform the comparison of filel and file2. In particular, diff-
command should accept the GNU diff (1) =D option. Default: diff.

- Treat all subsequent arguments as file names, even if they begin with “=".

The output is not necessarily compatible with all macro packages and all preprocessors. A workaround that
often overcomes preprocessor problems is to run gdiffimk on the output of all the preprocessors instead of
the input source.

gdiffmk relies on the —D option of GNU diff to make a merged “#ifdef” output format. Busybox diff is
known to not support it. Also see the —x diff-command option.

Authors

gdiffmk was written by Mike Bianchi (MBianchi @Foveal.com), now retired. It is maintained by the groff
developers.

See also

groff (1), nroff (1), gtroff (1), roff (7), diff (1)

groff 1.23.0 5 August 2023 20

glilypond(1) General Commands Manual glilypond(1)

Name
glilypond — embed LilyPond musical notation in groff documents

Synopsis
glilypond [-K] [{—-ly2eps|-—pdf2eps}] [—e directory] [-o0 output-file] [-p filename-prefix] [t tdir]
[{~v|-V}] [[file]
glilypond [{—-ly2eps|-—pdf2eps}] [-—eps_dir directory] [-—keep_all] [-—output output-file] [-—prefix
filename-prefix] [-—temp_dir tdir] [-—verbose] [——] [file .. .]

glilypond -?
glilypond -h
glilypond ——help
glilypond ——usage

glilypond -1
glilypond —-license

glilypond ——version

Description
glilypond is a groff (7) preprocessor that enables the embedding of LilyPond music scores in groff docu-
ments. If no operands are given, or if file is “=", glilypond reads the standard input stream. A double-dash
argument (“—=") causes all subsequent arguments to be interpreted as file operands, even if their names
start with a dash.

Usage
At present, glilypond works with the groff ps, dvi, html, and xhtml devices. The Ibp and 1j4 devices are
untested. Unfortunately, the pdf device does not yet work.

Option overview
—?|-h|-—help|-—usage
Display usage information and exit.

——version
Display version information and exit.

-1|—-license
Display copyright license information and exit.

Options for building EPS files
——ly2eps
Direct lilypond(1) to create Encapsulated PostScript (EPS) files. This is the default.

——pdf2eps
The program glilypond generates a PDF file using lilypond. Then the EPS file is generated by
pdf2ps and ps2eps.

Directories and files
—e|——eps_dir directory_name
Normally all EPS files are sent to the temporary directory. With this option, you can generate
your own directory, in which all useful EPS files are send. So at last, the temporary directory can
be removed.

—p|——prefix begin_of _name
Normally all temporary files get names that start with the ly. .. prefix. With this option, you can
freely change this prefix.

—k|——keep_all
Normally all temporary files without the eps files are deleted. With this option, all generated files
either by the lilypond program or other format transposers are kept.

groff 1.23.0 5 August 2023 21

glilypond(1) General Commands Manual glilypond(1)

—t|-—temp_dir dir
With this option, you call a directory that is the base for the temporary directory. This directory
name is used as is without any extensions. If this directory does not exist it is be created. The
temporary directory is created by Perl’s security operations directly under this directory. In this
temporary directory, the temporary files are stored.

Output
—o|——output file_name
Normally all groff output of this program is sent to STDOUT. With this option, that can be
changed, such that the output is stored into a file named in the option argument file_name.

—V|-V|-—verbose
A lot more of information is sent to STDERR.

Short option collections
The argument handling of options

Short options are arguments that start with a single dash —. Such an argument can consist of arbitrary many
options without option argument, composed as a collection of option characters following the single dash.

Such a collection can be terminated by an option character that expects an option argument. If this option
character is not the last character of the argument, the following final part of the argument is the option ar-
gument. If it is the last character of the argument, the next argument is taken as the option argument.

This is the standard for POSIX and GNU option management.
For example,

—kVe some_dir
is a collection of the short options —k and —V without option argument, followed by the short op-
tion —e with option argument that is the following part of the argument some_dir. So this argu-
ment could also be written as several arguments —k =V —e some_dir.

Handling of long options
Arguments that start with a double dash —— are so-called long options R . Each double dash argument can
only have a single long option.

Long options have or have not an option argument. An option argument can be the next argument or can be
appended with an equal sign = to the same argument as the long option.

—=help is along option without an option argument.

——eps_dir some_dir
——eps_dir=some_dir
is the long option ——eps_dir with the option argument some_dir.

Moreover the program allows abbreviations of long options, as much as possible.

The long option —keep_all can be abbreviated from ——keep_al up to ——k because the program does not
have another long option whose name starts with the character k.

On the other hand, the option ——version cannot be abbreviated further than ——vers because there is also
the long option ——verbose that can be abbreviated up to ——verb.

An option argument can also be appended to an abbreviation. So is ——e=some_dir the same as —eps_dir
some_dir.

Moreover the program allows an arbitrary usage of upper and lower case in the option name. This is Perl
style.

For example, the long option —Kkeep_all can as well be written as ——Keep_All or even as an abbreviation
like ——KeE.

groff 1.23.0 5 August 2023 22

glilypond(1) General Commands Manual glilypond(1)

LilyPond regions in roff input
Integrated LilyPond code
A lilypond part within a structure written in the groff language is the whole part between the marks
.lilypond start
and
.lilypond end
A groff input can have several of these lilypond parts.

When processing such a lilypond part between .lilypond start and .lilypond end we say that the glilypond
program is in lilypond mode.

These lilypond parts are sent into temporary lilypond files with the file name extension .ly. These files are
transformed later on into EPS files.

Inclusion of .ly files
An additional command line for file inclusion of lilypond files is given by
.lilypond include file_name
in groff input. For each such include command, one file of lilypond code can be included into the groff
code. Arbitrarily many of these commands can be included in the groff input.

These include commands can only be used outside the lilypond parts. Within the lilypond mode, this inclu-
sion is not possible. So .lilypond include may not be used in lilypond mode, i.e. between .lilypond start
and .lilypond end. These included ly-files are also transformed into EPS files.

Generated files
By the transformation process of lilypond parts into EPS files, there are many files generated. By default,
these files are regarded as temporary files and as such stored in a temporary directory.

This process can be changed by command-line options.

Command-line options for directories
The temporary directory for this program is either created automatically or can be named by the option
—t|-—temp_dir dir.

Moreover, the EPS files that are later on referred by .PSPIC command in the final groff output can be
stored in a different directory that can be set by the command-line option —e|-——eps_dir directory_name.
With this option, the temporary directory can be removed completely at the end of the program.

The beginning of the names of the temporary files can be set by the command-line options —p or ——prefix.

All of the temporary files except the EPS files are deleted finally. This can be changed by setting the com-
mand-line options —k or ——keep_files. With this, all temporary files and directories are kept, not deleted.

These EPS files are stored in a temporary or EPS directory. But they cannot be deleted by the transforma-
tion process because they are needed for the display which can take a long time.

Transformation processes for generating EPS files
Mode pdf2eps
This mode is the actual default and can also be chosen by the option ——pdf2eps.

In this mode, the .ly files are transformed by the lilypond (1) program into PDF files, using

lilypond —-pdf ——output=file-name
for each .ly file. The file-name must be provided without the extension .pdf. By this process, a file file-
name.pdf is generated.

The next step is to transform these PDF files into a PS file. This is done by the pdf2ps(1) program using
$ pdf2ps file-name.pdf file-name.pds

The next step creates an EPS file from the PS file. This is done by the ps2eps(1) program using
S ps2eps file—-name.ps

By that, a file file-name.eps is created for each lilypond part in the groff file or standard input.

The last step to be done is replacing all lilypond parts by the groff command
.PSPIC file—-name.eps

groff 1.23.0 5 August 2023 23

glilypond(1) General Commands Manual glilypond(1)

Mode ly2eps
In earlier time, this mode was the default. But now it does not work any more, so accept the new default
pdf2eps. For testing, this mode can also be chosen by the glilypond option ——ly2eps.

In this mode, the .ly files are transformed by the lilypond program into many files of different formats, in-
cluding eps files, using

$ lilypond —--ps —-dbackend=eps —-dgs—load-fonts —--—-output=file-name
for each .ly file. The output file—name must be provided without an extension, its directory is temporary.
There are many EPS files created. One having the complete transformed ly file, named file—name.eps.

Moreover there are EPS files for each page, named file—name—digit.eps.

The last step to be done is replacing all lilypond parts by the collection of the corresponding EPS page
files. This is done by groff commands
.PSPIC file-name—-digit.eps

Generated groff output
The new groff (7) structure generated by glilypond is either

1) sent to standard output and can there be saved into a file or piped into groff (1) or
2) stored into a file by given the option —o | ——output file_name
Authors
glilypond was written by Bernd Warken {(groff—bernd.warken—72 @web.de).
See also
groff ()

describes the usage of the groff command and contains pointers to further documentation of the
groff system.

groff_tmac(5)
describes the .PSPIC request.

lilypond(1)
briefly describes the lilypond command and contains pointers to further documentation.

pdf2ps(1)
transforms a PDF file into a PostScript format.

ps2eps(1)
transforms a PS file into an EPS format.

groff 1.23.0 5 August 2023 24

gperl(1) General Commands Manual gperl(1)

Name
gperl — execute Perl commands in groff documents

Synopsis
gperl [file ..]

gperl -h
gperl —help

gperl —v
gperl ——version

Description
This is a preprocessor for groff (1). It allows the use of perl(7) code in groff (7) files. The result of a Perl
part can be stored in groff strings or numerical registers based on the arguments at a final line of a Perl
part.

[T3k L)

If no operands are given, or if file is , gperl reads the standard input stream. A double-dash argument
(““~==") causes all subsequent arguments to be interpreted as file operands, even if their names start with a
dash. —h and —-help display a usage message, whereas —v and ——version display version information; all
exit afterward.

Perl regions
Perl parts in groff files are enclosed by two .Perl requests with different arguments, a starting and an end-
ing command.

Starting Perl mode
The starting Perl request can either be without arguments, or by a request that has the term start as its only

argument.
. Perl
. Perl start

Ending Perl mode without storage
A .Perl command line with an argument different from start finishes a running Perl part. Of course, it
would be reasonable to add the argument stop; that’s possible, but not necessary.

. Perl stop

J Perl other_than_start
The argument other_than_start can additionally be used as a groff string variable name for storage — see
next section.

Ending Perl mode with storage
A useful feature of gperl is to store one or more results from the Perl mode.

The output of a Perl part can be got with backticks ...".

This program collects all printing to STDOUT (normal standard output) by the Perl print program. This
pseudo-printing output can have several lines, due to printed line breaks with \n. By that, the output of a
Perl run should be stored into a Perl array, with a single line for each array member.

This Perl array output can be stored by gperl in either

groff strings
by creating a groff command .ds
groff register
by creating a groff command .rn
The storage modes can be determined by arguments of a final stopping .Perl command. Each argument .ds

changes the mode into groff string and .nr changes the mode into groff register for all following output
parts.

groff 1.23.0 5 August 2023 25

General Commands Manual gperl(1)

By default, all output is saved as strings, so .ds is not really needed before the first .nr command. That
suits to groff (7), because every output can be saved as groff string, but the registers can be very restrictive.

In string mode, gperl generates a groff string storage line
.ds var_name content

In register mode the following groff command is generated
.nr var_name content

We present argument collections in the following. You can add as first argument for all stop. We omit this
additional element.

Perl .ds var_name
This will store 1 output line into the groff string named var_name by the automatically created
command
.ds var_name output

Perl var_name
If var_name is different from start this is equivalent to the former command, because the string
mode is string with .ds command. default.

Perl var_namel var_name2
This will store 2 output lines into groff string names var_namel and var_name2, because the de-
fault mode .ds is active, such that no .ds argument is needed. Of course, this is equivalent to
.Perl .ds var_namel var_name2
and
.Perl .ds var_namel .ds var_nameZ

Perl .nr var_namel varname2
stores both variables as register variables. gperl generates
.nr var_namel output_linel
.nr var_name2 output_line2

Perl .nr var_namel .ds var_name2
stores the 1st argument as register and the second as string by
.nr var_namel output_linel
.ds var_name2 output_line2

Example

A possible Perl part in a roff file could look like that:
before
.Perl start
my $result = 'some data';

print S$result;
.Perl stop .ds string_var
after

This stores the result ”some data” into the roff string called string_var, such that the following line is
printed:

.ds string_var some data
by gperl as food for the coming groff run.

A Perl part with several outputs is:

.Perl start

print “first\n”;

print ”“second line\n”;

print ”3\n”;

.Perl varl var2 .nr var3
This stores 3 printed lines into 3 groff strings. varl,var2,var3. So the following groff command lines are
created:

.ds varl first

groff 1.23.0 5 August 2023 26

gperl(1) General Commands Manual

.ds var2 second line
.nr var3 3

Authors

gperl was written by Bernd Warken (groff—bernd.warken—72 @web.de).

See also
Man pages related to groff are groff (1), groff (7), and grog(1).

Documents related to Perl are perl(1), perl(7).

groff 1.23.0 5 August 2023

gperl(1)

27

gpinyin(1l) General Commands Manual gpinyin(1l)

Name

gpinyin — use Hanyu Pinyin Chinese in groff documents

Synopsis

gpinyin [file . . .]
gpinyin —h
gpinyin —help

gpinyin —v
gpinyin ——version

Description

gpinyin is a preprocessor for groff (1) that facilitates use of Hanyu Pinyin in groff (7) files. Pinyin is a
method for writing the Mandarin Chinese language with the Latin alphabet. Mandarin consists of more
than four hundred base syllables, each spoken with one of five different tones. Changing the tone applied
to the syllable generally alters the meaning of the word it forms. In Pinyin, a syllable is written in the Latin
alphabet and a numeric tone indicator can be appended to each syllable.

TR L)

Each input-file is a file name or the character to indicate that the standard input stream should be read.
As usual, the argument “—="" can be used in order to force interpretation of all remaining arguments as file
names, even if an input-file argument begins with a “~”. —h and —help display a usage message, while —v
and ——version show version information; all exit afterward.

Pinyin sections

Pinyin sections in groff files are enclosed by two .pinyin requests with different arguments. The starting
request is
.pinyin start
or
.pinyin begin
and the ending request is
.pinyin stop
or
.pinyin end

Syllables

In Pinyin, each syllable is represented by one to six letters drawn from the fifty-two upper- and lowercase
letters of the Unicode basic Latin character set, plus the letter “U” with dieresis (umlaut) in both cases—in
other words, the members of the set “[a—zA-ZiiU]”.

In groff input, all basic Latin letters are written as themselves. The “u with dieresis” can be written as
“\[:u]” in lowercase or “\[:U]” in uppercase. Within .pinyin sections, gpinyin supports the form “ue” for
lowercase and the forms “Ue” and “UE” for uppercase.

Tones

Each syllable has exactly one of five tones. The fifth tone is not explicitly written at all, but each of the first
through fourth tones is indicated with a diacritic above a specific vowel within the syllable.

In a gpinyin source file, these tones are written by adding a numeral in the range O to 5 after the syllable.
The tone numbers 1 to 4 are transformed into accents above vowels in the output. The tone numbers 0 and
5 are synonymous.

The tones are written as follows.

groff 1.23.0 5 August 2023 28

gpinyin(1l) General Commands Manual gpinyin(1l)

Tone Description Diacritic Example Input ~ Example Output
first flat - mal ma
second rising ’ ma2 ma
third falling-rising ma3 ma
fourth falling) ma4 ma
fifth neutral (none) ma0 ma
ma

The neutral tone number can be omitted from a word-final syllable, but not otherwise.

Authors
gpinyin was written by Bernd Warken (groff-bernd.warken—72 @web.de).

See also

Useful documents on the World Wide Web related to Pinyin include
Pinyin to Unicode {http://www.foolsworkshop.com/ptou/index.html),
On-line Chinese Tools {http://www.mandarintools.com/),
Pinyin.info: a guide to the writing of Mandarin Chinese in romanization {http://www.pinyin.info/
index.html),
“Where do the tone marks go?” (http://www.pinyin.info/rules/where.html),
pinyin.txt from the CJK macro package for TgX <(http://git.savannah.gnu.org/gitweb/?p=cjk.git
;a=blob_plain;f=doc/pinyin.txt;hb=HEAD),

and
pinyin.sty from the CJK macro package for TgX ¢http://git.savannah.gnu.org/gitweb/?p=cjk.git
;a=blob_plain;f=texinput/pinyin.sty;hb=HEAD).

groff (1) and grog(1) explain how to view roff documents.

groff (7) and groff_char(7) are comprehensive references covering the language elements of GNU troff and
the available glyph repertoire, respectively.

groff 1.23.0 5 August 2023 29

grap2graph(l) General Commands Manual grap2graph(1)

Name
grap2graph — convert a grap diagram into a cropped image
Synopsis

grap2graph [—unsafe] [-format output-format] [convert-argument . . .]
grap2graph —help

grap2graph —v
grap2graph ——version
Description

grap2graph reads a grap(l) program from the standard input and writes an image file, by default in
Portable Network Graphics (PNG) format, to the standard output.

The input GRAP code should not be wrapped with the .G1 and .G2 macros that normally guard it within
groff (1) documents.

Arguments not recognized by grap2graph are passed to the ImageMagick or GraphicsMagick program
convert(1l). By specifying these, you can give your image a border, set the image’s pixel density, or per-
form other useful transformations.

The output image is clipped using convert’s —trim option to the smallest possible bounding box that con-
tains all the black pixels.

Options
—-help displays a usage message, while —v and ——version show version information; all exit afterward.

—format output-format
Write the image in output-format, which must be understood by convert; the default is PNG.

—unsafe
Run groff in unsafe mode, enabling the PIC command sh to execute arbitrary Unix shell com-
mands. The groff default is to forbid this.

Environment
GROFF_TMPDIR
TMPDIR
T™P
TEMP These environment variables are searched in the given order to determine the directory where tem-
porary files will be created. If none are set, /tmp is used.

Authors
grap2graph was written by Eric S. Raymond (esr@thyrsus.com), based on a recipe for pic2graph(l), by
W. Richard Stevens.

See also
pic2graph(1), eqn2graph(1), grap(1), pic(1), groff (1), convert(1)

groff 1.23.0 5 August 2023 30

grn(1)

Name

General Commands Manual grn(1)

Synopsis

grn — embed Gremlin images in groff documents
grn [-C] [-T dev] [-M dir] [-F dir] [file .. .]
grn -?

grn —help

grn —v

grn ——version

Description

grn is a preprocessor for including gremlin pictures in troff (1) input. grn writes to standard output, pro-
cessing only input lines between two that start with .GS and .GE. Those lines must contain grn commands
(see below). These macros request a gremlin file; the picture in that file is converted and placed in the troff
input stream. .GS may be called with a C, L, or R argument to center, left-, or right-justify the whole
gremlin picture (the default is to center). If no file is mentioned, the standard input is read. At the end of
the picture, the position on the page is the bottom of the gremlin picture. If the grn entry is ended with .GF
instead of .GE, the position is left at the top of the picture.

Currently only the me macro package has support for .GS, .GE, and .GF.

grn produces drawing escape sequences that use groff”’s color scheme extension \D'F ..."), and thus may
not work with other froff's.

grn commands

Each input line between .GS and .GE may have one grn command. Commands consist of one or two
strings separated by white space, the first string being the command and the second its operand. Com-
mands may be upper- or lowercase and abbreviated down to one character.

Commands that affect a picture’s environment (those listed before “default”, see below) are only in effect
for the current picture: the environment is reinitialized to the defaults at the start of the next picture. The
commands are as follows.

1N

2N

3N

4 N Set gremlin’s text size number 1 (2, 3, or 4) to N points. The default is 12 (16, 24, and 36, respec-
tively).

roman f

italics f

bold f

special f
Set the roman (italics, bold, or special) font to troff’s font f (either a name or number). The de-
faultis R (I, B, and S, respectively).

Lf

stipple f
Set the stipple font to troff’s stipple font f (name or number). The command stipple may be ab-
breviated down as far as “st” (to avoid confusion with “special”’). There is no default for stipples
(unless one is set by the “default” command), and it is invalid to include a gremlin picture with
polygons without specifying a stipple font.

XN

scale N

Magnify the picture (in addition to any default magnification) by N, a floating-point number larger
than zero. The command scale may be abbreviated down to “sc¢”.

groff 1.23.0 5 August 2023 31

grn(1)

General Commands Manual grn(1)

narrow N

medium N

thick N
Set the thickness of gremlin’s narrow (medium and thick, respectively) lines to N times 0.15pt
(this value can be changed at compile time). The default is 1.0 (3.0 and 5.0, respectively), which
corresponds to 0.15pt (0.45pt and 0.75pt, respectively). A thickness value of zero selects the
smallest available line thickness. Negative values cause the line thickness to be proportional to the
current point size.

pointscale [off|on]
Scale text to match the picture. Gremlin text is usually printed in the point size specified with the
commands 1, 2, 3, or 4, regardless of any scaling factors in the picture. Setting pointscale will
cause the point sizes to scale with the picture (within #roff ’s limitations, of course). An operand of
anything but off will turn text scaling on.

default Reset the picture environment defaults to the settings in the current picture. This is meant to be
used as a global parameter setting mechanism at the beginning of the troff input file, but can be
used at any time to reset the default settings.

width N
Force the picture to be N inches wide. This overrides any scaling factors present in the same pic-
ture. “width 0” is ignored.

height N
Force the picture to be N inches high, overriding other scaling factors. If both width and height
are specified, the tighter constraint will determine the scale of the picture. height and width com-
mands are not saved with a “default” command. They will, however, affect point size scaling if
that option is set.

file name
Get picture from gremlin file name located the current directory (or in the library directory; see the
—M option above). If multiple file commands are given, the last one controls. If name doesn’t ex-
ist, an error message is reported and processing continues from the .GE line.

Usage with groff

Since grn is a preprocessor, it has no access to elements of formatter state, such as indentation, line length,
type size, or register values. Consequently, no #roff input can be placed between the .GS and .GE macros.
However, gremlin text elements are subsequently processed by troff, so anything valid in a single line of
troff input is valid in a line of gremlin text (barring the dot control character “.” at the beginning of a line).
Thus, it is possible to have equations within a gremlin figure by including in the gremlin file eqn expres-

sions enclosed by previously defined delimiters (e.g., “$$”).

When using grn along with other preprocessors, it is best to run tbl(1) before grn, pic(1), and/or ideal to
avoid overworking thl. egn(1) should always be run last. groff (1) will automatically run preprocessors in
the correct order.

A picture is considered an entity, but that doesn’t stop troff from trying to break it up if it falls off the end
of a page. Placing the picture between “keeps” in the me macros will ensure proper placement.

grn uses troff ’s registers gl through g9 and sets registers gl and g2 to the width and height of the gremlin
figure (in device units) before entering the .GS macro (this is for those who want to rewrite these macros).

Gremlin file format

There exist two distinct gremlin file formats: the original format for AED graphic terminals, and the Sun or
X11 version. An extension used by the Sun/X11 version allowing reference points with negative coordi-
nates is not compatible with the AED version. As long as a gremlin file does not contain negative coordi-
nates, either format will be read correctly by either version of gremlin or grn. The other difference in
Sun/X11 format is the use of names for picture objects (e.g., POLYGON, CURVE) instead of numbers.
Files representing the same picture are shown below.

groff 1.23.0 5 August 2023 32

grn(1)

General Commands Manual

sungremlinfile
0240.00 128.00
CENTCENT
240.00 128.00
185.00 120.00
240.00 120.00
296.00 120.00
&

23

10 A Triangle
POLYGON
224.00 416.00
96.00 160.00
384.00 160.00
&

51

0

-1

grn(1)

gremlinfile
0240.00 128.00
2

240.00 128.00
185.00 120.00
240.00 120.00
296.00 120.00
—-1.00 -1.00
23

10 A Triangle
6

224.00 416.00
96.00 160.00
384.00 160.00
—-1.00 -1.00
51

0

-1

» The first line of each gremlin file contains either the string “gremlinfile” (AED) or “sungremlinfile”

(Sun/X11).

* The second line of the file contains an orientation and x and y values for a positioning point, separated
by spaces. The orientation, either 0 or 1, is ignored by the Sun/X11 version. 0 means that gremlin will
display things in horizontal format (a drawing area wider than it is tall, with a menu across the top). 1
means that gremlin will display things in vertical format (a drawing area taller than it is wide, with a
menu on the left side). x and y are floating-point values giving a positioning point to be used when this
file is read into another file. The stuff on this line really isn’t all that important; a value of “1 0.00 0.00”

is suggested.

* The rest of the file consists of zero or more element specifications. After the last element specification is

a line containing the string “—1".

* Lines longer than 127 characters are truncated to that length.

Element specifications

* The first line of each element contains a single decimal number giving the type of the element (AED) or

its name (Sun/X11).

gremlin File Format: Object Type Specification

AED Number

N AN A WN =D

groff 1.23.0

Sun/X11 Name
BOTLEFT
BOTRIGHT
CENTCENT
VECTOR
ARC

CURVE
POLYGON
BSPLINE
BEZIER
TOPLEFT
TOPCENT
TOPRIGHT
CENTLEFT
CENTRIGHT
BOTCENT

5 August 2023

Description
bottom-left-justified text
bottom-right-justified text
center-justified text
vector
arc
curve
polygon
b-spline
Bézier
top-left-justified text
top-center-justified text
top-right-justified text
left-center-justified text
right-center-justified text
bottom-center-justified text

33

grn(1)

General Commands Manual grn(1)

* After the object type comes a variable number of lines, each specifying a point used to display the ele-
ment. Each line contains an x-coordinate and a y-coordinate in floating-point format, separated by
spaces. The list of points is terminated by a line containing the string “~1.0 —1.0” (AED) or a single as-
terisk, “*” (Sun/X11).

* After the points comes a line containing two decimal values, giving the brush and size for the element.
The brush determines the style in which things are drawn. For vectors, arcs, and curves there are six
valid brush values.

thin dotted lines

thin dot-dashed lines
thick solid lines

thin dashed lines
thin solid lines
medium solid lines

AW =

=)

For polygons, one more value, 0, is valid. It specifies a polygon with an invisible border. For text, the
brush selects a font as follows.

roman (R font in troff)
italics (I font in troff)
bold (B font in troff)
4 special (S font in troff)

W N =

If you’re using grn to run your pictures through groff, the font is really just a starting font. The text
string can contain formatting sequences like “\fI” or “\d” which may change the font (as well as do many
other things). For text, the size field is a decimal value between 1 and 4. It selects the size of the font in
which the text will be drawn. For polygons, this size field is interpreted as a stipple number to fill the
polygon with. The number is used to index into a stipple font at print time.

* The last line of each element contains a decimal number and a string of characters, separated by a single
space. The number is a count of the number of characters in the string. This information is used only for
text elements, and contains the text string. There can be spaces inside the text. For arcs, curves, and vec-
tors, the character count is zero (0), followed by exactly one space before the newline.

Coordinates

gremlin was designed for AED terminals, and its coordinates reflect the AED coordinate space. For verti-
cal pictures, x values range 116 to 511, and y values from O to 483. For horizontal pictures, x values range
from O to 511, and y values from O to 367. Although you needn’t absolutely stick to this range, you’ll get
better results if you at least stay in this vicinity. Also, point lists are terminated by a point of (-1, —1), so
you shouldn’t ever use negative coordinates. gremlin writes out coordinates using the printf(3) format
“%f1.2”; it’s probably a good idea to use the same format if you want to modify the grn code.

Sun/X11 coordinates

There is no restriction on the range of coordinates used to create objects in the Sun/X11 version of gremlin.
However, files with negative coordinates will cause problems if displayed on the AED.

Options

—? and —-help display a usage message, while —v and ——version show version information; all exit after-
ward.

-C Recognize .GS and .GE (and .GF) even when followed by a character other than space or newline.

—F dir Search dir for subdirectories devname (name is the name of the output driver) for the DESC file
before the default font directories /usr/share/groff/site—font, /usr/share/groff/1.23.0/font, and /usr/
lib/font.

—M dir Prepend dir to the search path for gremlin files. The default search path is the current directory,
the home directory, /usr/share/groff/site—tmac, and /usr/share/groff/1.23.0/tmac, in that order.

groff 1.23.0 5 August 2023 34

grn(1) General Commands Manual grn(1)

—T dev Prepare device output using output driver dev. The default is ps. See groff (1) for a list of valid

devices.
Files
/usr/share/groff/1.23.0/font/devname/DESC
describes the output device name.
Authors

David Slattengren and Barry Roitblat wrote the original Berkeley grn. Daniel Senderowicz and Werner
Lemberg modified it for groff.

See also
gremlin(1), groff (1), pic(1), ideal(1)

groff 1.23.0 5 August 2023 35

grodvi(l) General Commands Manual grodvi(l)

Name

grodvi — groff output driver for TeX DVI format

Synopsis

grodvi [-dl] [-F dir] [-p paper-format] [-w n] [file . . .]
grodvi —help

grodvi —v
grodvi ——version

Description

The GNU roff DVI output driver translates the output of troff (1) into TgX DVI format. Normally, grodvi is
invoked by groff (1) when the latter is given the “~T dvi” option. (In this installation, ps is the default out-
put device.) Use groff’s —P option to pass any options shown above to grodvi. If no file arguments are
given, or if file is “=”, grodvi reads the standard input stream. Output is written to the standard output
stream.

The DVI file generated by grodvi can interpreted by any correctly written DVI driver. troff drawing primi-
tives are implemented using fpic version 2 specials. If the driver does not support these, \D escape se-
quences will not produce any output.

Encapsulated PostScript (EPS) files can be easily included; use the PSPIC macro. pspic.tmac is loaded au-
tomatically by dvi.tmac. See groff_tmac(5).

The default color used by the \m and \M escape sequences is black. Currently, the stroke color for \D
drawing escape sequences is black; fill color values are translated to gray.

In groff, as in AT&T troff , the \N escape sequence can be used to access any glyph in the current font by its
position in the corresponding TFM file.

By design, the DVI format doesn’t care about the physical dimensions of the output medium. Instead,
grodvi emits the equivalent to TgX’s \special{papersize=width,length} on the first page; dvips (or another
DVI driver) then sets the page size accordingly. If either the page width or length is not positive, no
papersize special is output.

A device control escape sequence \X'anything' is translated to the same DVI file instructions as would be
produced by \special{anything} in TgX; anything cannot contain a newline.

Typefaces

grodvi supports the standard four styles: R (roman), I (italic), B (bold), and BI (bold-italic). Fonts are
grouped into families T and H having members in each style. “CM” abbreviates “Computer Modern”.

TR CM Roman (cmr10)

TI CM Text Italic (cmtil0)

TB CM Bold Extended Roman (cmbx10)

TBI CM Bold Extended Text Italic (cmbxtil0)

HR CM Sans Serif (cmss10)

HI CM Slanted Sans Serif (cmssil0)

HB CM Sans Serif Bold Extended (cmssbx10)

HBI CM Slanted Sans Serif Bold Extended (cmssbxo10)

The following fonts are not members of a family.

Cw CM Typewriter Text (cmtt10)
CWI CM Italic Typewriter Text (cmitt10)

Special fonts include MI (cmmil0), S (cmsy10), EX (cmex10), SC (cmtex10, only for CW), and, perhaps
surprisingly, TR, TI, and CW, because TEX places some glyphs in text fonts that troff generally does not.
For italic fonts, CWI is used instead of CW.

Finally, the symbol fonts of the American Mathematical Society are available as special fonts SA (msam10)
and SB (msbm10). They are are not mounted by default.

groff 1.23.0 5 August 2023 36

grodvi(l) General Commands Manual grodvi(l)

The troff option —mec loads the ec.tmac macro file, employing the EC and TC fonts instead of CM. These
are designed similarly to the Computer Modern fonts; further, they provide Euro \[Eu] and per mille \[%0]
glyphs. ec.tmac must be loaded before any language-specific macro files because it does not set up the
codes necessary for automatic hyphenation.

Font description files
Use tfmtodit(1) to create groff font description files from TFM (TgX font metrics) files. The font descrip-
tion file should contain the following additional directives, which tfmtodit generates automatically.

internalname name
The name of the TFM file (without the .#fin extension) is name.

checksum »n
The checksum in the TFM file is n.

designsize n
The design size in the TFM file is n.

Drawing commands
grodvi supports an additional drawing command.

\D'R dh dv'
Draw a rule (solid black rectangle) with one corner at the drawing position, and the diagonally op-
posite corner at the drawing position +(dh,dv), which becomes the new drawing position after-
ward. This command produces a rule in the DVI file and so can be printed even with a driver that
does not support tpic specials, unlike the other \D commands.

Options
—-help displays a usage message, while —v and ——version show version information; all exit afterward.

—-d Do not use fpic specials to implement drawing commands. Horizontal and vertical lines are im-
plemented by rules. Other drawing commands are ignored.

-F dir Prepend directory dir/devname to the search path for font and device description files; name is the
name of the device, usually dvi.

-1 Use landscape orientation rather than portrait.

—p paper-format
Set physical dimensions of output medium, overriding the papersize, paperlength, and
paperwidth directives in the DESC file. paper-format can be any argument accepted by the
papersize directive; see groff_font(5).

—-wn Draw rules (lines) with a thickness of n thousandths of an em. The default thickness is 40
(0.04 em).

Environment
GROFF_FONT_PATH
lists directories in which to search for devdvi, grodvi’s directory of device and font description
files. See troff (1) and groff font(5).

Files
/usr/share/groff/1.23.0/font/devdvi/DESC
describes the dvi output device.

/usr/share/groff/1.23.0/font/devdvi/F
describes the font known as F on device dvi.

/usr/share/groff/1.23.0/tmac/dvi.tmac
defines font mappings, special characters, and colors for use with the dvi output device. It is auto-
matically loaded by troffrc when the dvi output device is selected.

/usr/share/groff/1.23.0/tmac/ec.tmac
configures the dvi output device to use the EC and TC font families instead of CM (Computer
Modern).

groff 1.23.0 5 August 2023 37

grodvi(l) General Commands Manual grodvi(l)

Bugs
DVI files produced by grodvi use a different resolution (57,816 units per inch) from those produced by
TgX. Incorrectly written drivers which assume the resolution used by TgX, rather than using the resolution
specified in the DVI file, will not work with grodvi.

When using the —d option with boxed tables, vertical and horizontal lines can sometimes protrude by one
pixel. This is a consequence of the way TgX requires that the heights and widths of rules be rounded.

See also
“What are the EC fonts?” (https://texfaq.org/FAQ—-ECfonts); TgX FAQ: Frequently Asked Question List

for TgX
tfmtodit(1), groff (1), troff (1), groff_out(S), groff_font(5), groff_char(7), groff_tmac(5)

groff 1.23.0 5 August 2023 38

groff (1) General Commands Manual groff (1)

Name
groff — front end to the GNU roff document formatting system
Synopsis
groff [-abcCeEgGijkINpRsStUVXzZ] [-d ctext] [-d string=text] [-D fallback-encoding] [-f font-
family] [-F font-directory] [-I inclusion-directory] [-K input-encoding] [-L spooler-argument]
[-m macro-package] [-M macro-directory] [-n page-number] [-0 page-list] [-P postprocessor-
argument) [-r cnumeric-expression] [-r register=numeric-expression] [T output-device]
[-w warning-category] [-W warning-category] [file .. .]

groff —h
groff —help

groff —v [option .. .] [file .. .]
groff ——version [option ...] [file . ..]

Description
groff is the primary front end to the GNU roff document formatting system. GNU roff is a typesetting sys-
tem that reads plain text input files that include formatting commands to produce output in PostScript, PDF,
HTML, DVI, or other formats, or for display to a terminal. Formatting commands can be low-level typeset-
ting primitives, macros from a supplied package, or user-defined macros. All three approaches can be com-
bined. If no file operands are specified, or if file is “~", groff reads the standard input stream.

A reimplementation and extension of the typesetter from AT&T Unix, groff is present on most POSIX sys-
tems owing to its long association with Unix manuals (including man pages). It and its predecessor are no-
table for their production of several best-selling software engineering texts. groff is capable of producing
typographically sophisticated documents while consuming minimal system resources.

The groff command orchestrates the execution of preprocessors, the transformation of input documents into
a device-independent page description language, and the production of output from that language.

Options

—h and ——help display a usage message and exit.

Because groff is intended to subsume most users’ direct invocations of the troff (1) formatter, the two pro-
grams share a set of options. However, groff has some options that troff does not share, and others which
groff interprets differently. At the same time, not all valid troff options can be given to groff.

groff-specific options
The following options either do not exist in GNU troff or are interpreted differently by groff .

—-D enc Set fallback input encoding used by preconv(1) to enc; implies —k.
—-e Run egn(1) preprocessor.

-g Run grn(1) preprocessor.

-G Run grap(1) preprocessor; implies —p.

-1 dir Works as troff’s option (see below), but also implies —g and —s. It is passed to soelim(1) and the
output driver, and grn is passed an —M option with dir as its argument.

-j Run chem(1) preprocessor; implies —p.

-k Run preconv(1) preprocessor. Refer to its man page for its behavior if neither of groff’s —K or =D
options is also specified.

—K enc Set input encoding used by preconv(1) to enc; implies —k.

-1 Send the output to a spooler program for printing. The “print” directive in the device description
file specifies the default command to be used; see groff font(5). If no such directive is present for
the output device, this option is ignored. See options —L and —-X.

—L arg Pass arg to the print spooler program. If multiple args are required, pass each with a separate —LL
option. groff does not prefix an option dash to arg before passing it to the spooler program.

groff 1.23.0 5 August 2023 39

groff (1)

General Commands Manual groff (1)

-M Works as troff’s option (see below), but is also passed to egn(1), grap(1), and grn(1).

-N Prohibit newlines between egn delimiters: pass —N to egn(1).

-p Run pic(1) preprocessor.

—P arg Pass arg to the postprocessor. If multiple args are required, pass each with a separate —P option.
groff does not prefix an option dash to arg before passing it to the postprocessor.

-R Run refer(1) preprocessor. No mechanism is provided for passing arguments to refer because
most refer options have equivalent language elements that can be specified within the document.

-s Run soelim(1) preprocessor.

-S Operate in “safer” mode; see —U below for its opposite. For security reasons, safer mode is en-
abled by default.

-t Run #bI(1) preprocessor.

=T dev Direct troff to format the input for the output device dev. groff then calls an output driver to con-
vert troff ’s output to a form appropriate for dev; see subsection “Output devices” below.

-U Operate in unsafe mode: pass the —U option to pic and troff .

-v

——version
Write version information for groff and all programs run by it to the standard output stream; that
is, the given command line is processed in the usual way, passing —v to the formatter and any pre-
or postprocessors invoked.

o\ Output the pipeline that groff would run to the standard output stream, but do not execute it. If
given more than once, groff both writes and runs the pipeline.

-X Use gxditview(1) instead of the usual postprocessor to (pre)view a document on an X11 display.
Combining this option with —Tps uses the font metrics of the PostScript device, whereas the
—TX75 and —-TX100 options use the metrics of X11 fonts.

-Z Disable postprocessing. troff output will appear on the standard output stream (unless suppressed

with —z); see groff_out(5) for a description of this format.

Transparent options
The following options are passed as-is to the formatter program troff (1) and described in more detail in its
man page.

-a
-b
-c

-C

—d cs

Generate a plain text approximation of the typeset output.

Write a backtrace to the standard error stream on each error or warning.
Start with color output disabled.

Enable AT&T troff compatibility mode; implies —c.

—d name=string

-E
—f fam
-F dir

—i

-1 dir

groff 1.23.0

Define string.
Inhibit troff error messages; implies —-Ww.
Set default font family.

Search in directory dir for the selected output device’s directory of device and font description
files.

Process standard input after the specified input files.

Search dir for input files.

5 August 2023 40

groff (1) General Commands Manual groff (1)

—m name
Process name.tmac before input files.

—M dir Search directory dir for macro files.

—n num
Number the first page num.

—o list Output only pages in [ist.

—TI cnumeric-expression
—T register=numeric-expression
Define register.

—-W name
—-W name
Enable (—w) or inhibit (-W) emission of warnings in category name.

'/ Suppress formatted device-independent output of troff .

Usage
The architecture of the GNU roff system follows that of other device-independent roff implementations,
comprising preprocessors, macro packages, output drivers (or “postprocessors”), a suite of utilities, and the
formatter troff at its heart. See roff (7) for a survey of how a roff system works.

The front end programs available in the GNU roff system make it easier to use than traditional roff's that re-
quired the construction of pipelines or use of temporary files to carry a source document from maintainable
form to device-ready output. The discussion below summarizes the constituent parts of the GNU roff sys-
tem. It complements roff (7) with groff -specific information.

Getting started
Those who prefer to learn by experimenting or are desirous of rapid feedback from the system may wish to
start with a “Hello, world!” document.

$ echo "Hello, world!" | groff -Tascii | sed '/4$/d’
Hello, world!

We used a sed command only to eliminate the 65 blank lines that would otherwise flood the terminal
screen. (roff systems were developed in the days of paper-based terminals with 66 lines to a page.)

Today’s users may prefer output to a UTF-8-capable terminal.
$ echo "Hello, world!" | groff —-Tutf8 | sed '/~$/d'

Producing PDF, HTML, or TgX’s DVl is also straightforward. The hard part may be selecting a viewer pro-
gram for the output.

$ echo "Hello, world!" | groff -Tpdf > hello.pdf

$ evince hello.pdf

$ echo "Hello, world!" | groff —-Thtml > hello.html
$ firefox hello.html

$ echo "Hello, world!" | groff -Tdvi > hello.dvi

$ xdvi hello.html

Using groffas a REPL
Those with a programmer’s bent may be pleased to know that they can use groff in a read-evaluate-print
loop (REPL). Doing so can be handy to verify one’s understanding of the formatter’s behavior and/or the
syntax it accepts. Turning on all warnings with —ww can aid this goal.

$ groff —-ww —Tutf8

\# This is a comment. Let's define a register.

.nr a 1

\# Do integer arithmetic with operators evaluated left-to-right.
.nr b \n[a]+5/2

groff 1.23.0 5 August 2023 41

groff (1) General Commands Manual groff (1)

\# Let's get the result on the standard error stream.
.tm \n[b]
3
\# Now we'll define a string.
.ds name Leslie\" This is another form of comment.
.nr b (\n[a] + (7/2))
\# Center the next two text input lines.
.ce 2
Hi, *[name].
Your secret number is \n[b].
\# We will see that the division rounded toward zero.
It is
\# Here's an if-else control structure.
.ie (\n[b] % 2) odd.
.el even.
\# This trick sets the page length to the current vertical
\# position, so that blank lines don't spew when we're done.
.p1 \n[nl]u
<Control-D>
Hi, Leslie.

Your secret number is 4.

It is even.

Paper format
In GNU roff, the page dimensions for the formatter troff and for output devices are handled separately. In
the formatter, requests are used to set the page length (.pl), page offset (or left margin, .po), and line length
(). The right margin is not explicitly configured; the combination of page offset and line length provides
the information necessary to derive it. The papersize macro package, automatically loaded by troff, pro-
vides an interface for configuring page dimensions by convenient names, like “letter” or “A4”; see
groff_tmac(5). The formatter’s default in this installation is “letter”.

It is up to each macro package to respect the page dimensions configured in this way. Some offer alterna-
tive mechanisms.

For each output device, the size of the output medium can be set in its DESC file. Most output drivers also
recognize a command-line option —p to override the default dimensions and an option —I to use landscape
orientation. See groff_font(5) for a description of the papersize directive, which takes an argument of the
same form as —p. The output driver’s man page, such as grops(l), may also be helpful. groff uses the
command-line option —P to pass options to output devices; for example, use the following for PostScript
output on A4 paper in landscape orientation.

groff -Tps —-dpaper=a4l -P-pa4 -P-1 -ms foo.ms > foo.ps

Front end
The groff program is a wrapper around the troff (1) program. It allows one to specify preprocessors via
command-line options and automatically runs the appropriate postprocessor for the selected output device.
Doing so, the manual construction of pipelines or management of temporary files required of users of tradi-
tional roff (7) systems can be avoided. Use the grog(1) program to infer an appropriate groff command line
to format a document.

Language
Input to a roff system is in plain text interleaved with control lines and escape sequences. The combination
constitutes a document in one of a family of languages we also call roff’; see roff (7) for background. An
overview of GNU roff language syntax and features, including lists of all supported escape sequences, re-
quests, and predefined registers, can be found in groff (7). GNU roff extensions to the AT&T troff lan-
guage, a common subset of roff dialects extant today, are detailed in groff diff (7).

groff 1.23.0 5 August 2023 42

General Commands Manual

groff ()

Preprocessors

A preprocessor interprets a domain-specific language that produces roff language output. Frequently, such
input is confined to sections or regions of a roff input file (bracketed with macro calls specific to each pre-
processor), which it replaces. Preprocessors therefore often interpret a subset of roff syntax along with
their own language. GNU roff provides reimplementations of most preprocessors familiar to users of
AT&T troff'; these routinely have extended features and/or require GNU troff to format their output.

tbl lays out tables;

eqn typesets mathematics;

pic draws diagrams;

refer processes bibliographic references;

soelim preprocesses “sourced” input files;

grn renders gremlin(1) diagrams;

chem draws chemical structural formule using pic;
gperl populates groff registers and strings using perl(1);
glilypond embeds LilyPond sheet music; and

gpinyin eases Mandarin Chinese input using Hanyu Pinyin.
A preprocessor unique to GNU roff is preconv(1l), which converts various input encodings to something
GNU troff can understand. When used, it is run before any other preprocessors.

Most preprocessors enclose content between a pair of characteristic tokens. Such a token must occur at the
beginning of an input line and use the dot control character. Spaces and tabs must not follow the control
character or precede the end of the input line. Deviating from these rules defeats a token’s recognition by
the preprocessor. Tokens are generally preserved in preprocessor output and interpreted as macro calls sub-
sequently by troff. The ideal preprocessor is not yet available in groff.

Macro packages

preprocessor starting token ending token
chem .cstart .cend
eqgn .EQ .EN
grap .G1 .G2
grn .GS .GE
ideal .IS L IE
IF
pic .PS .PE
.PF
.PY
refer .R1 .R2
tbl .TS .TE
glilypond .lilypond start .lilypond stop
gperl .Perl start .Perl stop
gpinyin .pinyin start .pinyin stop

groff 1.23.0

Macro files are roff input files designed to produce no output themselves but instead ease the preparation of
other roff documents. When a macro file is installed at a standard location and suitable for use by a general
audience, it is termed a macro package.

Macro packages can be loaded prior to any roff input documents with the —m option. The GNU roff sys-
tem implements most well-known macro packages for AT&T troff in a compatible way and extends them.
These have one- or two-letter names arising from intense practices of naming economy in early Unix cul-
ture, a laconic approach that led to many of the packages being identified in general usage with the nroff
and rroff option letter used to invoke them, sometimes to punning effect, as with “man” (short for “man-
ual”), and even with the option dash, as in the case of the s package, much better known as ms or even —ms.

Macro packages serve a variety of purposes. Some are “full-service” packages, adopting responsibility for
page layout among other fundamental tasks, and defining their own lexicon of macros for document com-
position; each such package stands alone and a given document can use at most one.

5 August 2023 43

groff (1) General Commands Manual groff (1)

an is used to compose man pages in the format originating in Version 7 Unix (1979); see
groff_man(7). It can be specified on the command line as —man.

doc is used to compose man pages in the format originating in 4.3BSD-Reno (1990); see
groff_mdoc(7). It can be specified on the command line as —-mdoc.

e is the Berkeley general-purpose macro suite, developed as an alternative to AT&T’s s; see
groff_me(7). It can be specified on the command line as —me.

m implements the format used by the second-generation AT&T macro suite for general documents, a
successor to s; see groff_mm(7). It can be specified on the command line as —mm.

om (invariably called “mom”) is a modern package written by Peter Schaffter specifically for GNU
roff . Consult the mom HTML manual {file:///usr/share/doc/groff-1.23.0/html/mom/toc.html) for
extensive documentation. She—for mom takes the female pronoun—can be specified on the com-
mand line as —mom.

s is the original AT&T general-purpose document format; see groff_ms(7). It can be specified on
the command line as —ms.

Others are supplemental. For instance, andoc is a wrapper package specific to GNU roff that recognizes
whether a document uses man or mdoc format and loads the corresponding macro package. It can be spec-
ified on the command line as —mandoc. A man(1) librarian program may use this macro file to delegate
loading of the correct macro package; it is thus unnecessary for man itself to scan the contents of a docu-
ment to decide the issue.

Many macro files augment the function of the full-service packages, or of roff documents that do not em-
ploy such a package—the latter are sometimes characterized as “raw”. These auxiliary packages are de-
scribed, along with details of macro file naming and placement, in groff_tmac(5).

Formatters
The formatter, the program that interprets roff language input, is troff (1). It provides the features of the
AT&T troff and nroff programs as well as many extensions. The command-line option —C switches troff
into compatibility mode, which tries to emulate AT&T troff as closely as is practical to enable the format-
ting of documents written for the older system.

A shell script, nroff (1), emulates the behavior of AT&T nroff. It attempts to correctly encode the output
based on the locale, relieving the user of the need to specify an output device with the =T option and is
therefore convenient for use with terminal output devices, described in the next subsection.

GNU troff generates output in a device-independent, but not device-agnostic, page description language de-
tailed in groff_out(5).

Output devices
troff output is formatted for a particular output device, typically specified by the =T option to the formatter
or a front end. If neither this option nor the GROFF_TYPESETTER environment variable is used, the de-
fault output device is ps. An output device may be any of the following.

ascii for terminals using the ISO 646 1991:IRV character set and encoding, also known as US-ASCIL.
cpl047 for terminals using the IBM code page 1047 character set and encoding.
dvi for TeX DVI format.

html
xhtml for HTML and XHTML output, respectively.

latin1 for terminals using the ISO Latin-1 (ISO 8859-1) character set and encoding.

Ibp for Canon CaPSL printers (LBP-4 and LBP-8 series laser printers).
1j4 for HP LaserJet4-compatible (or other PCL5-compatible) printers.
pdf for PDF output.

groff 1.23.0 5 August 2023 44

groff (1) General Commands Manual groff (1)

ps for PostScript output.
utf8 for terminals using the ISO 10646 (“Unicode”) character set in UTF-8 encoding.
X75 for previewing with gxditview using 75 dpi resolution and a 10-point base type size.

X75-12 for previewing with gxditview using 75 dpi resolution and a 12-point base type size.
X100 for previewing with gxditview using 100 dpi resolution and a 10-point base type size.
X100-12 for previewing with gxditview using 100 dpi resolution and a 12-point base type size.

Postprocessors
Any program that interprets the output of GNU troff is a postprocessor. The postprocessors provided by
GNU roff are output drivers, which prepare a document for viewing or printing. Postprocessors for other
purposes, such as page resequencing or statistical measurement of a document, are conceivable.

An output driver supports one or more output devices, each with its own device description file. A device
determines its postprocessor with the postpro directive in its device description file; see groff font(5). The
—X option overrides this selection, causing gxditview to serve as the output driver.
grodvi(l)

provides dvi.

grohtml(1)
provides html and xhtml.

grolbp(1)
provides lbp.

grolj4(1)
provides 1j4.

gropdf (1)
provides pdf.

grops(1)
provides ps.

grorty(1)
provides ascii, cp1047, latinl, and utf8.
gxditview(1)
provides X75, X75-12, X100, and X100-12, and additionally can preview ps.
Utilities
GNU roff includes a suite of utilities.

gdiffmk(1)
marks differences between a pair of roff input files.

grog(1) infers the groff command a document requires.

Several utilities prepare descriptions of fonts, enabling the formatter to use them when producing output for
a given device.
addftinfo(1)
adds information to AT&T troff font description files to enable their use with GNU troff .
afimtodit(1)
creates font description files for PostScript Type 1 fonts.
pfbtops(1)
translates a PostScript Type 1 font in PFB (Printer Font Binary) format to PFA (Printer Font
ASCII), which can then be interpreted by afintodit.

groff 1.23.0 5 August 2023 45

groff (1)

General Commands Manual groff (1)

hpftodit(1)

creates font description files for the HP LaserJet 4 family of printers.
tfmtodit(1)

creates font description files for the TeX DVI device.

xtotroff (1)
creates font description files for X Window System core fonts.

A trio of tools transform material constructed using roff preprocessor languages into graphical image files.
eqn2graph(1)
converts an egn equation into a cropped image.

grap2graph(1)
converts a grap diagram into a cropped image.

pic2graph(1)
converts a pic diagram into a cropped image.

Another set of programs works with the bibliographic data files used by the refer(1) preprocessor.
indxbib(1)

makes inverted indices for bibliographic databases, speeding lookup operations on them.
lkbib(1)

searches the databases.

lookbib(1)
interactively searches the databases.

Exit status

groff exits with a failure status if there was a problem parsing its arguments and a successful status if either
of the options —h or ——help was specified. Otherwise, groff runs a pipeline to process its input; if all com-
mands within the pipeline exit successfully, groff does likewise. If not, groff’s exit status encodes a sum-
mary of problems encountered, setting bit O if a command exited with a failure status, bit 1 if a command
was terminated with a signal, and bit 2 if a command could not be executed. (Thus, if all three misfortunes
befell one’s pipeline, groff would exit with status 270 + 2”1 + 222 = 14244 =7.) To troubleshoot pipeline
problems, you may wish to re-run the groff command with the —V option and break the reported pipeline
down into separate stages, inspecting the exit status of and diagnostic messages emitted by each command.

Environment

Normally, the path separator in environment variables ending with PATH is the colon; this may vary de-
pending on the operating system. For example, Windows uses a semicolon instead.

GROFF_BIN_PATH
This search path, followed by PATH, is used to locate commands executed by groff. If it is not
set, the installation directory of the GNU roff executables, /usr/bin, is searched before PATH.

GROFF_COMMAND_PREFIX
GNU roff can be configured at compile time to apply a prefix to the names of the programs it pro-
vides that had a counterpart in AT&T troff, so that name collisions are avoided at run time. The
default prefix is empty.

When used, this prefix is conventionally the letter “g”. For example, GNU troff would be installed
as gtroff . Besides troff, the prefix applies to the formatter nroff’; the preprocessors eqgn, grn, pic,
refer, tbl, and soelim; and the utilities indxbib and lookbib.

GROFF_ENCODING
The value of this variable is passed to the preconv(1) preprocessor’s —e option to select the charac-
ter encoding of input files. This variable’s existence implies the groff option —k. If set but empty,
groff calls preconv without an —e option. groff’s —K option overrides GROFF_ENCODING.

groff 1.23.0 5 August 2023 46

groff (1) General Commands Manual groff (1)

GROFF_FONT_PATH
Seek the selected output device’s directory of device and font description files in this list of direc-
tories. See troff (1) and groff_font(5).

GROFF_TMAC_PATH
Seek macro files in this list of directories. See troff (1) and groff_tmac(5).

GROFF_TMPDIR
Create temporary files in this directory. If not set, but the environment variable TMPDIR is set,
temporary files are created there instead. On Windows systems, if neither of the foregoing are set,
the environment variables TMP and TEMP (in that order) are checked also. Otherwise, temporary
files are created in /tmp. The refer(1l), grohtml(1), and grops(1) commands use temporary files.

GROFF _TYPESETTER
Set the default output device. If empty or not set, ps is used. The —T option overrides
GROFF_TYPESETTER.

SOURCE_DATE_EPOCH
A time stamp (expressed as seconds since the Unix epoch) to use as the output creation time stamp
in place of the current time. The time is converted to human-readable form using localtime(3)
when the formatter starts up and stored in registers usable by documents and macro packages.

7 The time zone to use when converting the current time (or value of SOURCE_DATE_EPOCH) to
human-readable form; see rzset(3).

Examples
roff systems are best known for formatting man pages. Once a man(1) librarian program has located a man
page, it may execute a groff command much like the following.
groff -t -man -Tutf8 /usr/share/man/manl/groff.l
The librarian will also pipe the output through a pager, which might not interpret the SGR terminal escape
sequences groff emits for boldface, underlining, or italics; see section “Limitations” below.

To process a roff input file using the preprocessors tbl and pic and the me macro package in the way to
which AT&T troff users were accustomed, one would type (or script) a pipeline.

pic foo.me | tbl | troff -me -Tutf8 | grotty
Using groff, this pipe can be shortened to an equivalent command.
groff -p -t —me -T utf8 foo.me

An even easier way to do this is to use grog(1l) to guess the preprocessor and macro options and execute the
result by using the command substitution feature of the shell.

$(grog —Tutf8 foo.me)

Each command-line option to a postprocessor must be specified with any required leading dashes “-" be-
cause groff passes the arguments as-is to the postprocessor; this permits arbitrary arguments to be transmit-
ted. For example, to pass a title to the gxditview postprocessor, the shell commands

groff -X -P —-title -P 'trial run' mydoc.t
and

groff -X -Z mydoc.t | gxditview —-title 'trial run' -
are equivalent.

Limitations
When paging output for the ascii, cp1047, latinl, and utf8 devices, programs like more(1) and less(1) may
require command-line options to correctly handle some terminal escape sequences; see grotty(1).

On EBCDIC hosts such as OS/390 Unix, the output devices ascii and latinl aren’t available. Conversely,
the output device cp1047 is not available on systems based on the ISO 646 or ISO 8859 character encoding
standards.

groff 1.23.0 5 August 2023 47

groff (1) General Commands Manual groff (1)

Installation directories
GNU roff installs files in varying locations depending on its compile-time configuration. On this installa-
tion, the following locations are used.

/usr/bin
Directory containing groff’s executable commands.

/usr/share/groff/1.23.0/eign
List of common words for indxbib(1).

/usr/share/groff/1.23.0
Directory for data files.

/usr/dict/papers/Ind
Default index for lkbib(1) and refer(1).

/usr/share/doc/groff—1.23.0
Documentation directory.

/usr/share/doc/groff—1.23.0/examples
Example directory.

/usr/share/groff/1.23.0/font
Font directory.

/usr/share/doc/groff—1.23.0/html
HTML documentation directory.

/usr/lib/font
Legacy font directory.

/usr/share/groff/site—font
Local font directory.

/usr/share/groff/site—tmac
Local macro package (tmac file) directory.

/usr/share/groff/1.23.0/tmac
Macro package (tmac file) directory.

/usr/share/groff/1.23.0/oldfont
Font directory for compatibility with old versions of groff’; see grops(1).

/usr/share/doc/groff—1.23.0/pdf
PDF documentation directory.

groff macro directory
Most macro files supplied with GNU roff are stored in /usr/share/groff/1.23.0/tmac for the installation cor-
responding to this document. As a rule, multiple directories are searched for macro files; see troff (1). For
a catalog of macro files GNU roff provides, see groff_tmac(5).

groff device and font description directory
Device and font description files supplied with GNU roff are stored in /usr/share/groff/1.23.0/font for the
installation corresponding to this document. As a rule, multiple directories are searched for device and font
description files; see troff (1). For the formats of these files, see groff font(5).

Availability
Obtain links to groff releases for download, its source repository, discussion mailing lists, a support ticket
tracker, and further information from the groff page of the GNU website ¢http://www.gnu.org/software/
groff).

A free implementation of the grap preprocessor, written by Ted Faber {(faber @lunabase.org), can be found
at the grap website (http://www.lunabase.org/~faber/Vault/software/grap/). groff supports only this grap.

groff 1.23.0 5 August 2023 48

groff (1) General Commands Manual groff (1)

Authors
groff (both the front-end command and the overall system) was primarily written by James Clark (jjc@
jclark.com). Contributors to this document include Clark, Trent A. Fisher, Werner Lemberg (wl@ gnu.org),
Bernd Warken (groff—bernd.warken—72@web.de), and G. Branden Robinson {g.branden.robinson @ gmail
.com).

See also
Groff: The GNU Implementation of troff, by Trent A. Fisher and Werner Lemberg, is the primary groff
manual. You can browse it interactively with “info groff”.

Introduction, history, and further reading:
roff (7)

Viewer for groff (and AT&T device-independent troff) documents:
gxditview(1)

Preprocessors:
chem(1), eqn(1), neqn(1), glilypond(1), grn(1), preconv(l), gperl(1), pic(1), gpinyin(1), refer(1),
soelim(1), thl(1)

Macro packages and package-specific utilities:
groff_hdtbl(7), groff_man(7), groff_man_style(7), groff_mdoc(7), groff_me(7), groff mm(7),
groff_mmse(7), mmroff (1), groff_ mom(7), pdfmom(1), groff_ms(7), groff_rfci345(7),
groff_trace(7), groff_www(T)

Bibliographic database management tools:
indxbib(1), lkbib(1), lookbib(1)

Language, conventions, and GNU extensions:

groff (), groff_char(7), groff_diff (), groff_font(5), groff_tmac(5)
Intermediate output language:

groff_out(5)
Formatter program:

troff (1)
Formatter wrappers:

nroff (1), pdfroff (1)
Postprocessors for output devices:

grodvi(l), grohtml(1), grolbp(1), grolj4(1), gropdf (1), grops(l), grotty(1)
Font support utilities:

addftinfo(1), afmtodit(1), hpftodit(1), pfbtops(1), tfmtodit(1), xtotroff (1)
Graphics conversion utilities:

eqn2graph(1), grap2graph(1), pic2graph(1)
Difference-marking utility:

gdiffink(1)
“groff guess” utility:

grog(1)

groff 1.23.0 5 August 2023 49

grog(l)

Name

General Commands Manual grog(1)

grog — “groff guess”—infer the groff command a document requires

Synopsis

grog [——run] [—-ligatures] [groff-option ...] [-—] [file .. .]
grog —h

grog —help

grog —v

grog ——version

Description

grog reads its input and guesses which groff (1) options are needed to render it. If no operands are given, or
if file is “=", grog reads the standard input stream. The corresponding groff command is normally written
to the standard output stream. With the option —run, the inferred command is written to the standard er-
ror stream and then executed.

Options

—h and ——help display a usage message, whereas —v and ——version display version information; all exit
afterward.

——ligatures
includes the arguments —P—y —PU in the inferred groff command. These are supported only by
the pdf output device.

—run writes the inferred command to the standard error stream and then executes it.

I3k L)

All other specified short options (that is, arguments beginning with a minus sign followed by a letter)
are interpreted as groff options or option clusters with or without an option argument. Such options are in-
cluded in the constructed groff command line.

Details

grog reads each file operand, pattern-matching strings that are statistically likely to be characteristic of
roff (7) documents. It tries to guess which of the following groff options are required to correctly render
the input: —e, —g, -G, —j, —p, —R, —t (preprocessors); and —man, —-mdoc, -mdoc—old, —-me, -mm, —-mom,
and —ms (macro packages). The inferred groff command including these options and any file parameters
is written to the standard output stream.

It is possible to specify arbitrary groff options on the command line. These are included in the inferred
command without change. Choices of groff options include —C to enable AT&T troff compatibility mode
and -T to select a non-default output device. If the input is not encoded in US-ASCII, ISO 8859-1, or IBM
code page 1047, specification of a groff option to run the preconv(l) preprocessor is advised; see the —D,
-k, and —K options of groff (1). For UTF-8 input, —k is a good choice.

groff may issue diagnostic messages when an inappropriate —m option, or multiple conflicting ones, are
specified. Consequently, it is best to specify no —m options to grog unless it cannot correctly infer all of
the —m arguments a document requires. A roff document can also be written without recourse to any
macro package. In such cases, grog will infer a groff command without an —m option.

Limitations

grog presumes that the input does not change the escape, control, or no-break control characters. grog does
not parse roff input line continuation or control structures (brace escape sequences and the “if”, “ie”, and
“el” requests) nor groff ’s “while”. Thus the input

LA N

t .NH 1

.if n .SH

Introduction
will conceal the use of the ms macros NH and SH from grog. Such constructions are regarded by grog’s
implementors as insufficiently common to cause many inference problems. Preprocessors can be even
stricter when matching macro calls that bracket the regions of an input file they replace. pic, for example,
requires PS, PE, and PF calls to immediately follow the default control character at the beginning of a line.

groff 1.23.0 5 August 2023 50

grog(l)

General Commands Manual grog(1)

Detection of the —s option (the soelim(1) preprocessor) is tricky; to correctly infer its necessity would re-
quire grog to recursively open all files given as arguments to the .so request under the same conditions that
soelim itself does so; see its man page. Recall that soelim is necessary only if sourced files need to be pre-
processed. Therefore, as a workaround, you may want to run the input through soelim manually, piping it
to grog, and compare the output to running grog on the input directly. If the “soelim”ed input causes grog
to infer additional preprocessor options, then —s is likely necessary.

$ printf ".TS\nl.\nI'm a table.\n.TE\n" > 3.roff
$ printf ".so 3.roff\n" > 2.roff

$ printf " .XP\n.so 2.roff\n" > 1l.roff

$ grog l.roff

groff -ms l.roff

$ soelim 1.roff | grog

groff -t -ms -

In the foregoing example, we see that this procedure enabled grog to detect thl(1) macros, so we would add
—s as well as the detected —t option to a revised grog or groff command.

$ grog —-st 1l.roff
groff -st —-ms 1l.roff

Exit status

grog exits with error status 1 if a macro package appears to be in use by the input document, but grog was
unable to infer which one, or 2 if there were problems handling an option or operand. It otherwise exits
with status 0. (If the ——run option is specified, groff ’s exit status is discarded.) Inferring no preprocessors
or macro packages is not an error condition; a valid roff document need not use either. Even plain text is
valid input, if one is mindful of the syntax of the control and escape characters.

Examples

Running
grog /usr/share/doc/groff-1.23.0/meintro.me
at the command line results in
groff -me /usr/share/doc/groff-1.23.0/meintro.me
because grog recognizes that the file meintro.me is written using macros from the me package. The com-
mand
grog /usr/share/doc/groff-1.23.0/pic.ms
outputs
groff -e -p -t -ms /usr/share/doc/groff-1.23.0/pic.ms
on the other hand. Besides discerning the ms macro package, grog recognizes that the file pic.ms addition-
ally needs the combination of —t for tbl, —e for eqn, and —p for pic.

Consider a file doc/grnexampl.me, which uses the grn preprocessor to include a gremlin(1) picture file in an
me document. Let’s say we want to suppress color output, produce a DVI file, and get backtraces for any
errors that troff encounters. The command

grog —-bc -Idoc -Tdvi doc/grnexmpl.me
is processed by grog into

groff -bc -Idoc -Tdvi -e -g -me doc/grnexmpl.me
where we can see that grog has inferred the me macro package along with the egn and grn preprocessors.
(The input file is located in /usr/share/doc/groff—1.23.0 if you’d like to try this example yourself.)

Authors

grog was originally written in Bourne shell by James Clark. The current implementation in Perl was writ-
ten by Bernd Warken (groff—-bernd.warken—72@web.de) and heavily revised by G. Branden Robinson
{g.branden.robinson @ gmail.com).

See also

groff ()

groff 1.23.0 5 August 2023 51

grohtml(1) General Commands Manual grohtml(1)

Name
grohtml, post—grohtml, pre—grohtml — groff output driver for HTML

Synopsis
pre—grohtml [—-epV] [-a anti-aliasing-text-bits] [-D image-directory] [-F font-directory] [-g anti-
aliasing-graphic-bits] [—i resolution] [-1 image-stem] [—0 image-vertical-offset] [-x html-
dialect] troff-command troff-argument . ..

pre—grohtml —help

pre—grohtml —v
pre—grohtml ——version

post—grohtml [-bCGhInrVy] [-F font-directory] [=j output-stem] [—s base-point-size] [-S heading-
level] [-x html-dialect] [file . . .]

post—grohtml —help

post—grohtml —v
post—grohtml ——version

Description
The GNU roff system’s HTML support consists of a preprocessor, pre—grohtml, and an output driver,
post—grohtml; together, they translate roff (7) documents to HTML. Because a preprocessor is (uniquely)
required for this output driver, users should invoke grohtml via the groff (1) command with the —Thtml or
—Txhtml options. (In this installation, ps is the default output device.) Use groff’s —P option to pass any
options shown above to grohtml. If no operands are given, or if file is “=”, grohtml reads the standard in-
put stream. Output is written to the standard output stream.

grohtml invokes groff twice. In the first pass, the preprocessor pre—grohtml renders pictures, equations,
and tables as images in PostScript format using the ps output device. In the second pass, the output driver
post—grohtml translates the output of froff (1) to HTML.

grohtml writes output encoded in UTF-8 and has built-in HTML entities for all non-composite Unicode
characters. In spite of this, groff may issue warnings about unknown special characters if they can’t be
found during the first pass. Such warnings can be safely ignored unless the special characters appear inside
a table or equation.

Typefaces
grohtml supports the standard four styles: R (roman), I (italic), B (bold), and BI (bold-italic). Fonts are
grouped into families T and C having members in each style.

TR Times roman

TI Times italic

TB Times bold

TBI Times bold-italic
CR Courier roman

CI Courier italic

CB Courier bold

CBI Courier bold-italic

A special font, S, is also provided to accommodate roff documents that expect it to always be available.

Font description files
The font description files used with grohtml expose the same glyph repertoire in their charset sections. See
groff_font(5).

Dependencies
pre—grohtml generates an image whenever an eqn equation, bl table, or pic picture is encountered in the
input. grohtml therefore may run several commands as part of its operation. These include the Netpbm
tools pnmcrop, pnmcut, and pnmtopng; Ghostscript (gs); and the PSUtils tool psselect.

groff 1.23.0 5 August 2023 52

grohtml(1) General Commands Manual grohtml(1)

Options

—-help displays a usage message, while —v and ——version show version information; all exit afterward.

—a anti-aliasing-text-bits
Number of bits of antialiasing information to be used by text when generating PNG images. The
default is 4 but 0, 1, and 2 are also valid. Your system’s version of gs must support the
—dTextAlphaBits option in order to exploit antialiasing. A value of 0 stops grohtml! from issuing
antialiasing commands to gs.

-b Initialize the background color to white.
-C Suppress output of “CreationDate:” HTML comment.

-D image-directory
Instruct grohtml to place all image files into directory image-directory.

—-e Direct egn to produce MathML.

This option should not be manually specified; it is synthesized by groff depending on whether it
was given the —Thtml or —Txhtml option.

—F font-directory
Prepend directory font-directory/devname to the search path for font and device description files;
name is the name of the device, usually html.

—g anti-aliasing-graphic-bits
Number of bits of antialiasing information to be used by graphics when generating PNG images.
The default is 4 but 0, 1, and 2 are also valid. Your system’s version of gs must support the
—dGraphicAlphaBits option in order to exploit antialiasing. A value of 0 stops grohtml from is-
suing antialiasing commands to gs.

-G Suppress output of “Creator:” HTML comment.

-h Generate section headings by using HTML B elements and increasing the font size, rather than
HTML H elements.

—i resolution
Set the image resolution in pixels per inch; the default is 100.

-1 image-stem
Determine the image file name stem. If omitted, grohtml uses grohtml—-XXXXX (where XXXXX
is the process ID). A dash is appended to the stem to separate it from the following image number.

—j output-stem
Instruct grohtml to split the HTML output into multiple files. Output is written to a new file at
each section heading (but see option —S below) named output-stem—n.html.

-1 Turn off the production of automatic section links at the top of the document.

-n Generate simple heading anchors whenever a section/number heading is found. Without the op-
tion the anchor value is the textual heading. This can cause problems when a heading contains a
“?” on older versions of some browsers. This feature is automatically enabled if a heading con-
tains an image.

—0 image-vertical-offset
Specify the vertical offset of images in points.

-p Display page rendering progress to the standard error stream. grohtml displays a page number
only when an image is required.

-r Turn off the automatic header and footer line (HTML rule).

—s base-type-size
Set the document’s base type size in points. When this size is used in the source, it corresponds to
the HTML base type size. Every increase of two points in the source will produce a “big” ele-
ment, and conversely when a decrease of two points is seen, a “small” element is emitted.

groff 1.23.0 5 August 2023 53

grohtml(1) General Commands Manual grohtml(1)

=S heading-level
When splitting HTML output (see option —j above), split at each nested heading level defined by
heading-level, or higher). The default is 1.

o\ Create an XHTML or HTML validator button at the bottom of each page of the document.

—X html-dialect
Select HTML dialect. Currently, htmi-dialect should be either the digit 4 or the letter x, which in-
dicates whether grohtml should generate HTML 4 or XHTML, respectively.

This option should not be manually specified; it is synthesized by groff depending on whether it
was given the —Thtml or —Txhtml option.

-y Produce a right-aligned groff signature at the end of the document (only if =V is also specified).

Environment

Files

Bugs

GROFF_FONT_PATH
lists directories in which to search for devhtml, grohtml’s directory of device and font description
files. See troff (1) and groff font(5).

SOURCE_DATE_EPOCH
A timestamp (expressed as seconds since the Unix epoch) to use as the output creation timestamp
in place of the current time. The time is converted to human-readable form using ctime(3) and
recorded in an HTML comment.

7 The time zone to use when converting the current time (or value of SOURCE_DATE_EPOCH) to
human-readable form; see rzset(3).

/usr/share/groff/1.23.0/font/devhtml/DESC
describes the html output device.

/usr/share/groff/1.23.0/font/devhtml/F
describes the font known as F on device html.

/usr/share/groff/1.23.0/tmac/html.tmac
defines font mappings, special characters, and colors for use with the html output device. It is au-
tomatically loaded by troffrc when either of the html or xhtml output devices is selected.

/usr/share/groff/1.23.0/tmac/html—end.tmac
finalizes setup of the html output device. It is automatically loaded by troffrc—end when either of
the html or xhtml output devices is selected.

grohtml uses temporary files. See groff (1) for details about where such files are created.

grohtml is still beta code.

grohtml does not truly support hyphenation, but you can fool it into hyphenating long input lines, which
can appear in HTML output with a hyphenated word followed by a space but no line break.

See also

groff (1), troff (1), groff_font(5)

groff 1.23.0 5 August 2023 54

grolbp(1) General Commands Manual grolbp(1)

Name

grolbp — groff output driver for Canon CaPSL printers

Synopsis

grolbp [-1] [—¢ num-copies] [-F font-directory] [—o orientation] [-p paper-format] [-w width] [file . . .]
grolbp [——copies=num-copies] [-—fontdir= font-directory] [-—landscape] [——linewidth=width]
[-—orientation=orientation] [-—papersize=paper-format] [file .. .]

grolbp -h

grolbp —help
grolbp -v

grolbp ——version

Description

This GNU roff output driver translates the output of troff (1) into a CaPSL and VDM format suitable for
Canon LBP-4 and LBP-8 printers. Normally, grolbp is invoked by groff (1) when the latter is given the
“~T lbp” option. (In this installation, ps is the default output device.) Use groff’s —P option to pass any
options shown above to grolbp. If no file arguments are given, or if file is “=", grolbp reads the standard
input stream. Output is written to the standard output stream.

Typefaces

The driver supports the Dutch, Swiss, and Swiss-Narrow scalable typefaces, each in the regular, bold, italic,
and bold-italic styles. Additionally, the bitmapped, monospaced Courier and Elite typefaces are available
in regular, bold, and italic styles; Courier at 8 and 12 points, Elite at 8 and 10 points. The following chart
summarizes the groff font names used to access them.

Typeface Roman Bold Italic Bold-Italic
Dutch TR TB TI TBI
Swiss HR HB HI HBI
Swiss Narrow HNR HNB HNI HNBI
Courier CR CB CI
Elite ER EB EI

Paper format, orientation, and device description file

grolbp supports paper formats “A4”, “letter”, “legal”, and “executive”. These are matched case-insensi-
tively. The —p, ——papersize option overrides any setting in the device description file DESC. If neither
specifies a paper format, A4 is assumed.

In its DESC file, grolbp (case-insensitively) recognizes an orientation directive accepting one mandatory
argument, portrait or landscape. The first valid orientation directive encountered controls. The -1, —o,
and ——orientation command-line options override any setting in DESC. If none of the foregoing specify
the orientation, portrait is assumed.

Font description files

In addition to the font description file directives documented in groff font(5), grolbp recognizes lbpname,

which maps the groff font name to the font name used internally by the printer. Its syntax is as follows.
lbpname printer-font-name

Ibpname’s argument is case-sensitive. The printer’s font names are encoded as follows.

For bitmapped fonts, printer-font_name has the form

N(base-font—-name)font-style)
base-font-name is the font name as it appears in the printer’s font listings without the first letter, up to (but
not including) the font size. font-style can be one of the letters R, I, or B, indicating the roman, italic, and
bold styles, respectively. For instance, if the printer’s “font listing A” shows “Nelite]12.ISO_USA?”, the
corresponding entry in the groff font description file is

lbpname Nelitel
You may need to modify grolbp to add support for new bitmapped fonts, since the available font names and
font sizes of bitmapped fonts (as documented above) are hard-coded into the program.

groff 1.23.0 5 August 2023 55

grolbp(1) General Commands Manual grolbp(1)

For scalable fonts, printer-font-name is identical to the font name as it appears in the printer’s “font listing
A”. For instance, to select the “Swiss” font in bold-italic style, which appears in the font listing as
“Swiss—BoldOblique”,

lbpname Swiss—BoldOblique
is the required directive, and this is what we find in the groff font description file HBI for the Ibp device.

Drawing commands
For compatibility with grolj4(1), an additional drawing command is available.

\D'R dh dv'
Draw a rule (solid black rectangle) with one corner at the drawing position, and the diagonally op-
posite corner at the drawing position +(dh,dv).

Options
—h and —-help display a usage message, while —v and ——version show version information; all exit after-
ward.

—C num-copies
——copies=num-copies
Produce num-copies copies of each page.

=F font-directory

——fontdir= font-directory
Prepend directory font-directory/devname to the search path for font and device description files;
name is the name of the device, usually lbp.

-1
——landscape
Format the document in landscape orientation.

—o0 orientation
——orientation=orientation
Format the document in the given orientation, which must be “portrait” or “landscape”.

—Pp paper-format
——papersize=paper-format
Set the paper format to paper-format, which must be a valid paper format as described above.

-w width
——linewidth=width
Set the default line thickness to width thousandths of an em; the default is 40 (0.04 em).

Environment
GROFF_FONT_PATH
lists directories in which to seek the selected output device’s directory of device and font descrip-
tion files. See troff (1) and groff font(5).

Files
/usr/share/groff/1.23.0/font/devlibp/DESC
describes the Ibp output device.
/usr/share/groff/1.23.0/font/devibp/F
describes the font known as F' on device lbp.
/usr/share/groff/1.23.0/tmac/lbp.tmac
defines macros for use with the Ibp output device. It is automatically loaded by troffrc when the
Ibp output device is selected.
See also

groff (1), troff (1), groff_out(5), groff_font(5), groff_char(7)

groff 1.23.0 5 August 2023 56

grolj4(1)

Name

grolj4 — groff output driver for HP LaserJet 4 and compatible printers

Synopsis

General Commands Manual

grolj4(1)

grolj4 [-1] [-c num-copies] [—d [n]] [-F font-directory] [-p paper-format] [-w line-width] [file .. .]

grolj4 —help

grolj4 —v
grolj4 ——version

Description

This GNU roff output driver translates the output of troff (1) into a PCLS5 format suitable for an HP LaserJet
4 printer. Normally, grolj4 is invoked by groff (1) when the latter is given the “~T 1j4” option. (In this in-
stallation, ps is the default output device.) Use groff’s —P option to pass any options shown above to

grolj4. 1If no file arguments are given, or if file is

T3]

written to the standard output stream.

Typefaces

, grolj4 reads the standard input stream. Output is

grolj4 supports the standard four styles: R (roman), I (italic), B (bold), and BI (bold-italic). Fonts are

grouped into families A, C, G, O, T, TN, U, and UC having members in each style.

AB
ABI
Al
AR
CB
CBI
CI
CR
GB
GBI
Gl
GR
OB
OBI
(0)1
OR
OB
OBI
(0)1
OR
B
TBI
TI
TR
TNRB
TNRBI
TNRI
TNRR
UB
UBI
Ul
UR
UCB
UCBI

groff 1.23.0

Arial Bold

Arial Bold Italic

Arial Italic

Arial Roman

Courier Bold

Courier Bold Italic
Courier Italic

Courier Roman
Garamond Halbfett
Garamond Kursiv Halbfett
Garamond Kursiv
Garamond Antiqua
CG Omega Bold

CG Omega Bold Italic
CG Omega Italic

CG Omega Roman
CG Omega Bold

CG Omega Bold Italic
CG Omega Italic

CG Omega Roman
CG Times Bold

CG Times Bold Italic
CG Times Italic

CG Times Roman

M Times Bold

M Times Bold Italic
M Times Italic

M Times Roman
Univers Bold

Univers Bold Italic
Univers Medium Italic
Univers Medium
Univers Condensed Bold
Univers Condensed Bold Italic

5 August 2023

57

grolj4(1) General Commands Manual grolj4(1)

UCI Univers Condensed Medium Italic
UCR Univers Condensed Medium
The following fonts are not members of a family.
ALBB Albertus Extra Bold
ALBR Albertus Medium
AOB Antique Olive Bold
AOI Antique Olive Italic
AOR Antique Olive Roman

CLARENDON Clarendon
CORONET Coronet

LGB Letter Gothic Bold
LGI Letter Gothic Italic
LGR Letter Gothic Roman

MARIGOLD Marigold

The special font is S (PostScript Symbol); SYMBOL (M Symbol), and WINGDINGS (Wingdings) are
also available but not mounted by default.

Paper format and device description file
grolj4 supports paper formats “A4”, “B5”, “C5”, “com10”, “DL”, “executive”, “legal”, “letter”, and
“monarch”. These are matched case-insensitively. The —p option overrides any setting in the device de-
scription file DESC. If neither specifies a paper format, “letter” is assumed.

Font description files
grolj4 recognizes four font description file directives in addition to those documented in groff font(5).

pclweight n
Set the stroke weight to n, an integer in the range —7 to +7; the default is 0.

pclstyle n
Set the style to 7, an integer in the range 0 to 32767; the default is 0.

pclproportional n
Set the proportional spacing Boolean flag to n, which can be either O or 1; the default is 0.

pcltypeface n
Set the typeface family to n, an integer in the range 0 to 65535; the default is 0.

Drawing commands
An additional drawing command is recognized as an extension to those documented in groff (7).

\D'R dh dv'
Draw a rule (solid black rectangle) with one corner at the drawing position, and the diagonally op-
posite corner at the drawing position +(dh,dv), at which the drawing position will be afterward.
This generates a PCL fill rectangle command, and so will work on printers that do not support HP-
GL/2, unlike the other \D commands.

Fonts
Nominally, all Hewlett-Packard LaserJet 4-series and newer printers have the same internal fonts: 45 scal-
able fonts and one bitmapped Lineprinter font. The scalable fonts are available in sizes between 0.25 points
and 999.75 points, in 0.25-point increments; the Lineprinter font is available only in 8.5-point size.

The LaserJet font files included with groff assume that all printers since the LaserJet 4 are identical. There
are some differences between fonts in the earlier and more recent printers, however. The LaserJet 4 printer
used Agfa Intellifont technology for 35 of the internal scalable fonts; the remaining 10 scalable fonts were
TrueType. Beginning with the LaserJet 4000-series printers introduced in 1997, all scalable internal fonts
have been TrueType. The number of printable glyphs differs slightly between Intellifont and TrueType
fonts (generally, the TrueType fonts include more glyphs), and there are some minor differences in glyph
metrics. Differences among printer models are described in the PCL 5 Comparison Guide and the PCL 5
Comparison Guide Addendum (for printers introduced since approximately 2001).

groff 1.23.0 5 August 2023 58

grolj4(1) General Commands Manual grolj4(1)

LaserJet printers reference a glyph by a combination of a 256-glyph symbol set and an index within that
symbol set. Many glyphs appear in more than one symbol set; all combinations of symbol set and index
that reference the same glyph are equivalent. For each glyph, hpftodit(1) searches a list of symbol sets, and
selects the first set that contains the glyph. The printing code generated by hpftodit is an integer that en-
codes a numerical value for the symbol set in the high byte(s), and the index in the low byte. See
groff_font(5) for a complete description of the font file format; symbol sets are described in greater detail in
the PCL 5 Printer Language Technical Reference Manual.

Two of the scalable fonts, Symbol and Wingdings, are bound to 256-glyph symbol sets; the remaining scal-
able fonts, as well as the Lineprinter font, support numerous symbol sets, sufficient to enable printing of
more than 600 glyphs.

The metrics generated by hpftodit assume that the DESC file contains values of 1200 for res and 6350 for
unitwidth, or any combination (e.g., 2400 and 3175) for which res x unitwidth = 7620 000. Although HP
PCL 5 LaserJet printers support an internal resolution of 7200 units per inch, they use a 16-bit signed inte-
ger for positioning; if devlj4 is to support U.S. ledger paper (11 in X 17 in; in = inch), the maximum usable
resolution is 32767 + 17, or 1927 units per inch, which rounds down to 1200 units per inch. If the largest
required paper dimension is less (e.g., 8.5 in X 11 in, or AS), a greater res (and lesser unitwidth) can be
specified.

Font metrics for Intellifont fonts were provided by Tagged Font Metric (TFM) files originally developed by
Agfa/Compugraphic. The TFM files provided for these fonts supported 600+ glyphs and contained exten-
sive lists of kerning pairs.

To accommodate developers who had become accustomed to TFM files, HP also provided TFM files for the
10 TrueType fonts included in the LaserJet 4. The TFM files for TrueType fonts generally included less in-
formation than the Intellifont TFMs, supporting fewer glyphs, and in most cases, providing no kerning in-
formation. By the time the LaserJet 4000 printer was introduced, most developers had migrated to other
means of obtaining font metrics, and support for new TFM files was very limited. The TFM files provided
for the TrueType fonts in the LaserJet 4000 support only the Latin 2 (ISO 8859-2) symbol set, and include
no kerning information; consequently, they are of little value for any but the most rudimentary documents.

Because the Intellifont TFM files contain considerably more information, they generally are preferable to
the TrueType TFM files even for use with the TrueType fonts in the newer printers. The metrics for the
TrueType fonts are very close, though not identical, to those for the earlier Intellifont fonts of the same
names. Although most output using the Intellifont metrics with the newer printers is quite acceptable, a few
glyphs may fail to print as expected. The differences in glyph metrics may be particularly noticeable with
composite parentheses, brackets, and braces used by egn(1). A script, located in /usr/share/groff/1.23.0/
font/devlj4/generate, can be used to adjust the metrics for these glyphs in the special font “S” for use with
printers that have all TrueType fonts.

At the time HP last supported TFM files, only version 1.0 of the Unicode standard was available. Conse-
quently, many glyphs lacking assigned code points were assigned by HP to the Private Use Area (PUA).
Later versions of the Unicode standard included code points outside the PUA for many of these glyphs.
The HP-supplied TrueType TFM files use the PUA assignments; TFM files generated from more recent
TrueType font files require the later Unicode values to access the same glyphs. Consequently, two different
mapping files may be required: one for the HP-supplied TFM files, and one for more recent TFM files.

Options

—-help displays a usage message, while —v and ——version show version information; all exit afterward.

—C num-copies
Format num-copies copies of each page.

—d [n] Use duplex mode n: 1 is long-side binding (default), and 2 is short-side binding.

=F font-directory
Prepend directory font-directory/devname to the search path for font and device description files;
name is the name of the device, usually 1j4.

groff 1.23.0 5 August 2023 59

grolj4(1) General Commands Manual grolj4(1)

-1 Format the document in landscape orientation.

—Pp paper-format
Set the paper format to paper-format, which must be a valid paper format as described above.
—w line-width
Set the default line thickness to line-width thousandths of an em; the default is 40 (0.04 em).
Environment
GROFF_FONT_PATH

lists directories in which to seek the selected output device’s directory of device and font descrip-
tion files. See troff (1) and groff font(5).

Files
/usr/share/groff/1.23.0/font/devlj4/DESC
describes the 1j4 output device.

/usr/share/groff/1.23.0/font/devlj4/F
describes the font known as F on device 1j4.

/usr/share/groff/1.23.0/tmac/lj4.tmac
defines macros for use with the 1j4 output device. It is automatically loaded by troffrc when the
1j4 output device is selected.
Bugs
Small dots.
See also

HP PCL/PJL Reference: PCL 5 Printer Language Technical Reference Manual, Part I {http://www.hp
.com/ctg/Manual/bpl13210.pdf)

hpftodit(1), groff (1), troff (1), groff_out(5), groff_font(5), groff_char(7)

groff 1.23.0 5 August 2023 60

gropdf (1) General Commands Manual gropdf (1)

Name

gropdf — groff output driver for Portable Document Format

Synopsis

gropdf [—dels] [-F font-directory] [-] inclusion-directory] [-p paper-format] [—u [cmap-file]]
[-y foundry] [file ...]
gropdf —help

gropdf —v
gropdf ——version

Description

The GNU roff PDF output driver translates the output of froff (1) into Portable Document Format. Nor-
mally, gropdf is invoked by groff (1) when the latter is given the “~T pdf” option. (In this installation, ps
is the default output device.) Use groff’s —P option to pass any options shown above to gropdf. If no file
arguments are given, or if file is “—", gropdf reads the standard input stream. Output is written to the stan-
dard output stream.

See section “Font installation” below for a guide to installing fonts for gropdf .

Options
—-help displays a usage message, while —v and ——version show version information; all exit afterward.
—-d Include debug information as comments within the PDF. Also produces an uncompressed PDF.
—-e Forces gropdf to embed all fonts (even the 14 base PDF fonts).

Usage

-F dir Prepend directory dir/devname to the search path for font, and device description files; name is
the name of the device, usually pdf.

—I dir Search the directory dir for files named in \X'pdf: pdfpic' device control commands. —I may be
specified more than once; each dir is searched in the given order. To search the current working
directory before others, add “—I.” at the desired place; it is otherwise searched last.

-1 Orient the document in landscape format.

—Pp paper-format
Set the physical dimensions of the output medium. This overrides the papersize, paperlength,
and paperwidth directives in the DESC file; it accepts the same arguments as the papersize direc-
tive. See groff font(5) for details.

-s Append a comment line to end of PDF showing statistics, i.e. number of pages in document.
Ghostscript’s ps2pdf complains about this line if it is included, but works anyway.

—u [cmap-file]
gropdf normally includes a ToUnicode CMap with any font created using fext.enc as the encoding
file, this makes it easier to search for words which contain ligatures. You can include your own
CMap by specifying a cmap-file or have no CMap at all by omitting the argument.

-y foundry
Set the foundry to use for selecting fonts of the same name.

The input to gropdf must be in the format output by troff (1). This is described in groff_out(5). In addi-
tion, the device and font description files for the device used must meet certain requirements: The resolu-
tion must be an integer multiple of 72 times the sizescale. The pdf device uses a resolution of 72000 and a
sizescale of 1000.

The device description file must contain a valid paper format; see groff font(5). gropdf uses the same
Type 1 Adobe PostScript fonts as the grops device driver. Although the PDF Standard allows the use of
other font types (like TrueType) this implementation only accepts the Type 1 PostScript font. Fewer Type 1
fonts are supported natively in PDF documents than the standard 35 fonts supported by grops and all Post-
Script printers, but all the fonts are available since any which aren’t supported natively are automatically
embedded in the PDF.

groff 1.23.0 5 August 2023 61

gropdf (1) General Commands Manual gropdf (1)

gropdf supports the concept of foundries, that is different versions of basically the same font. During in-
stall a Foundry file controls where fonts are found and builds groff fonts from the files it discovers on your
system.

Each font description file must contain a command
internalname psname

which says that the PostScript name of the font is psname. Lines starting with # and blank lines are ig-
nored. The code for each character given in the font file must correspond to the code in the default encod-
ing for the font. This code can be used with the \N escape sequence in troff to select the character, even if
the character does not have a groff name. Every character in the font file must exist in the PostScript font,
and the widths given in the font file must match the widths used in the PostScript font.

Note that gropdf is currently only able to display the first 256 glyphs in any font. This restriction will be
lifted in a later version.

gropdf can automatically include the downloadable fonts necessary to print the document. Fonts may be in
PFA or PFB format.

Any downloadable fonts which should, when required, be included by gropdf must be listed in the file /us#/
share/groff/1.23.0/font/devpdf/download; this should consist of lines of the form

Sfoundry font filename

where foundry is the foundry name or blank for the default foundry. font is the PostScript name of the
font, and filename is the name of the file containing the font; lines beginning with # and blank lines are ig-
nored; fields must be separated by tabs (spaces are not allowed); filename is searched for using the same
mechanism that is used for groff font metric files. The download file itself is also sought using this mecha-
nism. Foundry names are usually a single character (such as ‘U’ for the URW foundry) or empty for the
default foundry. This default uses the same fonts as ghostscript uses when it embeds fonts in a PDF file.

In the default setup there are styles called R, I, B, and BI mounted at font positions 1 to 4. The fonts are
grouped into families A, BM, C, H, HN, N, P, and T having members in each of these styles:

AR AvantGarde-Book

Al AvantGarde-BookOblique
AB AvantGarde-Demi

ABI AvaniGarde-DemiOblique
BMR Bookman-Light

BMI Bookman-Lightltalic

BMB Bookman-Demi

BMBI Bookman-Demiltalic

CR Courier

Cl Courier-Oblique

CB Courier-Bold

CBI Courier-BoldOblique
HR Helvetica

HI Helvetica-Oblique

HB Helvetica-Bold

HBI Helvetica-BoldOblique
HNR Helvetica-Narrow

HNI Helvetica-Narrow-Oblique

HNB Helvetica-Narrow-Bold

HNBI Helvetica-Narrow-BoldOblique
NR NewCenturySchlbk-Roman
NI NewCenturySchlbk-Italic
NB NewCenturySchlbk-Bold

groff 1.23.0 5 August 2023 62

gropdf (1) General Commands Manual gropdf (1)

NBI NewCenturySchlbk-BoldItalic
PR Palatino-Roman

PI Palatino-Italic

PB Palatino-Bold

PBI Palatino-Boldltalic

TR Times-Roman

TI Times-Italic

TB Times-Bold

TBI Times-BoldlItalic

There is also the following font which is not a member of a family:
ZCMI ZapfChancery-MediumItalic

There are also some special fonts called S for the PS Symbol font. The lower case greek characters are au-
tomatically slanted (to match the SymbolSlanted font (SS) available to PostScript). Zapf Dingbats is avail-
able as ZD; the “hand pointing left” glyph (\[lh]) is available since it has been defined using the \X'pdf:
xrev' device control command, which reverses the direction of letters within words.

The default color for \m and \M is black.
gropdf understands some of the device control commands supported by grops(1).
\X'ps: invis'
Suppress output.
\X'ps: endinvis'
Stop suppressing output.

\X'ps: exec gsave currentpoint 2 copy translate » rotate neg exch neg exch translate'
where # is the angle of rotation. This is to support the align command in pic(1).

\X'ps: exec grestore'
Used by pic(1) to restore state after rotation.

\X'ps: exec n setlinejoin'
where n can be one of the following values.
0 = Miter join
1 = Round join
2 = Bevel join
\X'ps: exec 7 setlinecap'
where n can be one of the following values.

0 = Butt cap
1 = Round cap, and
2 = Projecting square cap

\X'ps: ... pdfmark'
All the pdfimark macros installed by using —m pdfmark or —m mspdf (see documentation in pdf-
mark.pdf). A subset of these macros are installed automatically when you use —Tpdf so you
should not need to use “—m pdfmark” to access most PDF functionality.

gropdf also supports a subset of the commands introduced in present.tmac. Specifically it supports:-

PAUSE
BLOCKS
BLOCKE

Which allows you to create presentation type PDFs. Many of the other commands are already available in
other macro packages.

These commands are implemented with groff X commands:-

groff 1.23.0 5 August 2023 63

gropdf (1) General Commands Manual gropdf (1)

\X'ps: exec % % % % PAUSE'
The section before this is treated as a block and is introduced using the current BLOCK transition
setting (see ‘“\X'pdf: transition'” below). Equivalently, .pdfpause is available as a macro.

\X'ps: exec % % % % BEGINONCE'
Any text following this command (up to %%%%ENDONCE) is shown only once, the next
% %% %PAUSE will remove it. If producing a non-presentation PDF, i.e. ignoring the pauses, see
GROPDF_NOSLIDE below, this text is ignored.

\X'ps: exec % % % % ENDONCE'
This terminates the block defined by %% % %BEGINONCE. This pair of commands is what im-
plements the .BLOCKS Once/.BLOCKE commands in present.tmac.

The mom macro package already integrates these extensions, so you can build slides with mom.

If you use present.tmac with gropdf there is no need to run the program presentps(1) since the output will
already be a presentation PDF.

All other ps: tags are silently ignored.
One \X device control command used by the DVI driver is also recognised.

\X'papersize=paper-format'
where the paper-format parameter is the same as that to the papersize directive. See
groff_font(5). This means that you can alter the page size at will within the PDF file being created
by gropdf. If you do want to change the paper format, it must be done before you start creating
the page.

gropdf supports several more device control features using the pdf: tag. Some have counterpart conve-
nience macros that take the same arguments and behave equivalently.

\X'pdf: pdfpic file alignment width height line-length'
Place an image of the specified width containing the PDF drawing from file file of desired width
and height (if height is missing or zero then it is scaled proportionally). If alignment is —L the
drawing is left-aligned. If it is —C or —R a line-length greater than the width of the drawing is re-
quired as well. If width is specified as zero then the width is scaled in proportion to the height.

\X'pdf: xrev'
Toggle the reversal of glyph direction. This feature works “letter by letter”, that is, each letter in a
word is reversed left-to-right, not the entire word. One application is the reversal of glyphs in the
Zapf Dingbats font. To restore the normal glyph orientation, repeat the command.

\X'pdf: markstart /ANN-definition'

\X'pdf: markend'
Macros that support PDF bookmarks use these calls internally to start and stop (respectively) the
placement of the bookmark’s hot spot; the user will have called “.pdfhref L with the text of the
hot spot. Normally, these are never used except from within the pdfinark macros.

\X'pdf: marksuspend’

\X'pdf: markrestart'
If you use a page location trap to produce a header or footer, or otherwise interrupt a document’s
text, you need to use these commands if a PDF hot spot crosses a trap boundary; otherwise any
text output by the trap will be marked as part of the hot spot. To prevent this error, place these de-
vice control commands or their corresponding convenience macros .pdfmarksuspend and
.pdfmarkrestart at the start and end of the trap macro, respectively.

\X'pdf: pagename name'
Assign the current page a name. All documents bear two default names, ‘top’ and ‘bottom’. The
convenience macro for this command is .pdfpagename.

\X’pdf: switchtopage when name'
Normally each new page is appended to the end of the document, this command allows following
pages to be inserted at a ‘named’ position within the document (see pagename command above).

groff 1.23.0 5 August 2023 64

gropdf (1)

General Commands Manual gropdf (1)

‘when’ can be either ‘after’ or ‘before’. If it is omitted it defaults to ‘before’. It should be used at
the end of the page before you want the switch to happen. This allows pages such as a TOC to be
moved to elsewhere in the document, but more esoteric uses are possible. The convenience macro
for this command is .pdfswitchtopage.

\X'pdf: transition feature mode duration dimension motion direction scale bool'

groff 1.23.0

where feature can be either SLIDE or BLOCK. When it is SLIDE the transition is used when a
new slide is introduced to the screen, if BLOCK then this transition is used for the individual
blocks which make up the slide.

mode is the transition type between slides:-

Split - Two lines sweep across the screen, revealing the new page. The lines may be ei-
ther horizontal or vertical and may move inward from the edges of the page or outward
from the center, as specified by the dimension and motion entries, respectively.

Blinds - Multiple lines, evenly spaced across the screen, synchronously sweep in the
same direction to reveal the new page. The lines may be either horizontal or vertical, as
specified by the dimension entry. Horizontal lines move downward; vertical lines move
to the right.

Box - A rectangular box sweeps inward from the edges of the page or outward from the
center, as specified by the motion entry, revealing the new page.

Wipe - A single line sweeps across the screen from one edge to the other in the direction
specified by the direction entry, revealing the new page.

Dissolve - The old page dissolves gradually to reveal the new one.

Glitter - Similar to Dissolve, except that the effect sweeps across the page in a wide band
moving from one side of the screen to the other in the direction specified by the direction
entry.

R - The new page simply replaces the old one with no special transition effect; the direc-
tion entry shall be ignored.

Fly - (PDF 1.5) Changes are flown out or in (as specified by motion), in the direction
specified by direction, to or from a location that is offscreen except when direction is
None.

Push - (PDF 1.5) The old page slides off the screen while the new page slides in, pushing
the old page out in the direction specified by direction.

Cover - (PDF 1.5) The new page slides on to the screen in the direction specified by di-
rection, covering the old page.

Uncover - (PDF 1.5) The old page slides off the screen in the direction specified by di-
rection, uncovering the new page in the direction specified by direction.

Fade - (PDF 1.5) The new page gradually becomes visible through the old one.

duration is the length of the transition in seconds (default 1).

dimension (Optional; Split and Blinds transition styles only) The dimension in which the specified
transition effect shall occur: H Horizontal, or V Vertical.

motion (Optional; Split, Box and Fly transition styles only) The direction of motion for the speci-
fied transition effect: I Inward from the edges of the page, or O Outward from the center of the
page.

direction (Optional; Wipe, Glitter, Fly, Cover, Uncover and Push transition styles only) The di-
rection in which the specified transition effect shall moves, expressed in degrees counterclockwise
starting from a left-to-right direction. If the value is a number, it shall be one of: 0 = Left to right,
90 = Bottom to top (Wipe only), 180 = Right to left (Wipe only), 270 = Top to bottom, 315 = Top-
left to bottom-right (Glitter only) The value can be None, which is relevant only for the Fly transi-
tion when the value of scale is not 1.0.

scale (Optional; PDF 1.5; Fly transition style only) The starting or ending scale at which the
changes shall be drawn. If motion specifies an inward transition, the scale of the changes drawn
shall progress from scale to 1.0 over the course of the transition. If motion specifies an outward

5 August 2023 65

gropdf (1) General Commands Manual gropdf (1)

transition, the scale of the changes drawn shall progress from 1.0 to scale over the course of the
transition

bool (Optional; PDF 1.5; Fly transition style only) If true, the area that shall be flown in is rectan-
gular and opaque.
This command can be used by calling the macro .pdftransition using the parameters described

above. Any of the parameters may be replaced with a "." which signifies the parameter retains its
previous value, also any trailing missing parameters are ignored.

Note: not all PDF Readers support any or all these transitions.

\X'pdf: background cmd left top right bottom weight'
\X'pdf: background off"
\X'pdf: background footnote bottom'

produces a background rectangle on the page, where

cmd is the command, which can be any of “pagelfilllbox” in combination. Thus, “pagefill”
would draw a rectangle which covers the whole current page size (in which case the rest
of the parameters can be omitted because the box dimensions are taken from the current
media size). “boxfill”, on the other hand, requires the given dimensions to place the box.
Including “fill” in the command will paint the rectangle with the current fill colour (as
with \M[]) and including “box” will give the rectangle a border in the current stroke
colour (as with \m[]).

cmd may also be “off” on its own, which will terminate drawing the current box. If you
have specified a page colour with “pagefill”, it is always the first box in the stack, and if
you specify it again, it will replace the first entry. Be aware that the “pagefill” box ren-
ders the page opaque, so tools that “watermark” PDF pages are unlikely to be successful.
To return the background to transparent, issue an “off” command with no other boxes
open.

Finally, cmd may be “footnote” followed by a new value for botfom, which will be used
for all open boxes on the current page. This is to allow room for footnote areas that grow
while a page is processed (to accommodate multiple footnotes, for instance). (If the
value is negative, it is used as an offset from the bottom of the page.)

left

top

right

bottom are the coordinates of the box. The fop and bottom coordinates are the minimum and
maximum for the box, since the actual start of the box is groff’s drawing position when
you issue the command, and the bottom of the box is the point where you turn the box
“off”. The top and bottom coordinates are used only if the box drawing extends onto the
next page; ordinarily, they would be set to the header and footer margins.

weight provides the line width for the border if “box” is included in the command.

The convenience macro for this escape sequence is .pdfbackground. An sbhoxes macro file is also
available; see groff_tmac(5).

Macros
gropdf’s support macros in pdf.tmac define the convenience macros described above. Some features have
no direct device control command counterpart.

.pdfinfo / field content . ..
Define PDF metadata. field may be be one of Title, Author, Subject, Keywords, or another da-
tum supported by the PDF standard or your reader. field must be prefixed with a slash.
Importing graphics
gropdf supports only the inclusion of other PDF files for inline images. Such a PDF file may, however,
contain any of the graphic formats supported by the PDF standard, such as JPEG/JFIF, PNG, and GIF. Any

groff 1.23.0 5 August 2023 66

gropdf (1)

General Commands Manual gropdf (1)

application that outputs PDF can thus be used to prepare files for embedding in documents processed by
groff and gropdf .

The PDF file you wish to insert must be a single page and the drawing must just fit inside the media size of
the PDF file. In inkscape(1) or gimp(1), for example, make sure the canvas size just fits the image.

The PDF parser gropdf implements has not been rigorously tested with all applications that produce PDF.
If you find a single-page PDF which fails to import properly, try processing it with the pdftk(1) program.

pdftk existing-file output new-file

You may find that new-file imports successfully.

TrueType and other font formats
gropdf does not yet support any font formats besides Adobe Type 1 (PFA or PFB).

Font installation
The following is a step-by-step font installation guide for gropdf.

Convert your font to something groff understands. This is a PostScript Type 1 font in PFA or PFB for-
mat, together with an AFM file. A PFA file begins as follows.

% !PS—AdobeFont-1.0:
A PFB file contains this string as well, preceded by some non-printing bytes. In the following steps, we
will consider the use of CTAN’s BrushScriptX-Italic ¢https://ctan.org/tex—archive/fonts/brushscr) font in
PFA format.

Convert the AFM file to a groff font description file with the afmtodit(1) program. For instance,
$ afmtodit BrushScriptX-Italic.afm text.map BSI
converts the Adobe Font Metric file BrushScriptX—Italic.afm to the groff font description file BSI.

If you have a font family which provides regular upright (roman), bold, italic, and bold-italic styles,
(where “italic” may be “oblique” or “slanted”), we recommend using R, B, I, and BI, respectively, as
suffixes to the groff font family name to enable groff’s font family and style selection features. An ex-
ample is groff’s built-in support for Times: the font family name is abbreviated as T, and the groff font
names are therefore TR, TB, TI, and TBI. In our example, however, the BrushScriptX font is available
in a single style only, italic.

Install the groff font description file(s) in a devpdf subdirectory in the search path that groff uses for de-
vice and font file descriptions. See the GROFF_FONT_PATH entry in section “Environment” of troff (1)
for the current value of the font search path. While groff doesn’t directly use AFM files, it is a good idea
to store them alongside its font description files.

Register fonts in the devpdf/download file so they can be located for embedding in PDF files gropdf gen-
erates. Only the first download file encountered in the font search path is read. If in doubt, copy the de-
fault download file (see section “Files” below) to the first directory in the font search path and add your
fonts there. The PostScript font name used by gropdf is stored in the internalname field in the groff
font description file. (This name does not necessarily resemble the font’s file name.) If the font in our
example had originated from a foundry named Z, we would add the following line to download.
Z—BrushScriptX-Italic—BrushScriptX-Italic.pfa

A tab character, depicted as —, separates the fields. The default foundry has no name: its field is empty
and entries corresponding to it start with a tab character, as will the one in our example.

Test the selection and embedding of the new font.
printf "\\f[BSI]Hello, world!\n" | groff -T pdf -P -e >hello.pdf
see hello.pdf

Environment
GROFF_FONT_PATH

A list of directories in which to seek the selected output device’s directory of device and font de-
scription files. If, in the download file, the font file has been specified with a full path, no directo-
ries are searched. See troff (1) and groff font(5).

groff 1.23.0 5 August 2023 67

gropdf (1) General Commands Manual gropdf (1)

GROPDF_NOSLIDE
If set and evaluates to a true value (to Perl), gropdf ignores commands specific to presentation
PDFs, producing a normal PDF instead.

SOURCE_DATE_EPOCH
A timestamp (expressed as seconds since the Unix epoch) to use as the output creation timestamp
in place of the current time. The time is converted to human-readable form using Perl’s
localtime() function and recorded in a PDF comment.

7 The time zone to use when converting the current time (or value of SOURCE_DATE_EPOCH) to
human-readable form; see rzset(3).

Files
/usr/share/groff/1.23.0/font/devpdf/DESC
describes the pdf output device.
/usr/share/groff/1.23.0/font/devpdf/F
describes the font known as ¥ on device pdf.
/usr/share/groff/1.23.0/font/devpdf/U—F
describes the font from the URW foundry (versus the Adobe default) known as F on device pdf.
/usr/share/groff/1.23.0/font/devpdf/download
lists fonts available for embedding within the PDF document (by analogy to the ps device’s down-
loadable font support).
/usr/share/groff/1.23.0/font/devpdf/Foundry
is a data file used by the groff build system to locate PostScript Type 1 fonts.
/usr/share/groff/1.23.0/font/devpdf/enc/text.enc
describes the encoding scheme used by most PostScript Type 1 fonts; the encoding directive of
font description files for the pdf device refers to it.
/usr/share/groff/1.23.0/tmac/pdf.tmac
defines macros for use with the pdf output device. It is automatically loaded by troffrc when the
pdf output device is selected.
/usr/share/groff/1.23.0/tmac/pdfpic.tmac
defines the PDFPIC macro for embedding images in a document; see groff_tmac(5). It is auto-
matically loaded by troffrc.
Authors
gropdf was written and is maintained by Deri James {deri @chuzzlewit.myzen.co.uk).
See also

/usr/share/doc/groff—1.23.0/sboxes/msboxes.ms
/usr/share/doc/groff—1.23.0/sboxes/msboxes.pdf
“Using PDF boxes with groff and the ms macros”, by Deri James.

present.tmac
is part of gpresent (https://bob.diertens.org/corner/useful/gpresent/), a software package by Bob
Diertens that works with groff to produce presentations (“foils”, or “slide decks”).

afimtodit(1), groff (1), troff (1), groff_font(5), groff_out(5)

groff 1.23.0 5 August 2023 68

grops(1)

General Commands Manual grops(1)

Name
grops — groff output driver for PostScript
Synopsis
grops [—glm] [-b brokenness-flags] [—¢ num-copies] [-F font-directory] [-1 inclusion-directory]
[-p paper-format] [P prologue-file] [-w rule-thickness] [file .. .]
grops —help
grops —v
grops ——version
Description

Option

The GNU roff PostScript output driver translates the output of troff (1) into PostScript. Normally, grops is
invoked by groff (1) when the latter is given the “~T ps” option. (In this installation, ps is the default out-
put device.) Use groff’s —P option to pass any options shown above to grops. If no file arguments are
given, or if file is “-=”, grotty reads the standard input stream. Output is written to the standard output
stream.

When called with multiple file arguments, grops doesn’t produce a valid document structure (one conform-
ing to the Document Structuring Conventions). To print such concatenated output, it is necessary to deacti-
vate DSC handling in the printing program or previewer.

See section “Font installation” below for a guide to installing fonts for grops.

S
—-help displays a usage message, while —v and ——version show version information; all exit afterward.

-bn Work around problems with spoolers, previewers, and older printers. Normally, grops produces
output at PostScript LanguageLevel 2 that conforms to version 3.0 of the Document Structuring
Conventions. Some software and devices can’t handle such a data stream. The value of n deter-
mines what grops does to make its output acceptable to such consumers. If n is 0, grops employs
no workarounds, which is the default; it can be changed by modifying the broken directive in
grops’s DESC file.

Add 1 to suppress generation of % % BeginDocumentSetup and % % EndDocumentSetup com-
ments; this is needed for early versions of TranScript that get confused by anything between the
% % EndProlog comment and the first % %Page comment.

Add 2 to omit lines in included files beginning with %!, which confuse Sun’s pageview previewer.

Add 4 to omit lines in included files beginning with % %Page, % % Trailer and % % EndProlog;
this is needed for spoolers that don’t understand % % BeginDocument and % % EndDocument
comments.

Add 8 to write % !PS—Adobe-2.0 rather than % !PS—Adobe-3.0 as the first line of the PostScript
output; this is needed when using Sun’s Newsprint with a printer that requires page reversal.

Add 16 to omit media size information (that is, output neither a % % DocumentMedia comment
nor the setpagedevice PostScript command). This was the behavior of groff 1.18.1 and earlier; it
is needed for older printers that don’t understand PostScript LanguageLevel 2, and is also neces-
sary if the output is further processed to produce an EPS file; see subsection “Escapsulated Post-
Script” below.

-cn Output n copies of each page.

-F dir Prepend directory dir/devname to the search path for font and device description and PostScript
prologue files; name is the name of the device, usually ps.

-g Generate PostScript code to guess the page length. The guess is correct only if the imageable area
is vertically centered on the page. This option allows you to generate documents that can be
printed on both U.S. letter and A4 paper formats without change.

groff 1.23.0 5 August 2023 69

grops(1) General Commands Manual grops(1)

—I dir Search the directory dir for files named in \X'ps: file' and \X'ps: import' escape sequences. —I
may be specified more than once; each dir is searched in the given order. To search the current
working directory before others, add “~I .” at the desired place; it is otherwise searched last.

-1 Use landscape orientation rather than portrait.
-m Turn on manual feed for the document.

—p fmt Set physical dimensions of output medium, overriding the papersize, paperlength, and
paperwidth directives in the DESC file. fint can be any argument accepted by the papersize di-
rective; see groff_font(5).

=P prologue
Use the file prologue, sought in the groff font search path, as the PostScript prologue, overriding
the default (see section “Files” below) and the environment variable GROPS_PROLOGUE.

—-wn Draw rules (lines) with a thickness of n thousandths of an em. The default thickness is 40
(0.04 em).

Usage
The input to grops must be in the format output by troff (1), described in groff_out(5). In addition, the de-
vice and font description files for the device used must meet certain requirements. The device resolution
must be an integer multiple of 72 times the sizescale. The device description file must contain a valid paper
format; see groff font(5). Each font description file must contain a directive
internalname psname
which says that the PostScript name of the font is psname.

A font description file may also contain a directive

encoding enc-file
which says that the PostScript font should be reencoded using the encoding described in enc-file; this file
should consist of a sequence of lines of the form

pschar code
where pschar is the PostScript name of the character, and code is its position in the encoding expressed as
a decimal integer; valid values are in the range 0 to 255. Lines starting with # and blank lines are ignored.
The code for each character given in the font description file must correspond to the code for the character
in encoding file, or to the code in the default encoding for the font if the PostScript font is not to be reen-
coded. This code can be used with the \N escape sequence in troff to select the character, even if it does
not have a groff glyph name. Every character in the font description file must exist in the PostScript font,
and the widths given in the font description file must match the widths used in the PostScript font. grops
assumes that a character with a groff name of space is blank (makes no marks on the page); it can make
use of such a character to generate more efficient and compact PostScript output.

grops is able to display all glyphs in a PostScript font; it is not limited to 256 of them. enc-file (or the de-
fault encoding if no encoding file is specified) just defines the order of glyphs for the first 256 characters;
all other glyphs are accessed with additional encoding vectors which grops produces on the fly.

grops can embed fonts in a document that are necessary to render it; this is called “downloading”. Such
fonts must be in PFA format. Use pfbtops(1) to convert a Type 1 font in PFB format. Downloadable fonts
must be listed a download file containing lines of the form
psname file

where psname is the PostScript name of the font, and file is the name of the file containing it; lines begin-
ning with # and blank lines are ignored; fields may be separated by tabs or spaces. file is sought using the
same mechanism as that for groff font description files. The download file itself is also sought using this
mechanism; currently, only the first matching file found in the device and font description search path is
used.

If the file containing a downloadable font or imported document conforms to the Adobe Document Struc-
turing Conventions, then grops interprets any comments in the files sufficiently to ensure that its own out-
put is conforming. It also supplies any needed font resources that are listed in the download file as well as
any needed file resources. It is also able to handle inter-resource dependencies. For example, suppose that

groff 1.23.0 5 August 2023 70

grops(1) General Commands Manual grops(1)

you have a downloadable font called Garamond, and also a downloadable font called Garamond-Outline
which depends on Garamond (typically it would be defined to copy Garamond’s font dictionary, and change
the PaintType), then it is necessary for Garamond to appear before Garamond-Outline in the PostScript
document. grops handles this automatically provided that the downloadable font file for Garamond-Outline
indicates its dependence on Garamond by means of the Document Structuring Conventions, for example by
beginning with the following lines.

%!PS—Adobe-3.0 Resource-Font
%¥DocumentNeededResources: font Garamond
$EndComments

%¥%IncludeResource: font Garamond
In this case, both Garamond and Garamond-Outline would need to be listed in the download file. A down-
loadable font should not include its own name in a % % DocumentSuppliedResources comment.

o\

o\

grops does not interpret % %DocumentFonts comments. The % %DocumentNeededResources,
% % DocumentSuppliedResources, % % IncludeResource, % % BeginResource, and % % EndResource
comments (or possibly the old 9% %DocumentNeededFonts, % % DocumentSuppliedFonts,
% % IncludeFont, % % BeginFont, and % % EndFont comments) should be used.

The default stroke and fill color is black. For colors defined in the “rgb” color space, setrgbcolor is used;
for “cmy” and “cmyk”, setcmykcolor; and for “gray”, setgray. setcmykcolor is a PostScript
LanguageLevel 2 command and thus not available on some older printers.

Typefaces
Styles called R, 1, B, and BI mounted at font positions 1 to 4. Text fonts are grouped into families A, BM,
C,H, HN, N, P, and T, each having members in each of these styles.

AR AvantGarde-Book

Al AvantGarde-BookOblique
AB AvantGarde-Demi

ABI AvaniGarde-DemiOblique
BMR Bookman-Light

BMI Bookman-Lightltalic

BMB Bookman-Demi

BMBI Bookman-Demiltalic

CR Courier

Cl Courier-Oblique

CB Courier-Bold

CBI Courier-BoldOblique
HR Helvetica

HI Helvetica-Oblique

HB Helvetica-Bold

HBI Helvetica-BoldOblique
HNR Helvetica-Narrow

HNI Helvetica-Narrow-Oblique

HNB Helvetica-Narrow-Bold

HNBI Helvetica-Narrow-BoldOblique
NR NewCenturySchlbk-Roman
NI NewCenturySchlbk-Italic
NB NewCenturySchlbk-Bold
NBI NewCenturySchlbk-BoldlItalic
PR Palatino-Roman

PI Palatino-Italic

PB Palatino-Bold

PBI Palatino-Boldltalic

TR Times-Roman

groff 1.23.0 5 August 2023 71

grops(1)

General Commands Manual grops(1)

TI Times-Italic
TB Times-Bold
TBI Times-Boldltalic

Another text font is not a member of a family.

ZCMI ZapfChancery-MediumItalic

Special fonts include S, the PostScript Symbol font; ZD, Zapf Dingbats; SS (slanted symbol), which con-
tains oblique forms of lowercase Greek letters derived from Symbol; EURQO, which offers a Euro glyph for
use with old devices lacking it; and ZDR, a reversed version of ZapfDingbats (with symbols flipped about
the vertical axis). Most glyphs in these fonts are unnamed and must be accessed using \N. The last three
are not standard PostScript fonts, but supplied by groff and therefore included in the default download file.

Device control commands
grops recognizes device control commands produced by the \X escape sequence, but interprets only those
that begin with a “ps:” tag.

\X'ps: exec code'

Execute the arbitrary PostScript commands code. The PostScript currentpoint is set to the groff
drawing position when the \X escape sequence is interpreted before executing code. The origin is
at the top left corner of the page; x coordinates increase to the right, and y coordinates down the
page. A procedure u is defined that converts groff basic units to the coordinate system in effect
(provided the user doesn’t change the scale). For example,

.nr x 1i

\X'ps: exec \nx u 0 rlineto stroke'
draws a horizontal line one inch long. code may make changes to the graphics state, but any
changes persist only to the end of the page. A dictionary containing the definitions specified by
the def and mdef commands is on top of the dictionary stack. If your code adds definitions to this
dictionary, you should allocate space for them using “\X'ps: mdef »n'”. Any definitions persist
only until the end of the page. If you use the \Y escape sequence with an argument that names a
macro, code can extend over multiple lines. For example,

.nr x 1i

.de y

ps: exec

\nx u 0 rlineto

stroke

\Yy
is another way to draw a horizontal line one inch long. The single backslash before “nx”—the
only reason to use a register while defining the macro “y”—is to convert a user-specified dimen-
sion “1i” to groff basic units which are in turn converted to PostScript units with the u procedure.

grops wraps user-specified PostScript code into a dictionary, nothing more. In particular, it
doesn’t start and end the inserted code with save and restore, respectively. This must be supplied
by the user, if necessary.

\X'ps: file name'

This is the same as the exec command except that the PostScript code is read from file name.

\X'ps: def code'

groff 1.23.0

Place a PostScript definition contained in code in the prologue. There should be at most one defin-
ition per \X command. Long definitions can be split over several \X commands; all the code argu-
ments are simply joined together separated by newlines. The definitions are placed in a dictionary
which is automatically pushed on the dictionary stack when an exec command is executed. If you
use the \Y escape sequence with an argument that names a macro, code can extend over multiple
lines.

5 August 2023 72

grops(1)

General Commands Manual grops(1)

\X'ps: mdef n code'

Like def, except that code may contain up to n definitions. grops needs to know how many defini-
tions code contains so that it can create an appropriately sized PostScript dictionary to contain
them.

\X'ps: import file llx lly urx ury width [height]'

Import a PostScript graphic from file. The arguments llx, lly, urx, and ury give the bounding box
of the graphic in the default PostScript coordinate system. They should all be integers: /Ix and lly
are the x and y coordinates of the lower left corner of the graphic; urx and ury are the x and y co-
ordinates of the upper right corner of the graphic; width and height are integers that give the de-
sired width and height in groff basic units of the graphic.

The graphic is scaled so that it has this width and height and translated so that the lower left corner
of the graphic is located at the position associated with \X command. If the height argument is
omitted it is scaled uniformly in the x and y axes so that it has the specified width.

The contents of the \X command are not interpreted by troff, so vertical space for the graphic is
not automatically added, and the width and height arguments are not allowed to have attached
scaling indicators.

If the PostScript file complies with the Adobe Document Structuring Conventions and contains a
% % BoundingBox comment, then the bounding box can be automatically extracted from within
groff input by using the psbb request.

See groff_tmac(5) for a description of the PSPIC macro which provides a convenient high-level
interface for inclusion of PostScript graphics.

\X'ps: invis'
\X'ps: endinvis'

No output is generated for text and drawing commands that are bracketed with these \X com-
mands. These commands are intended for use when output from troff is previewed before being
processed with grops; if the previewer is unable to display certain characters or other constructs,
then other substitute characters or constructs can be used for previewing by bracketing them with
these \X commands.

For example, gxditview is not able to display a proper \[em] character because the standard X11
fonts do not provide it; this problem can be overcome by executing the following request

.char \[em] \X'ps: invis"'\
\Z"\v'-.25m"'"\h'.05m"\D'1 .9m O0'\h'.O05m'"'\
\X'ps: endinvis'\ [em]

In this case, gxditview is unable to display the \[em] character and draws the line, whereas grops
prints the \[em] character and ignores the line (this code is already in file Xps.tmac, which is
loaded if a document intended for grops is previewed with gxditview).

If a PostScript procedure BPhook has been defined via a “ps: def” or “ps: mdef” device control command,
it is executed at the beginning of every page (before anything is drawn or written by groff). For example,
to underlay the page contents with the word “DRAFT” in light gray, you might use

groff 1.23.0

.de XX

ps: def

/BPhook

{ gsave .9 setgray clippath pathbbox exch 2 copy
.5 mul exch .5 mul translate atan rotate pop pop
/NewCenturySchlbk-Roman findfont 200 scalefont setfont
(DRAFT) dup stringwidth pop -.5 mul -70 moveto show
grestore }

def

.devicem XX

5 August 2023 73

grops(1) General Commands Manual grops(1)

Or, to cause lines and polygons to be drawn with square linecaps and mitered linejoins instead of the round
linecaps and linejoins normally used by grops, use

.de XX

ps: def

/BPhook { 2 setlinecap 0 setlinejoin } def

.devicem XX
(square linecaps, as opposed to butt linecaps (“0 setlinecap”), give true corners in boxed tables even though
the lines are drawn unconnected).

Encapsulated PostScript
grops itself doesn’t emit bounding box information. The following script, groff2eps, produces an EPS file.

#! /bin/sh
groff -P-bl6 "$1" > "$1".ps
gs —dNOPAUSE -sDEVICE=bbox -—- "$1".ps 2> "$1".bbox

sed —e "/”*%%0Orientation/r $1.bbox" \
-e "/~%!PS-Adobe-3.0/s/$/ EPSF-3.0/" "$1".ps > "S$1".eps
rm "$1".ps "$1".bbox

You can then use “groff2eps foo” to convert file foo to foo.eps.

TrueType and other font formats
TrueType fonts can be used with grops if converted first to Type 42 format, a PostScript wrapper equivalent
to the PFA format described in pfbtops(1). Several methods exist to generate a Type 42 wrapper; some of
them involve the use of a PostScript interpreter such as Ghostscript—see gs(1).

One approach is to use FontForge (https://fontforge.org/), a font editor that can convert most outline font
formats. Here’s an example of using the Roboto Slab Serif font with groff. Several variables are used so
that you can more easily adapt it into your own script.

MAP=/usr/share/groff/1.23.0/font/devps/generate/text .map
TTF=/usr/share/fonts/truetype/roboto/slab/RobotoSlab-Regular.ttf
BASE=$ (basename "S$STTF")

INT=${BASES.ttf}

PFA=$INT.pfa

AFM=$INT.afm

GFN=RSR

DIR=$HOME/.local/groff/font

mkdir -p "S$DIR"/devps

fontforge —-lang=ff —-c "Open (\"STTF\");\

Generate (\"SDIR/devps/SPFA\");"

afmtodit "$DIR/devps/S$SAFM" "S$SMAP" "S$DIR/devps/S$GEN"
printf "S$BASE\tS$PFA\n" >> "S$DIR/devps/download"

fontforge and afmtodit may generate warnings depending on the attributes of the font. The test procedure
is simple.

printf ".ft RSR\nHello, world!\n" | groff -F "$DIR" > hello.ps
Once you’re satisfied that the font works, you may want to generate any available related styles (for in-
stance, Roboto Slab also has “Bold”, “Light”, and “Thin” styles) and set up GROFF_FONT _PATH in your

environment to include the directory you keep the generated fonts in so that you don’t have to use the —F
option.

Font installation
The following is a step-by-step font installation guide for grops.

* Convert your font to something groff understands. This is a PostScript Type 1 font in PFA format or a
PostScript Type 42 font, together with an AFM file. A PFA file begins as follows.
% !PS—AdobeFont-1.0:

groff 1.23.0 5 August 2023 74

grops(1)

General Commands Manual grops(1)

A PFB file contains this string as well, preceded by some non-printing bytes. If your font is in PFB for-

mat, use groff’s pfbtops(1) program to convert it to PFA. For TrueType and other font formats, we rec-

ommend fontforge, which can convert most outline font formats. A Type 42 font file begins as follows.
%!PS-TrueTypeFont

This is a wrapper format for TrueType fonts. Old PostScript printers might not support them (that is,

they might not have a built-in TrueType font interpreter). In the following steps, we will consider the use

of CTAN’s BrushScriptX-Italic ¢https://ctan.org/tex—archive/fonts/brushscr) font in PFA format.

» Convert the AFM file to a groff font description file with the afintodit(1) program. For instance,
$ afmtodit BrushScriptX-Italic.afm text.map BSI
converts the Adobe Font Metric file BrushScriptX—Italic.afm to the groff font description file BSI.

If you have a font family which provides regular upright (roman), bold, italic, and bold-italic styles
(where “italic” may be “oblique” or “slanted”), we recommend using the letters R, B, I, and BI, respec-
tively, as suffixes to the groff font family name to enable groff’s font family and style selection features.
An example is groff’s built-in support for Times: the font family name is abbreviated as T, and the groff
font names are therefore TR, TB, TI, and TBI. In our example, however, the BrushScriptX font is avail-
able in a single style only, italic.

* Install the groff font description file(s) in a devps subdirectory in the search path that groff uses for de-
vice and font file descriptions. See the GROFF_FONT_PATH entry in section “Environment” of troff (1)
for the current value of the font search path. While groff doesn’t directly use AFM files, it is a good idea
to store them alongside its font description files.

» Register fonts in the devps/download file so they can be located for embedding in PostScript files grops
generates. Only the first download file encountered in the font search path is read. If in doubt, copy the
default download file (see section “Files” below) to the first directory in the font search path and add
your fonts there. The PostScript font name used by grops is stored in the internalname field in the groff
font description file. (This name does not necessarily resemble the font’s file name.) We add the follow-
ing line to download.

BrushScriptX-Italic—BrushScriptX-Italic.pfa
A tab character, depicted as —, separates the fields.

 Test the selection and embedding of the new font.
printf "\\f[BSI]Hello, world!\n" | groff -T ps -P -e >hello.ps
see hello.pdf

Old fonts

groff versions 1.19.2 and earlier contained descriptions of a slightly different set of the base 35 PostScript
level 2 fonts defined by Adobe. The older set has 229 glyphs and a larger set of kerning pairs; the newer
one has 314 glyphs and includes the Euro glyph. For backwards compatibility, these old font descriptions
are also installed in the /usr/share/groff/1.23.0/oldfont/devps directory.

To use them, make sure that grops finds the fonts before the default system fonts (with the same names): ei-
ther give grops the —F command-line option,
$ groff -Tps -P-F -P/usr/share/groff/1.23.0/oldfont
or add the directory to groff’s font and device description search path environment variable,
$ GROFF_FONT_PATH=/usr/share/groff/1.23.0/oldfont \
groff -Tps
when the command runs.

Environment

GROFF_FONT_PATH
A list of directories in which to seek the selected output device’s directory of device and font de-
scription files. See troff (1) and groff font(5).

GROPS_PROLOGUE
If this is set to foo, then grops uses the file foo (in the font path) instead of the default prologue
file prologue. The option —P overrides this environment variable.

groff 1.23.0 5 August 2023 75

grops(1) General Commands Manual grops(1)

SOURCE_DATE_EPOCH
A timestamp (expressed as seconds since the Unix epoch) to use as the output creation timestamp
in place of the current time. The time is converted to human-readable form using ctime(3) and
recorded in a PostScript comment.

7 The time zone to use when converting the current time (or value of SOURCE_DATE_EPOCH) to
human-readable form; see rzset(3).

Files
/usr/share/groff/1.23.0/font/devps/DESC
describes the ps output device.

/usr/share/groff/1.23.0/font/devps/F
describes the font known as F' on device ps.

/usr/share/groff/1.23.0/font/devps/download
lists fonts available for embedding within the PostScript document (or download to the device).

/usr/share/groff/1.23.0/font/devps/prologue
is the default PostScript prologue prefixed to every output file.

/usr/share/groff/1.23.0/font/devps/text.enc
describes the encoding scheme used by most PostScript Type 1 fonts; the encoding directive of
font description files for the ps device refers to it.

/usr/share/groff/1.23.0/tmac/ps.tmac
defines macros for use with the ps output device. It is automatically loaded by troffrc when the ps
output device is selected.

/usr/share/groff/1.23.0/tmac/pspic.tmac
defines the PSPIC macro for embedding images in a document; see groff_tmac(5). It is automati-
cally loaded by troffrc.

/usr/share/groff/1.23.0/tmac/psold.tmac
provides replacement glyphs for text fonts that lack complete coverage of the ISO Latin-1 charac-
ter set; using it, groff can produce glyphs like eth () and thorn (p) that older PostScript printers
do not natively support.

grops creates temporary files using the template “gropsXXXXXX"; see groff (1) for details on their storage
location.

See also
PostScript Language Document Structuring Conventions Specification <http://partners.adobe.com/public/
developer/en/ps/5001.DSC_Spec.pdf)

afmtodit(1), groff (1), troff (1), pfbtops(1), groff_char(7), groff font(5), groff_out(5), groff_tmac(5)

groff 1.23.0 5 August 2023 76

grotty(1) General Commands Manual grotty(1)

Name
grotty — groff output driver for typewriter-like (terminal) devices

Synopsis
grotty [-dfho] [—i|-r] [-F dir] [file ...]

grotty —c [-bBdfhouU] [-F dir] [file .. .]
grotty —help

grotty —v
grotty ——version

Description

The GNU roff TTY (“Teletype”) output driver translates the output of #roff (1) into a form suitable for type-
writer-like devices, including terminal emulators. Normally, grotty is invoked by groff (1) when the latter is
given one of the “~T ascii”, “~T latin1”, —Tlatin1, or “~T utf8” options on systems using ISO character
encoding standards, or with “~T ¢p1047” or “~T utf8” on EBCDIC-based hosts. (In this installation, ps is
the default output device.) Use groff’s —P option to pass any options shown above to grotty. If no file ar-
guments are given, or if file is “=", grotty reads the standard input stream. Output is written to the standard
output stream.

By default, grotty emits SGR escape sequences (from ISO 6429, popularly called “ANSI escapes”) to
change text attributes (bold, italic, underline, reverse video [“negative image”] and colors). Devices sup-
porting the appropriate sequences can view roff documents using eight different background and fore-
ground colors. Following ISO 6429, the following colors are defined in tty.tmac: black, white, red, green,
blue, yellow, magenta, and cyan. Unrecognized colors are mapped to the default color, which is dependent
on the settings of the terminal. OSC 8 hyperlinks are produced for these devices.

In keeping with long-standing practice and the rarity of terminals (and emulators) that support oblique or
italic fonts, italicized text is represented with underlining by default—but see the —i option below.

SGR and OSC support in pagers
When paging grotty’s output with less(1), the latter program must be instructed to pass SGR and OSC se-
quences through to the device; its —R option is one way to achieve this (less version 566 or later is required
for OSC 8 support). Consequently, programs like man(1) that page roff documents with less must call it
with an appropriate option.

Legacy output format
The —c option tells grotty to use an output format compatible with paper terminals, like the Teletype ma-
chines for which roff and nroff were first developed but which are no longer in wide use. SGR escape se-
quences are not emitted; bold, italic, and underlining character attributes are thus not manipulated. Instead,
grotty overstrikes, representing a bold character ¢ with the sequence “c BACKSPACE c¢”, an italic character
¢ with the sequence “_ BACKSPACE c”, and bold italics with “_ BACKSPACE ¢ BACKSPACE c¢”. This
rendering is inherently ambiguous when the character c is itself the underscore.

The legacy output format can be rendered on a video terminal (or emulator) by piping grotry’s output
through u/(1), which may render bold italics as reverse video. Some implementations of more(1) are also
able to display these sequences; you may wish to experiment with that command’s —b option. less renders
legacy bold and italics without requiring options. In contrast to the terminal output drivers of some other
roff implementations, grotty never outputs reverse line feeds. There is therefore no need to filter its output
through col(1).

Device control commands
grotty understands one device control function produced by the roff \X escape sequence in a document.
\X'tty: link [uri [key=value] ...]'
Embed a hyperlink using the OSC 8 terminal escape sequence. Specifying uri starts hyperlinked
text, and omitting it ends the hyperlink. When uri is present, any number of additional key/value
pairs can be specified; their interpretation is the responsibility of the pager or terminal. Spaces or
tabs cannot appear literally in uri, key, or value; they must be represented in an alternate form.

groff 1.23.0 5 August 2023 77

grotty(1)

General Commands Manual grotty(1)

Device description files
If the DESC file for the character encoding contains the “unicode” directive, grotty emits Unicode charac-
ters in UTF-8 encoding. Otherwise, it emits characters in a single-byte encoding depending on the data in
the font description files. See groff font(5).

A font description file may contain a directive “internalname n” where n is a decimal integer. If the 01 bit
in n is set, then the font is treated as an italic font; if the 02 bit is set, then it is treated as a bold font.

Typefaces

grotty supports the standard four styles: R (roman), I (italic), B (bold), and BI (bold-italic). Because the
output driver operates in nroff mode, attempts to set or change the font family or type size are ignored.

Options

—-help displays a usage message, while —v and ——version show version information; all exit afterward.

-0

-r

-u
-U
Environment

Suppress the use of overstriking for bold characters in legacy output format.
Use only overstriking for bold-italic characters in legacy output format.

Use grotty’s legacy output format (see subsection “Legacy output format” above). SGR and OSC
escape sequences are not emitted.

Ignore all \D drawing escape sequences in the input. By default, grotty renders \D'l..." escape se-
quences that have at least one zero argument (and so are either horizontal or vertical) using Uni-
code box drawing characters (for the utf8 device) or the —, |, and + characters (for all other de-
vices). grotty handles \D'p..." escape sequences that consist entirely of horizontal and vertical
lines similarly.

Emit a form feed at the end of each page having no output on its last line.

Prepend directory dir/devname to the search path for font and device description files; name de-
scribes the output device’s character encoding, one of ascii, latinl, utf8, or cp1047.

Use literal horizontal tab characters in the output. Tabs are assumed to be set every 8 columns.

Render oblique-styled fonts (I and BI) with the SGR attribute for italic text rather than underlined
text. Many terminals don’t support this attribute; however, xterm(l), since patch #314
(2014-12-28), does. Ignored if —c is also specified.

Suppress overstriking (other than for bold and/or underlined characters when the legacy output
format is in use).

Render oblique-styled fonts (I and BI) with the SGR attribute for reverse video text rather than un-
derlined text. Ignored if —c or —i is also specified.

Suppress the use of underlining for italic characters in legacy output format.

Use only underlining for bold-italic characters in legacy output format.

GROFF_FONT_PATH

A list of directories in which to seek the selected output device’s directory of device and font de-
scription files. See troff (1) and groff font(5).

GROFF_NO_SGR

Files

If set, grotty’s legacy output format is used just as if the —¢ option were specified; see subsection
“Legacy output format” above.

/usr/share/groff/1.23.0/font/devascii/DESC

describes the ascii output device.

/usr/share/groff/1.23.0/font/devascii/F

groff 1.23.0

describes the font known as F on device ascii.

5 August 2023 78

grotty(1) General Commands Manual grotty(1)

/usr/share/groff/1.23.0/font/devcp1047/DESC
describes the ¢p1047 output device.

/usr/share/groff/1.23.0/font/devcp1047/F
describes the font known as F on device cp1047.

/usr/share/groff/1.23.0/font/devlatinl/DESC
describes the latin1 output device.

/usr/share/groff/1.23.0/font/devlatinl/F
describes the font known as F on device latinl.

/usr/share/groff/1.23.0/font/devutf8/DESC
describes the utf8 output device.

/usr/share/groff/1.23.0/font/devutf8/F
describes the font known as F on device utf8.

/usr/share/groff/1.23.0/tmac/tty.tmac
defines macros for use with the ascii, cp1047, latinl, and utf8 output devices. It is automatically
loaded by troffrc when any of those output devices is selected.

/usr/share/groff/1.23.0/tmac/tty—char.tmac
defines fallback characters for use with grotty. See nroff (1).

Limitations
grotty is intended only for simple documents.

* There is no support for fractional horizontal or vertical motions.
* roff \D escape sequences producing anything other than horizontal and vertical lines are not supported.
» Characters above the first line (that is, with a vertical drawing position of 0) cannot be rendered.

* Color handling differs from other output drivers. The groff requests and escape sequences that set the
stroke and fill colors instead set the foreground and background character cell colors, respectively.

Examples
The following groff document exercises several features for which output device support varies: (1) bold
style; (2) italic (underline) style; (3) bold-italic style; (4) character composition by overstriking (“codper-
ate”); (5) foreground color; (6) background color; and (7) horizontal and vertical line-drawing.

You might see \f[B]bold\f[] and \f[I]litalic\f[].

Some people see \f[BI]both\f[].

If the output device does (not) co\z\[ad]operate,

you might see \m[red]red\m[].

Black on cyan can have a \M[cyan]\m[black]prominent\m[]\M[]
\D'1 1i O0'\D'1 0 2i'\D'1 1i 0' look.

A" If in nroff mode, end page now.

.if n .pl \n[nllu

Given the foregoing input, compare and contrast the output of the following.

$ groff -T ascii file
$ groff -T utf8 -P -i file
$ groff -T utf8 -P -c file | ul
See also
“Control Functions for Coded Character Sets” (ECMA-48) 5th edition, Ecma International, June 1991. A
gratis version of ISO 6429, this document includes a normative description of SGR escape sequences.
Available at ¢http://www.ecma—international.org/publications/files/ECMA—-ST/Ecma—0438.pdf).

“Hyperlinks in Terminal Emulators” (https://gist.github.com/egmontkob/eb114294efbcd5ad
b1944c9f3cb5feda), Egmont Koblinger.

groff (1), troff (1), groff_out(5), groff_font(5), groff_char(7), ul(1), more(1), less(1), man(1)

groff 1.23.0 5 August 2023 79

hpftodit(1) General Commands Manual hpftodit(1)

Name

hpftodit — create font description files for use with groff and grolj4

Synopsis

hpftodit [-aqs] [—i n] tfin-file map-file font-description
hpftodit —d tfin-file [map-file]
hpftodit ——help

hpftodit —v
hpftodit ——version

Description

hpftodit creates a font description file for use with a Hewlett-Packard LaserJet 4-series (or newer) printer
with the grolj4(1) output driver of groff (1), using data from an HP tagged font metric (TFM) file. tfn-file
is the name of the font’s TFM file; Intellifont and TrueType TFM files are supported, but symbol set TFM
files are not. map-file is a file giving the groff special character identifiers for glyphs in the font; this file
should consist of a sequence of lines of the form

mucl c2 ... [# comment]
where m is a decimal integer giving the glyph’s MSL (Master Symbol List) number, u is a hexadecimal in-
teger giving its Unicode character code, and cl, c2, ... are its groff glyph names (see groff_char(7) for a

list). The values can be separated by any number of spaces and/or tabs. The Unicode value must use up-
percase hexadecimal digits A—F, and must lack a leading “0x”, “u”, or “U+”. Unicode values correspond-
ing to composite glyphs are decomposed; that is “u00C0” becomes “u0041_0300". A glyph without a
groff special character identifier may be named uXXXX if the glyph corresponds to a Unicode value, or as
an unnamed glyph “——="". If the given Unicode value is in the Private Use Area (PUA) (OxE000—-0xF8FF),
the glyph is included as an unnamed glyph. Refer to groff diff (1) for additional information about un-

named glyphs and how to access them.

Blank lines and lines beginning with “#” are ignored. A “#” following one or more groff names begins a
comment. Because “#” is a valid groff name, it must appear first in a list of groff names if a comment is
included, as in

3 0023 # # number sign
or

3 0023 # sh # number sign
whereas in

3 0023 sh # # number sign
the first “#” is interpreted as the beginning of the comment.

Output is written in groff font(5) format to font-description, a file named for the intended groff font name;
if this operand is “~”, the font description is written to the standard output stream.

If the —i option is used, hpftodit automatically will generate an italic correction, a left italic correction, and
a subscript correction for each glyph (the significance of these parameters is explained in groff font(5)).

Options

—-help displays a usage message, while —v and ——version show version information; all exit afterward.

-a Include glyphs in the TFM file that are not included in map-file. A glyph with corresponding Uni-
code value is given the name uXXXX; a glyph without a Unicode value is included as an unnamed
glyph “——=". A glyph with a Unicode value in the Private Use Area (OXEO00—OxF8FF) is also in-
cluded as an unnamed glyph.

This option provides a simple means of adding Unicode-named and unnamed glyphs to a font
without including them in the map file, but it affords little control over which glyphs are placed in
a regular font and which are placed in a special font. The presence or absence of the —s option has
some effect on which glyphs are included: without it, only the “text” symbol sets are searched for
matching glyphs; with it, only the “mathematical” symbol sets are searched. Nonetheless, restrict-
ing the symbol sets searched isn’t very selective—many glyphs are placed in both regular and spe-
cial fonts. Normally, —a should be used only as a last resort.

groff 1.23.0 5 August 2023 80

hpftodit(1) General Commands Manual hpftodit(1)

—-d Dump information about the TFM file to the standard output stream; use this to ensure that a TFM
file is a proper match for a font, and that its contents are suitable. The information includes the
values of important TFM tags and a listing (by MSL number for Intellifont TFM files or by Uni-
code value for TrueType TFM files) of the glyphs included in the TFM file. The unit of measure
“DU” for some tags indicates design units; there are 8782 design units per em for Intellifont fonts,
and 2048 design units per em for TrueType fonts. Note that the accessibility of a glyph depends
on its inclusion in a symbol set; some TFM files list many glyphs but only a few symbol sets.

The glyph listing includes the glyph index within the TFM file, the MSL or Unicode value, and the
symbol set and character code that will be used to print the glyph. If map-file is given, groff
names are given for matching glyphs. If only the glyph index and MSL or Unicode value are
given, the glyph does not appear in any supported symbol set and cannot be printed.

With the —d option, map-file is optional, and output-font is ignored if given.

—-in Generate an italic correction for each glyph so that its width plus its italic correction is equal to n
thousandths of an em plus the amount by which the right edge of the glyphs’s bounding box is to
the right of its origin. If a negative italic correction would result, use a zero italic correction in-
stead.

Also generate a subscript correction equal to the product of the tangent of the slant of the font and
four fifths of the x-height of the font. If a subscript correction greater than the italic correction
would result, use a subscript correction equal to the italic correction instead.

Also generate a left italic correction for each glyph equal to n thousandths of an em plus the
amount by which the left edge of the glyphs’s bounding box is to the left of its origin. The left
italic correction may be negative.

This option normally is needed only with italic or oblique fonts; a value of 50 (0.05 em) usually is
a reasonable choice.

-q Suppress warnings about glyphs in the map file that were not found in the TFM file. Warnings
never are given for unnamed glyphs or by glyphs named by their Unicode values. This option is
useful when sending the output of hpftodit to the standard output stream.

-s Add the special directive to the font description file, affecting the order in which HP symbol sets
are searched for each glyph. Without this option, the “text” sets are searched before the “mathe-
matical” symbol sets. With it, the search order is reversed.

Files
/usr/share/groff/1.23.0/font/devlj4/DESC
describes the 1j4 output device.

/usr/share/groff/1.23.0/font/devlj4/F
describes the font known as F on device 1j4.

/usr/share/groff/1.23.0/font/devlj4/generate/Makefile
is a make(1) script that uses hpftodit(1) to prepare the groff font description files above from HP
TFM data; in can be used to regenerate them in the event the TFM files are updated.

/usr/share/groff/1.23.0/font/devlj4/generate/special.awk
is an awk(1) script that corrects the Intellifont-based height metrics for several glyphs in the S
(special) font for TrueType CG Times used in the HP LaserJet 4000 and later.

/usr/share/groff/1.23.0/font/devlj4/generate/special. map
/usr/share/groff/1.23.0/font/devlj4/generate/symbol. map
/usr/share/groff/1.23.0/font/devlj4/generate/text.map
/usr/share/groff/1.23.0/font/devlj4/generate/wingdings.map

map MSL indices and HP Unicode PUA assignments to groff special character identifiers.

See also
groff (1), groff_diff (1), grolj4(1), groff font(5)

groff 1.23.0 5 August 2023 81

indxbib(1) General Commands Manual indxbib(1)

Name

indxbib — make inverted index for bibliographic databases

Synopsis

indxbib [-w] [-¢ common-words-file] [-d dir] [list-file] [-h min-hash-table-size] [-1 excluded-fields]
[-k max-keys-per-record] [-1 min-key-length] [-n threshold] [-o file] [t max-key-length]
[file ...]

indxbib —help

indxbib —v

indxbib ——version

Description

indxbib makes an inverted index for the bibliographic databases in each file for use with refer(l),
lookbib(1), and lkbib(1). Each created index is named file.i; writing is done to a temporary file which is
then renamed to this. If no file operands are given on the command line because the —f option has been
used, and no —o option is given, the index will be named Ind.i.

Bibliographic databases are divided into records by blank lines. Within a record, each field starts with a %
character at the beginning of a line. Fields have a one letter name that follows the % character.

The values set by the —¢, -1, —n, and —t options are stored in the index: when the index is searched, keys
will be discarded and truncated in a manner appropriate to these options; the original keys will be used for
verifying that any record found using the index actually contains the keys. This means that a user of an in-
dex need not know whether these options were used in the creation of the index, provided that not all the
keys to be searched for would have been discarded during indexing and that the user supplies at least the
part of each key that would have remained after being truncated during indexing. The value set by the —i
option is also stored in the index and will be used in verifying records found using the index.

Options

—-help displays a usage message, while —v and ——version show version information; all exit afterward.

—c common-words-file
Read the list of common words from common-words-file instead of /usr/share/groff/1.23.0/eign.

—d dir Use dir as the name of the directory to store in the index, instead of that returned by getcwd(2).
Typically, dir will be a symbolic link whose target is the current working directory.

—f list-file
Read the files to be indexed from list-file. If list-file is —, files will be read from the standard input
stream. The —f option can be given at most once.

—h min-hash-table-size
Use the first prime number greater than or equal to the argument for the size of the hash table.
Larger values will usually make searching faster, but will make the index file larger and cause
indxbib to use more memory. The default hash table size is 997.

—i excluded-fields
Don’t index the contents of fields whose names are in excluded-fields. Field names are one char-
acter each. If this option is not present, indxbib excludes fields X, Y, and Z.

-k max-keys-per-record
Use no more keys per input record than specified in the argument. If this option is not present, the
maximum is 100.

=1 min-key-length
Discard any key whose length in characters is shorter than the value of the argument. If this op-
tion is not present, the minimum key length is 3.

—n threshold
Discard the threshold most common words from the common words file. If this option is not
present, the 100 most common words are discarded.

groff 1.23.0 5 August 2023 82

indxbib(1) General Commands Manual indxbib(1)

—0 basename
Name the index basename.i.
—t max-key-length
Truncate keys to max-key-length in characters. If this option is not present, keys are truncated to 6

characters.
-w Index whole files. Each file is a separate record.
Files
file.i index for file
Ind.i default index name
/usr/share/groff/1.23.0/eign
contains the list of common words. The traditional name, “eign”, is an abbreviation of “English
ignored [word list]”.
indxbibXXXXXX
temporary file
See also

“Some Applications of Inverted Indexes on the Unix System”, by M. E. Lesk, 1978, AT&T Bell Laborato-
ries Computing Science Technical Report No. 69.

refer(1), lkbib(1), lookbib(1)

groff 1.23.0 5 August 2023 83

lkbib(1) General Commands Manual lkbib(1)

Name

Ikbib — search bibliographic databases
Synopsis

Ikbib [-n] [-i fields] [-p file] ... [-t n] key ...

1kbib ——help

Ikbib —v
Ikbib ——version

Description
lkbib searches bibliographic databases for references containing keywords key and writes any references
found to the standard output stream. It reads databases given by —p options and then (unless —n is given) a
default database. The default database is taken from the REFER environment variable if it is set, otherwise
it is /usr/dict/papers/Ind. For each database file to be searched, if an index file.i created by indxbib(1) ex-
ists, then it will be searched instead; each index can cover multiple databases.

Options
—-help displays a usage message, while —v and ——version show version information; all exit afterward.
—i string
When searching files for which no index exists, ignore the contents of fields whose names are in
string.
-n Suppress search of default database.

—p file Search file. Multiple —p options can be used.
-tn Require only the first n characters of keys to be given. The default is 6.

Environment
REFER
Default database.

Files
Jusr/dict/papers/Ind
Default database to be used if the REFER environment variable is not set.

file.i Index files.

See also
“Some Applications of Inverted Indexes on the Unix System”, by M. E. Lesk, 1978, AT&T Bell Laborato-
ries Computing Science Technical Report No. 69.

refer(1), lookbib(1), indxbib(1)

groff 1.23.0 5 August 2023 84

lookbib(1) General Commands Manual lookbib(1)

Name

lookbib — search bibliographic databases

Synopsis

lookbib [-i string] [-t n] file ...
lookbib ——help

lookbib —v
lookbib ——version

Description

lookbib writes a prompt to the standard error stream (unless the standard input stream is not a terminal),
reads from the standard input a line containing a set of keywords, searches each bibliographic database file
for references containing those keywords, writes any references found to the standard output stream, and re-
peats this process until the end of input. For each database file to be searched, if an index file.i created by
indxbib(1) exists, then it will be searched instead; each index can cover multiple databases.

Options
—-help displays a usage message, while —v and ——version show version information; all exit afterward.
—i string
When searching files for which no index exists, ignore the contents of fields whose names are in
string.

Files

-tn Require only the first n characters of keys to be given. The default is 6.

file.i Index files.

See also

“Some Applications of Inverted Indexes on the Unix System”, by M. E. Lesk, 1978, AT&T Bell Laborato-
ries Computing Science Technical Report No. 69.

refer(1), Ikbib(1), indxbib(1)

groff 1.23.0 5 August 2023 85

mmroff (1) General Commands Manual mmroff (1)

Name
mmroff — cross-referencing front end for GNU roff mm macro package
Synopsis

mmroff [-x] groff-argument . ..
mmroff ——help
mmroff ——version

Description
mmroff is a simple wrapper for groff, used to expand cross references in mm; see groff_mm(7). It runs
groff with the —mm option twice, first with —z and —rRef=1 to populate cross-reference and index files
with their corresponding entries, and then again to produce the document. It also handles the inclusion of
PostScript images with the PIC macro. Documents that do not use these features of groff mm (the INITI,
IND, INDP, INITR, SETR, GETHN, GETPN, GETR, GETST, and PIC macros) do not require
mmroff .

Options

—-help displays a usage message, while ——version shows version information; both exit afterward.

-X Create or update the cross-reference file and exit.

Authors
mmroff was written by Jorgen Higg (jh@axis.se) of Lund, Sweden.

See also
groff_mm(7), groff_mmse(7), groff (1), troff (1), tbl(1), pic(1), eqn(1)

groff 1.23.0 5 August 2023 86

negn(1) General Commands Manual negn(1)

Name

neqn — format equations for character-cell terminal output
Synopsis

neqn [egn-argument . . .]
Description

neqgn invokes the egn(1) command with the ascii output device.

eqn does not support low-resolution, typewriter-like devices, although it may work adequately for very sim-
ple input.

See also
eqn(1)

groff 1.23.0 5 August 2023 87

nroff (1) General Commands Manual nroff (1)

Name
nroff — format documents with groff for TTY (terminal) devices

Synopsis
nroff [-bcCEhikpRStUVz] [-d ctext] [-d string=text] [-K fallback-encoding] [-m macro-package]
[-M macro-directory] [-n page-number] [0 page-list] [-P postprocessor-argument]
[-r cnumeric-expression] [—r register=numeric-expression] [T output-device] [-w warning-
category] [-W warning-category] [file . . .]

nroff ——help

nroff —v

nroff ——version
Description

nroff formats documents written in the groff (7) language for typewriter-like devices such as terminal emu-
lators. GNU nroff emulates the AT&T nroff command using groff (1). nroff generates output via
grotty(1), groff’s terminal output driver, which needs to know the character encoding scheme used by the
device. Consequently, acceptable arguments to the —T option are ascii, latinl, utf8, and cp1047; any oth-
ers are ignored. If neither the GROFF_TYPESETTER environment variable nor the =T command-line op-
tion (which overrides the environment variable) specifies a (valid) device, nroff consults the locale to select
an appropriate output device. It first tries the locale(1) program, then checks several locale-related environ-
ment variables; see section “Environment” below. If all of the foregoing fail, —Tascii is implied.

The -b, —¢, -C, -d, -E, —i, -m, -M, —-n, —o, —-r, —-U, —w, —W, and -z options have the effects described
in troff (1). —c and —h imply “~P-c¢” and “~P-h”, respectively; —c is also interpreted directly by troff. In
addition, this implementation ignores the AT&T nroff options —e, —q, and —s (which are not implemented
in groff). The options -k, -K, —p, -P, —-R, —t, and —S are documented in groff(1). =V causes nroff to
display the constructed groff command on the standard output stream, but does not execute it. —v and
——version show version information about nroff and the programs it runs, while —help displays a usage
message; all exit afterward.

Exit status
nroff exits with error status 2 if there was a problem parsing its arguments, with status 0 if any of the op-
tions —V, —v, ——version, or ——help were specified, and with the status of groff otherwise.

Environment
Normally, the path separator in environment variables ending with PATH is the colon; this may vary de-
pending on the operating system. For example, Windows uses a semicolon instead.

GROFF_BIN_PATH
is a colon-separated list of directories in which to search for the groff executable before searching
in PATH. If unset, /usr/bin is used.

GROFF _TYPESETTER
specifies the default output device for groff .

LC ALL

LC_CTYPE

LANG

LESSCHARSET
are pattern-matched in this order for contents matching standard character encodings supported by
groff in the event no —T option is given and GROFF_TYPESETTER is unset, or the values speci-
fied are invalid.

Files
/usr/share/groff/1.23.0/tmac/tty—char.tmac
defines fallback definitions of roff special characters. These definitions more poorly optically ap-
proximate typeset output than those of #y.tmac in favor of communicating semantic information.
nroff loads it automatically.

groff 1.23.0 5 August 2023 88

nroff (1) General Commands Manual nroff (1)

Notes
Pager programs like more(1) and less(1) may require command-line options to correctly handle some out-
put sequences; see grotty(1).

See also
groff (1), troff (1), grotty(1), locale(1), roff (7)

groff 1.23.0 5 August 2023 89

pdfmom(1) General Commands Manual pdfimom(1)

Name

pdfmom — produce PDF documents using the mom macro package for groff

Synopsis

pdfmom [-Tpdf] [groff-options] [file . . .]
pdfmom -Tps [pdfroff-options] [groff-options] [file .. .]

pdfmom —v
pdfmom —-version

Description

pdfmom is a wrapper around groff (1) that facilitates the production of PDF documents from files formatted
with the mom macros.

pdfmom prints to the standard output, so output must usually be redirected to a destination file. The size of
the final PDF can be reduced by piping the output through ps2pdf(1).

If called with the —Tpdf option (which is the default), pdfinom processes files using groff’’s native PDF dri-
ver, gropdf (1). If =Tps is given, processing is passed over to pdfroff , which uses groff’s PostScript driver.
In either case, multiple runs of the source file are performed in order to satisfy any forward references in the
document.

pdfmom accepts all the same options as groff. If =Tps is given, the options associated with pdfroff are ac-
cepted as well. When pdfmom calls pdfroff, the options “—mpdfmark —mom ——no—toc” options are im-
plied and should not be given on the command line. Equally, it is not necessary to supply the —mom or
—m mom options when —Tps is absent.

PDF integration with the mom macros is discussed in full in the manual “Producing PDFs with groff and
mom”, which was itself produced with pdfimom.

If called with the —v or ——version options, pdfinom displays its version information and exits.

Authors

pdfimom was written by Deri James {(deri @chuzzlewit.myzen.co.uk) and Peter Schaffter {peter@schaffter
.cay, and is maintained by James.

See also

/usr/share/doc/groff—1.23.0/pdf/mom—pdf.pdf
“Producing PDFs with groff and mom”, by Deri James and Peter Schaffter. This file, together
with its source, mom—pdf.mom, is part of the groff distribution.

groff (1), gropdf (1), pdfroff (1), ps2pdf (1)

groff 1.23.0 5 August 2023 90

pdfroff (1) General Commands Manual pdfroff (1)

Name

pdfroff — construct files in Portable Document Format using groff

Synopsis

pdfroff [groff-option] [-—emit—ps] [-—no—toc—relocation] [-—no—kill-null-pages]
[——stylesheet=name] [-—no—pdf-output] [-—pdf-output=name] [-—no-reference—dictionary]
[-—reference—dictionary=name] [-—report—progress] [-—keep—temporary-files] [file . . .]

pdfroff —h

pdfroff ——help

pdfroff —v [groff-option . . .]

pdfroff ——version [groff-option . . .]

groff-option is any short option supported by groff (1) except for =h, =T, and —v; see section “Usage” be-
low.

Description

Usage

pdfroff is a wrapper program for the GNU text processing system, groff. It transparently handles the me-
chanics of multiple pass groff processing, when applied to suitably marked up groff source files, such that
tables of contents and body text are formatted separately, and are subsequently combined in the correct or-
der, for final publication as a single PDF document. A further optional “style sheet” capability is provided;
this allows for the definition of content which is required to precede the table of contents, in the published
document.

For each invocation of pdfroff , the ultimate groff output stream is post-processed by the Ghostscript gs(1)
interpreter to produce a finished PDF document.

pdfroff makes no assumptions about, and imposes no restrictions on, the use of any groff macro packages
which the user may choose to employ, in order to achieve a desired document format; however, it does in-
clude specific built in support for the pdfinark macro package, should the user choose to employ it. Specifi-
cally, if the pdfhref macro, defined in the pdfimark.tmac package, is used to define public reference marks,
or dynamic links to such reference marks, then pdfroff performs as many preformatting groff passes as re-
quired, up to a maximum limit of four, in order to compile a document reference dictionary, to resolve ref-
erences, and to expand the dynamically defined content of links.

The command line is parsed in accordance with normal GNU conventions, but with one exception—when
specifying any short form option (i.e., a single character option introduced by a single hyphen), and if that
option expects an argument, then it must be specified independently (i.e., it may not be appended to any
group of other single character short form options).

Long form option names (i.e., those introduced by a double hyphen) may be abbreviated to their minimum
length unambiguous initial substring.

Otherwise, pdfroff usage closely mirrors that of groff itself. Indeed, with the exception of the —h, —v, and
=T dev short form options, and all long form options, which are parsed internally by pdfiroff, all options
and file name arguments specified on the command line are passed on to groff , to control the formatting of
the PDF document. Consequently, pdfroff accepts all options and arguments, as specified in groff (1),
which may also be considered as the definitive reference for all standard pdfroff options and argument us-
age.

Options

pdfroff accepts all of the short form options (i.e., those introduced by a single hyphen), which are available
with groff itself. In most cases, these are simply passed transparently to groff’; the following, however, are
handled specially by pdfroff.

-h Same as —help; see below.

—i Process standard input, after all other specified input files. This is passed transparently to groff,
but, if grouped with other options, it must be the first in the group. Hiding it within a group breaks
standard input processing, in the multiple-pass groff processing context of pdfroff.

groff 1.23.0 5 August 2023 91

pdfroff (1) General Commands Manual pdfroff (1)

=T dev Only -T ps is supported by pdfroff. Attempting to specify any other device causes pdfroff to
abort.

-v Same as ——version; see below.

See groff (1) for a description of all other short form options, which are transparently passed through
pdfroff to groff .

All long form options (i.e., those introduced by a double hyphen) are interpreted locally by pdfroff’; they
are not passed on to groff , unless otherwise stated below.

—=help Causes pdfroff to display a summary of the its usage syntax, and supported options, and then exit.

——emit—ps
Suppresses the final output conversion step, causing pdfroff to emit PostScript output instead of
PDF. This may be useful to capture intermediate PostScript output when using a specialised post-
processor, such as gpresent for example, in place of the default Ghostscript PDF writer.

——keep-temporary—files
Suppresses the deletion of temporary files, which normally occurs after pdfroff has completed
PDF document formatting; this may be useful when debugging formatting problems.

See section “Files” below for a description of the temporary files used by pdfroff .

——no—pdf-output
May be used with the ——reference—dictionary=name option (described below) to eliminate the
overhead of PDF formatting when running pdfroff to create a reference dictionary for use in a dif-
ferent document.

——no-reference—dictionary
May be used to eliminate the overhead of creating a reference dictionary, when it is known that the
target PDF document contains no public references, created by the pdfhref macro.

——no—toc-relocation
May be used to eliminate the extra groff processing pass, which is required to generate a table of
contents, and relocate it to the start of the PDF document, when processing any document which
lacks an automatically generated table of contents.

——no-kill-null-pages
While preparing for simulation of the manual collation step, which is traditionally required to relo-
cate a table of contents to the start of a document, pdfroff accumulates a number of empty page
descriptions into the intermediate PostScript output stream. During the final collation step, these
empty pages are normally discarded from the finished document; this option forces pdfroff to
leave them in place.

——pdf-output=name
Specifies the name to be used for the resultant PDF document; if unspecified, the PDF output is
written to standard output. A future version of pdfroff may use this option, to encode the docu-
ment name in a generated reference dictionary.

——reference—dictionary=name
Specifies the name to be used for the generated reference dictionary file; if unspecified, the refer-
ence dictionary is created in a temporary file, which is deleted when pdfroff completes processing
of the current document. This option must be specified, if it is desired to save the reference dictio-
nary, for use in references placed in other PDF documents.

——report—progress
Causes pdfroff to display an informational message on standard error, at the start of each groff
processing pass.

——stylesheet=name
Specifies the name of an input file, to be used as a style sheet for formatting of content, which is to
be placed before the table of contents, in the formatted PDF document.

groff 1.23.0 5 August 2023 92

pdfroff (1)

General Commands Manual pdfroff (1)

——version

Environment

Causes pdfroff to display a version identification message. The entire command line is then
passed transparently to groff, in a one pass operation only, in order to display the associated groff
version information, before exiting.

The following environment variables may be set, and exported, to modify the behaviour of pdfroff.

PDFROFF_COLLATE

Specifies the program to be used for collation of the finished PDF document.

This collation step may be required to move tables of contents to the start of the finished PDF doc-
ument, when formatting with traditional macro packages, which print them at the end. However,
users should not normally need to specity PDFROFF_COLLATE, (and indeed, are not encouraged
to do so). If unspecified, pdfroff uses sed(1) by default, which normally suffices.

If PDFROFF_COLLATE is specified, then it must act as a filter, accepting a list of file name argu-
ments, and write its output to the standard output stream, whence it is piped to the
PDFROFF_POSTPROCESSOR_COMMAND, to produce the finished PDF output.

When specifying PDFROFF_COLLATE, it is normally mnecessary to also specify
PDFROFF _KILL NULL _PAGES.

PDFROFF_COLLATE is ignored, if pdfroff is invoked with the ——no-kill-null-pages option.

PDFROFF _KILL NULL _PAGES

Specifies options to be passed to the PDFROFF_COLLATE program.

It should not normally be necessary to specifty PDFROFF_KILL_NULL PAGES. The internal de-
fault is a sed(1) script, which is intended to remove completely blank pages from the collated out-
put stream, and which should be appropriate in most applications of pdfroff. However, if any al-
ternative to sed(1) is specified for PDFROFF_COLLATE, then it is likely that a corresponding al-
ternative specification for PDFROFF_KILL_NULL_PAGES is required.

As in the case of PDFROFF_COLLATE, PDFROFF_KILL_NULL_PAGES is ignored, if pdfroff
is invoked with the ——no-Kill-null-pages option.

PDFROFF_POSTPROCESSOR_COMMAND

Specifies the command to be used for the final document conversion from PostScript intermediate
output to PDE. It must behave as a filter, writing its output to the standard output stream, and must
accept an arbitrary number of files ... arguments, with the special case of “~” representing the
standard input stream.

If unspecified, PDFROFF_POSTPROCESSOR_COMMAND defaults to
gs —dBATCH —-dQUIET —-dNOPAUSE -dSAFER -sDEVICE=pdfwrite \
-sOutputFile=-

GROFF_TMPDIR

Identifies the directory in which pdfroff should create temporary files. If GROFF_TMPDIR is not
specified, then the variables TMPDIR, TMP and TEMP are considered in turn as possible tempo-
rary file repositories. If none of these are set, then temporary files are created in the current direc-
tory.

GROFF_GHOSTSCRIPT _INTERPRETER

groff 1.23.0

Specifies the program to be invoked when pdfroff converts groff PostScript output to PDF. If
PDFROFF_POSTPROCESSOR_COMMAND is specified, then the command name it specifies is
implicitly assigned to GROFF_GHOSTSCRIPT _INTERPRETER, overriding any explicit setting
specified in the environment. If GROFF_GHOSTSCRIPT_INTERPRETER is not specified, then
pdfroff searches the process PATH, looking for a program with any of the well known names for
the Ghostscript interpreter; if no Ghostscript interpreter can be found, pdfroff aborts.

5 August 2023 93

pdfroff (1) General Commands Manual pdfroff (1)

GROFF_AWK_INTERPRETER
Specifies the program to be invoked when pdfroff is extracting reference dictionary entries from a
groff intermediate message stream. If GROFF_AWK_INTERPRETER is not specified, then
pdfroff searches the process PATH, looking for any of the preferred programs, gawk, mawk,
nawk, and awk, in that order; if none of these are found, pdfroff issues a warning message, and
continue processing; however, in this case, no reference dictionary is created.

OSTYPE
Typically defined automatically by the operating system, OSTYPE is used on Microsoft
Win32/MS-DOS platforms only, to infer the default PATH_SEPARATOR character, which is used
when parsing the process PATH to search for external helper programs.

PATH _SEPARATOR
If set, PATH_SEPARATOR overrides the default separator character, (‘:> on POSIX/Unix systems,
inferred from OSTYPE on Microsoft Win32/MS-DOS), which is used when parsing the process
PATH to search for external helper programs.

SHOW_PROGRESS
If this is set to a non-empty value, then pdfroff always behaves as if the ——report—progress op-
tion is specified on the command line.

Files
Input and output files for pdfroff may be named according to any convention of the user’s choice. Typi-
cally, input files may be named according to the choice of the principal normatting macro package, e.g.,
file.ms might be an input file for formatting using the ms macros (s.tmac); normally, the final output file
should be named file.pdf .

Temporary files created by pdfroff are placed in the file system hierarchy, in or below the directory speci-
fied by environment variables (see section “Environment” above). If mktemp(1) is available, it is invoked to
create a private subdirectory of the nominated temporary files directory, (with subdirectory name derived
from the template pdfroff—XXXXXXXXXX); if this subdirectory is successfully created, the temporary files
will be placed within it, otherwise they will be placed directly in the directory nominated in the environ-
ment.

All temporary files themselves are named according to the convention pdf$$.*, where $$ is the standard
shell variable representing the process identifier of the pdfroff process itself, and * represents any of the ex-
tensions used by pdfroff to identify the following temporary and intermediate files.

pdf $$.tmp
A scratch pad file, used to capture reference data emitted by groff , during the reference dictionary
compilation phase.

pdf $$.ref
The reference dictionary, as compiled in the last but one pass of the reference dictionary compila-
tion phase; (at the start of the first pass, this file is created empty; in successive passes, it contains
the reference dictionary entries, as collected in the preceding pass).

If the ——reference—dictionary=name option is specified, this intermediate file becomes perma-
nent, and is named name, rather than pdf $$.ref .

pdf 8.cmp
Used to collect reference dictionary entries during the active pass of the reference dictionary com-
pilation phase. At the end of any pass, when the content of pdf$$.cmp compares as identical to
pdf $$.ref, (or the corresponding file named by the ——reference—dictionary=name option), then
reference dictionary compilation is terminated, and the document reference map is appended to
this intermediate file, for inclusion in the final formatting passes.

pdf $$.1c
An intermediate PostScript file, in which “Table of Contents” entries are collected, to facilitate re-
location before the body text, on ultimate output to the Ghostscript postprocessor.

groff 1.23.0 5 August 2023 94

pdfroff (1) General Commands Manual pdfroff (1)

pdf $8.ps
An intermediate PostScript file, in which the body text is collected prior to ultimate output to the
Ghostscript postprocessor, in the proper sequence, after pdf $$.tc.

Authors
pdfroff was written by Keith Marshall (keith.d.marshall @ntlworld.com), who maintains it at his groff-pdf-
mark OSDN site ¢https://osdn.net/users/keith/pf/groff-pdfmark/wiki/FrontPage). groff’s version may be
withdrawn in a future release.

See also
Groff: The GNU Implementation of troff, by Trent A. Fisher and Werner Lemberg, is the primary groff
manual. You can browse it interactively with “info groff”.

Since pdfroff provides a superset of all groff capabilities, the above manual, or its terser reference page,
groff (7) may also be considered definitive references to all standard capabilities of pdfroff , with this docu-
ment providing the reference to pdfroff’s extended features.

While pdfroff imposes neither any restriction on, nor any requirement for, the use of any specific groff
macro package, a number of supplied macro packages, and in particular those associated with the package
pdfimark.tmac, are best suited for use with pdfroff as the preferred formatter.

/usr/share/doc/groff—1.23.0/pdf/pdfmark.pdf
“Portable Document Format Publishing with GNU Troff”, by Keith Marshall, offers detailed docu-
mentation on the use of these packages. This file, together with its source, pdfmark.ms, is part of
the groff distribution.

groff 1.23.0 5 August 2023 95

pfbtops(1) General Commands Manual pfbtops(1)

Name
pifbtops — translate PostScript Printer Font Binary files to Printer Font ASCII

Synopsis
pibtops [pfb-file]
pfbtops —help

pfbtops —v
pfbtops ——version

Description
pfbtops translates a PostScript Type 1 font in Printer Font Binary (PFB) format to Printer Font ASCII
(PFA) format, splitting overlong lines in text packets into smaller chunks. If pfb-file is omitted, the PFB
file will be read from the standard input stream. The PFA font will be written on the standard output
stream. PostScript fonts for MS-DOS were historically supplied in PFB format. Use of a PostScript Type 1
font with groff requires conversion of its metrics (AFM file) to a groff font description file; see
afimtodit(1).

The —-help option displays a usage message, while —v and ——version show version information; all exit
afterward.

See also
grops(1), gropdf (1)

groff 1.23.0 5 August 2023 96

pic(l) General Commands Manual pic(l)

Name
pic — compile pictures for troff or TeX

Synopsis
pic [-CnSU] [file .. .]
pic —t [-cCSUz] [file .. .]
pic ——help
pic -v
pic ——version

Description
The GNU implementation of pic is part of the groff (1) document formatting system. pic is a troff (1) pre-
processor that translates descriptions of diagrammatic pictures embedded in roff (7) or TgX input files into
the language understood by TgX or troff. It copies the contents of each file to the standard output stream,
except that lines between .PS and any of .PE, .PF, or .PY are interpreted as picture descriptions in the pic
language. End a pic picture with .PE to leave the drawing position at the bottom of the picture, and with
.PF or .PY to leave it at the top. Normally, pic is not executed directly by the user, but invoked by specify-
ing the —p option to groff (1). If no file operands are given on the command line, or if file is “~”, the stan-
dard input stream is read.
It is the user’s responsibility to provide appropriate definitions of the PS, PE, and one or both of the PF and
PY macros. When a macro package does not supply these, obtain simple definitions with the groff option
—mpic; these will center each picture.
GNU pic supports PY as a synonym of PF to work around a name space collision with the mm macro
package, which defines PF as a page footer management macro. Use PF preferentially unless a similar
problem faces your document.

Options

—-help displays a usage message, while —v and ——version show version information; all exit afterward.

—-C Be more compatible with #pic; implies —t. Lines beginning with \ are not passed through transpar-
ently. Lines beginning with . are passed through with the initial . changed to \. A line beginning
with .ps is given special treatment: it takes an optional integer argument specifying the line thick-
ness (pen size) in milliinches; a missing argument restores the previous line thickness; the default
line thickness is 8 milliinches. The line thickness thus specified takes effect only when a non-neg-
ative line thickness has not been specified by use of the thickness attribute or by setting the
linethick variable.

-C Recognize .PS, .PE, .PF, and .PY even when followed by a character other than space or newline.

-n Don’t use groff extensions to the troff drawing commands. Specify this option if a postprocessor
you’re using doesn’t support these extensions, described in groff out(5). This option also causes
pic not to use zero-length lines to draw dots in troff mode.

-S Operate in safer mode; sh commands are ignored. This mode, enabled by default, can be useful
when operating on untrustworthy input.

-t Produce TEX output.

-U Operate in unsafe mode; sh commands are interpreted.

e/ In TgX mode, draw dots using zero-length lines.

The following options supported by other versions of pic are ignored.
-D Draw all lines using the \D escape sequence. GNU pic always does this.

—=T dev Generate output for the troff device dev. This is unnecessary because the troff output generated
by GNU pic is device-independent.

groff 1.23.0 5 August 2023 97

pic(l) General Commands Manual pic(l)

Usage
This section primarily discusses the differences between GNU pic and the Eighth Edition Research Unix
version of AT&T pic (1985). Many of these differences also apply to later versions of AT&T pic.

TeX mode
TgX-compatible output is produced when the —t option is specified. You must use a TgX driver that sup-
ports tpic version 2 specials. (fpic was a fork of AT&T pic by Tim Morgan of the University of California
at Irvine that diverged from its source around 1984. It is best known today for lending its name to a group
of \special commands it produced for TgX.)

Lines beginning with \ are passed through transparently; a % is added to the end of the line to avoid un-
wanted spaces. You can safely use this feature to change fonts or the value of \baselineskip. Anything else
may well produce undesirable results; use at your own risk. By default, lines beginning with a dot are not
treated specially—but see the —c¢ option.

In TgX mode, pic will define a vbox called \graph for each picture. Use GNU pic’s figname command to
change the name of the vbox. You must print that vbox yourself using the command

\centerline{\box\graph}
for instance. Since the vbox has a height of zero (it is defined with \vtop) this will produce slightly more
vertical space above the picture than below it;

\centerline{\raise lem\box\graph}
would avoid this. To give the vbox a positive height and a depth of zero (as used by IXTgX’s graphics.sty,
for example) define the following macro in your document.

\def\gpicbox#1{%

\vbox {\unvbox\csname #l\endcsname\kern Opt}}

You can then simply say \gpicbox{graph} instead of \box\graph.

Commands
Several commands new to GNU pic accept delimiters, shown in their synopses as braces { }. Nesting of
braces is supported. Any other characters (except a space, tab, or newline) may be used as alternative de-
limiters, in which case the members of a given pair must be identical. Strings are recognized within delim-
iters of either kind; they may contain the delimiter character or unbalanced braces.

for variable = exprl to expr2 [by [*]expr3] do X body X
Set variable to exprl. While the value of variable is less than or equal to expr2, do body and in-
crement variable by expr3; if by is not given, increment variable by 1. If expr3 is prefixed by *
then variable will instead be multiplied by expr3. The value of expr3 can be negative for the addi-
tive case; variable is then tested whether it is greater than or equal to expr2. For the multiplicative
case, expr3 must be greater than zero. If the constraints aren’t met, the loop isn’t executed. X can
be any character not occurring in body.

if expr then X if-true X [else Y if-false Y]
Evaluate expr; if it is non-zero then do if-frue, otherwise do if-false. X can be any character not
occurring in if-true. Y can be any character not occurring in if-false.

printarg ...
Concatenate and write arguments to the standard error stream followed by a newline. Each arg
must be an expression, a position, or text. This is useful for debugging.

command arg ...
Concatenate arguments and pass them as a line to froff or TgX. Each arg must be an expression, a
position, or text. command allows the values of pic variables to be passed to the formatter. For
example,
.PS
x = 14
command ".ds string x is " x "."
.PE
*[string]
produces

groff 1.23.0 5 August 2023 98

pic(1)

General Commands Manual pic(l)

x is 14.
when formatted with troff .

sh X command X

Pass command to a shell.

copy " filename"

Include filename at this point in the file.

copy [" filename''] thru X body X [until "word"']
copy [" filename''] thru macro [until "word"']

reset

This construct does body once for each line of filename; the line is split into blank-delimited
words, and occurrences of $i in body, for i between 1 and 9, are replaced by the i-th word of the
line. If filename is not given, lines are taken from the current input up to .PE. If an until clause is
specified, lines will be read only until a line the first word of which is word; that line will then be
discarded. X can be any character not occurring in body. For example,

.PS

copy thru % circle at ($1,$2) % until "END"

12

3 4

56

END

box

.PE
and

.PS

circle at (1,2)

circle at (3,4)

circle at (5,6)

box

.PE
are equivalent. The commands to be performed for each line can also be taken from a macro de-
fined earlier by giving the name of the macro as the argument to thru. The argument after thru is
looked up as a macro name first; if not defined, its first character is interpreted as a delimiter.

reset pvarl[,] pvar2 ...

Reset predefined variables pvarl, pvar2 ... to their default values; if no arguments are given, reset
all predefined variables to their default values. Variable names may be separated by commas,
spaces, or both. Assigning a value to scale also causes all predefined variables that control dimen-
sions to be reset to their default values times the new value of scale.

plot expr [""text"']

This is a text object which is constructed by using fext as a format string for sprintf with an argu-
ment of expr. If text is omitted a format string of "' %g"" is used. Attributes can be specified in the
same way as for a normal text object. Be very careful that you specify an appropriate format
string; pic does only very limited checking of the string. This is deprecated in favour of sprintf.

var = expr

groff 1.23.0

This syntax resembles variable assignment with = except that var must already be defined, and
expr will be assigned to var without creating a variable local to the current block. (By contrast, =
defines var in the current block if it is not already defined there, and then changes the value in the
current block only.) For example,

.PS

x =3
y =3
[

x =5

5 August 2023 99

pic(1)

General Commands Manual pic(l)

writes
53
to the standard error stream.

Expressions

The syntax for expressions has been significantly extended.

x ™ y (exponentiation)

sin(x)

cos(x)

atan2(y, x)

log(x) (base 10)

exp(x) (base 10, i.e. 10%)

sqrt(x)

int(x)

rand() (return a random number between 0 and 1)
rand(x) (return a random number between 1 and x; deprecated)
srand(x) (set the random number seed)
max(el, e2)

min(el, e2)

le

el && e2

el ||l e2

el ==e2

el 1=e2

el >=¢2

el >e2

el <=e2

el <e2

“strl" == "str2"

strl" 1= "str2"

String comparison expressions must be parenthesised in some contexts to avoid ambiguity.

Other changes

A bare expression, expr, is acceptable as an attribute; it is equivalent to dir expr, where dir is the current
direction. For example

line 2i

means draw a line 2 inches long in the current direction. The ‘i’ (or ‘I’) character is ignored; to use another
measurement unit, set the scale variable to an appropriate value.

The maximum width and height of the picture are taken from the variables maxpswid and maxpsht. Ini-
tially, these have values 8.5 and 11.

Scientific notation is allowed for numbers. For example
X = 5e-2
Text attributes can be compounded. For example,
""foo'' above ljust
is valid.
There is no limit to the depth to which blocks can be examined. For example,

[A: [B: [C: box]]] with .A.B.C.sw at 1,2

groff 1.23.0 5 August 2023 100

pic(1)

General Commands Manual pic(l)

circle at last [].A.B.C
is acceptable.
Arcs now have compass points determined by the circle of which the arc is a part.
Circles, ellipses, and arcs can be dotted or dashed. In TgX mode splines can be dotted or dashed also.

Boxes can have rounded corners. The rad attribute specifies the radius of the quarter-circles at each corner.
If no rad or diam attribute is given, a radius of boxrad is used. Initially, boxrad has a value of 0. A box
with rounded corners can be dotted or dashed.

Boxes can have slanted sides. This effectively changes the shape of a box from a rectangle to an arbitrary
parallelogram. The xslanted and yslanted attributes specify the x and y offset of the box’s upper right cor-
ner from its default position.

The .PS line can have a second argument specifying a maximum height for the picture. If the width of zero
is specified the width will be ignored in computing the scaling factor for the picture. GNU pic will always
scale a picture by the same amount vertically as well as horizontally. This is different from DWB 2.0 pic
which may scale a picture by a different amount vertically than horizontally if a height is specified.

Each text object has an invisible box associated with it. The compass points of a text object are determined
by this box. The implicit motion associated with the object is also determined by this box. The dimensions
of this box are taken from the width and height attributes; if the width attribute is not supplied then the
width will be taken to be textwid; if the height attribute is not supplied then the height will be taken to be
the number of text strings associated with the object times textht. Initially, textwid and textht have a value
of 0.

In (almost all) places where a quoted text string can be used, an expression of the form
sprintf("' format", arg, ...)

can also be used; this will produce the arguments formatted according to format, which should be a string
as described in printf(3) appropriate for the number of arguments supplied. Only the modifiers “#”, “-”,
“+”,and “” [space]), a minimum field width, an optional precision, and the conversion specifiers %e, %E,
%f, Y%g, %G, and % % are supported.

The thickness of the lines used to draw objects is controlled by the linethick variable. This gives the thick-
ness of lines in points. A negative value means use the default thickness: in TgX output mode, this means
use a thickness of 8 milliinches; in TgX output mode with the —¢ option, this means use the line thickness
specified by .ps lines; in troff output mode, this means use a thickness proportional to the pointsize. A zero
value means draw the thinnest possible line supported by the output device. Initially, it has a value of —1.
There is also a thick[ness] attribute. For example,

circle thickness 1.5

would draw a circle using a line with a thickness of 1.5 points. The thickness of lines is not affected by the
value of the scale variable, nor by the width or height given in the .PS line.

Boxes (including boxes with rounded corners or slanted sides), circles and ellipses can be filled by giving
them an attribute of filled]. This takes an optional argument of an expression with a value between 0 and
1; 0 will fill it with white, 1 with black, values in between with a proportionally gray shade. A value
greater than 1 can also be used: this means fill with the shade of gray that is currently being used for text
and lines. Normally this will be black, but output devices may provide a mechanism for changing this.
Without an argument, then the value of the variable fillval will be used. Initially, this has a value of 0.5.
The invisible attribute does not affect the filling of objects. Any text associated with a filled object will be
added after the object has been filled, so that the text will not be obscured by the filling.

Additional modifiers are available to draw colored objects: outline[d] sets the color of the outline, shaded

the fill color, and colo[u]r[ed] sets both. All expect a subsequent string argument specifying the color.
circle shaded "green" outline "black"

Color is not yet supported in TgX mode. Device macro files like ps.tmac declare color names; you can de-

fine additional ones with the defcolor request (see groff (7)).

groff 1.23.0 5 August 2023 101

pic(1)

General Commands Manual pic(l)

To change the name of the vbox in TEX mode, set the pseudo-variable figname (which is actually a spe-
cially parsed command) within a picture. Example:

PS
figname = foobar;

.PE
The picture is then available in the box \foobar.

pic assumes that at the beginning of a picture both glyph and fill color are set to the default value.

Arrow heads will be drawn as solid triangles if the variable arrowhead is non-zero and either TgX mode is
enabled or the —n option has not been given. Initially, arrowhead has a value of 1. Solid arrow heads are
always filled with the current outline color.

The troff output of pic is device-independent. The —T option is therefore redundant. All numbers are
taken to be in inches; numbers are never interpreted to be in troff machine units.

Objects can have an aligned attribute. This will only work if the postprocessor is grops(1) or gropdf(1).
Any text associated with an object having the aligned attribute will be rotated about the center of the object
so that it is aligned in the direction from the start point to the end point of the object. This attribute will
have no effect on objects whose start and end points are coincident.

In places where nth is allowed, 'expr'th is also allowed. “'th* is a single token: no space is allowed be-
tween the apostrophe and the “th”. For example,

for i = 1 to 4 do {
line from 'i'th box.nw to 'i+l'th box.se

Conversion

To obtain a stand-alone picture from a pic file, enclose your pic code with .PS and .PE requests; roff con-
figuration commands may be added at the beginning of the file, but no roff text.

It is necessary to feed this file into groff without adding any page information, so you must check which
.PS and .PE requests are actually called. For example, the mm macro package adds a page number, which
is very annoying. At the moment, calling standard groff without any macro package works. Alternatively,
you can define your own requests, e.g., to do nothing:

.de PS
.de PE

groff itself does not provide direct conversion into other graphics file formats. But there are lots of possi-
bilities if you first transform your picture into PostScript® format using the groff option —=Tps. Since this
ps-file lacks BoundingBox information it is not very useful by itself, but it may be fed into other conversion
programs, usually named ps2other or pstoother or the like. Moreover, the PostScript interpreter Ghost-
script (gs(1)) has built-in graphics conversion devices that are called with the option

gs —sDEVICE=<devname>
Call

gs —help
for a list of the available devices.

An alternative may be to use the —Tpdf option to convert your picture directly into PDF format. The Medi-
aBox of the file produced can be controlled by passing a —P—p papersize to groff .

As the Encapsulated PostScript File Format EPS is getting more and more important, and the conversion
wasn’t regarded trivial in the past you might be interested to know that there is a conversion tool named
ps2eps which does the right job. It is much better than the tool ps2epsi packaged with gs.

groff 1.23.0 5 August 2023 102

pic(l) General Commands Manual pic(l)

For bitmapped graphic formats, you should use pstopnm; the resulting (intermediate) pnm(5) file can be
then converted to virtually any graphics format using the tools of the netpbm package.

Files
/usr/share/groff/1.23.0/tmac/pic.tmac
offers simple definitions of the PS, PE, PF, and PY macros.

Bugs
Characters that are invalid as input to GNU troff (see the groff Texinfo manual or groff _char(7) for a list)
are rejected even in TEX mode.

The interpretation of fillval is incompatible with the pic in Tenth Edition Research Unix, which interprets O
as black and 1 as white.

See also
/usr/share/doc/groff—1.23.0/pic.ps
“Making Pictures with GNU pic”, by Eric S. Raymond. This file, together with its source, pic.ms,
is part of the groff distribution.

“PIC—A Graphics Language for Typesetting: User Manual”, by Brian W. Kernighan, 1984 (revised 1991),
AT&T Bell Laboratories Computing Science Technical Report No. 116

ps2eps is available from CTAN mirrors, e.g., {ftp:/ftp.dante.de/tex—archive/support/ps2eps/)
W. Richard Stevens, Turning PIC into HTML {http://www .kohala.com/start/troff/pic2html.html)
W. Richard Stevens, Examples of pic Macros {http://www .kohala.com/start/troff/pic.examples.ps)

troff (1), groff_out(5), tex(1), gs(1), ps2eps(1), pstopnm(1), ps2epsi(1), pnm(5)

groff 1.23.0 5 August 2023 103

pic2graph(1) General Commands Manual pic2graph(1)

Name

pic2graph — convert a pic diagram into a cropped image

Synopsis

pic2graph [—unsafe] [-format output-format) [—eqn delimiters] [convert-argument . . .]
pic2graph —help

pic2graph —v
pic2graph ——version

Description

pic2graph reads a pic(1) program from the standard input and writes an image file, by default in Portable
Network Graphics (PNG) format, to the standard output. It furthermore translates egn(1) constructs, so it
can be used for generating images of mathematical formulae.

The input PIC code should not be wrapped with the .PS and .PE/.PF macros that normally guard it within
groff (1) documents.

Arguments not recognized by pic2graph are passed to the ImageMagick or GraphicsMagick program
convert(1l). By specifying these, you can give your image a border, set the image’s pixel density, or per-
form other useful transformations.

The output image is clipped using convert’s —trim option to the smallest possible bounding box that con-
tains all the black pixels.

Options

—-help displays a usage message, while —v and ——version show version information; all exit afterward.

—eqn delimiters
Use delimiters as the opening and closing characters that delimit egn directives; the default is
“$$”. The option argument delimiters should be a two-character string, but an empty string ("") is
accepted as a directive to disable egn processing.

—format output-format
Write the image in output-format, which must be understood by convert; the default is PNG.

—unsafe
Run groff in unsafe mode, enabling the PIC command sh to execute arbitrary Unix shell com-
mands. The groff default is to forbid this.

Environment

GROFF_TMPDIR

TMPDIR

T™P

TEMP These environment variables are searched in the given order to determine the directory where tem-
porary files will be created. If none are set, /tmp is used.

Authors

pic2graph was written by Eric S. Raymond (esr@thyrsus.com), based on a recipe by W. Richard Stevens.

See also

W. Richard Stevens, Turning PIC into HTML {http://www .kohala.com/start/troff/pic2html.html)
eqn2graph(1), grap2graph(1), pic(1), eqn(1), groff (1), convert(1)

groff 1.23.0 5 August 2023 104

preconv(1) General Commands Manual preconv(1)

Name

preconv — prepare files for typesetting with groff

Synopsis

preconv [—dr] [-D fallback-encoding] [—e encoding] | file . . .]

preconv —h
preconv —help

preconv —v
preconv ——version

Description

preconv reads each file, converts its encoded characters to a form froff (1) can interpret, and sends the result
to the standard output stream. Currently, this means that code points in the range 0-127 (in US-ASCII,
ISO 8859, or Unicode) remain as-is and the remainder are converted to the groff special character form
“NuXXXX]", where XXXX is a hexadecimal number of four to six digits corresponding to a Unicode code
point. By default, preconv also inserts a roff .If request at the beginning of each file, identifying it for the
benefit of later processing (including diagnostic messages); the —r option suppresses this behavior.

In typical usage scenarios, preconv need not be run directly; instead it should be invoked with the -k or -K
options of groff. If no file operands are given on the command line, or if file is “~”, the standard input
stream is read.

precony tries to find the input encoding with the following algorithm, stopping at the first success.
1. If the input encoding has been explicitly specified with option —e, use it.

2. If the input starts with a Unicode Byte Order Mark, determine the encoding as UTF-8, UTF-16, or
UTF-32 accordingly.

3. If the input stream is seekable, check the first and second input lines for a recognized GNU Emacs file-
local variable identifying the character encoding, here referred to as the “coding tag” for brevity. If
found, use it.

4. If the input stream is seekable, and if the uchardet library is available on the system, use it to try to in-
fer the encoding of the file.

If the —D option specifies an encoding, use it.

6. Use the encoding specified by the current locale (LC_CTYPE), unless the locale is “C”, “POSIX”, or
empty, in which case assume Latin-1 (ISO 8859-1).

The coding tag and uchardet methods in the above procedure rely upon a seekable input stream; when pre-
cony reads from a pipe, the stream is not seekable, and these detection methods are skipped. If character
encoding detection of your input files is unreliable, arrange for one of the other methods to succeed by us-
ing preconv’s =D or —e options, or by configuring your locale appropriately. groff also supports a
GROFF_ENCODING environment variable, which can be overridden by its —K option. Valid values for
(or parameters to) all of these are enumerated in the lists of recognized coding tags in the next subsection,
and are further influenced by iconv library support.

Coding tags

Text editors that support more than a single character encoding need tags within the input files to mark the
file’s encoding. While it is possible to guess the right input encoding with the help of heuristics that are re-
liable for a preponderance of natural language texts, they are not absolutely reliable. Heuristics can fail on
inputs that are too short or don’t represent a natural language.

Consequently, preconv supports the coding tag convention used by GNU Emacs (with some restrictions).
This notation appears in specially marked regions of an input file designated for “file-local variables”.

preconv interprets the following syntax if it occurs in a roff comment in the first or second line of the input
file. Both “\"” and “‘#” comment forms are recognized, but the control (or no-break control) character must
be the default and must begin the line. Similarly, the escape character must be the default.

—-*— [...;] ecoding: encodingl[; ...] —*-—

groff 1.23.0 5 August 2023 105

preconv(1) General Commands Manual preconv(1)

The only variable precony interprets is “coding”, which can take the values listed below.

The following list comprises all MIME “charset” parameter values recognized, case-insensitively, by pre-
cony.
big5, cpl047, euc—jp, euc—kr, gb2312, is0—8859-1, is0—8859-2, is0—8859-5, is0—8859-7,
150—8859-9, is0—8859-13, 1s0—8859—15, koi8—r, us—ascii, utf—8, utf—16, utf—16be, utf—16le

In addition, the following list of other coding tags is recognized, each of which is mapped to an appropriate

value from the list above.
ascii, chinese—big5, chinese—euc, chinese—iso—8bit, cn—big5, cn—gb, cn—gb—2312, cp878, csascii,
csisolatinl, cyrillic—iso—8bit, cyrillic—koi8, euc—china, euc—cn, euc—japan, euc—japan—1990,
euc—korea, greek—iso—8bit, is0o—10646/utf, iso—10646/utf-8, iso—latin—1, iso—latin—2,
iso—latin—-5, iso—latin—7, iso—latin—9, japanese—euc, japanese—iso—8bit, jis8, koi8, korean—euc,
korean—iso—8bit, latin—0, Ilatinl, latin—1, latin—2, latin-5, latin—7, Ilatin—9, mule—utf-8§,
mule—utf-16, mule—utf-16be, mule—utf—16—be, mule—utf—16be—with—signature, mule—utf—16le,
mule—utf-16—-le, mule—utf—16le—with—signature, utf§, utf—16-be, utf—16—be—with—signature,
utf—16be—with—signature, utf—16-le, utf—16-le—with—signature, utf—16le—with—signature

ELINNTS

Trailing “~dos”, “—unix”, and “—mac” suffixes on coding tags (which indicate the end-of-line convention
used in the file) are disregarded for the purpose of comparison with the above tags.

iconv support
While preconv recognizes all of the coding tags listed above, it is capable on its own of interpreting only
three encodings: Latin-1, code page 1047, and UTF-8. If iconv support is configured at compile time and
available at run time, all others are passed to iconv library functions, which may recognize many additional
encoding strings. The command “preconv —v” discloses whether iconv support is configured.

The use of iconv means that characters in the input that encode invalid code points for that encoding may be
dropped from the output stream or mapped to the Unicode replacement character (U+FFFD). Compare the

following examples using the input “café” (note the “€” with an acute accent), which due to its short length
challenges inference of the encoding used.

printf 'caf\351\n' | LC_ALL=en_US.UTF-8 preconv
printf 'caf\351\n' | preconv -e us-ascii
printf 'caf\351\n' | preconv -e latin-1

The fate of the accented “e” differs in each case. In the first, uchardet fails to detect an encoding (though
the library on your system may behave differently) and preconv falls back to the locale settings, where oc-
tal 351 starts an incomplete UTF-8 sequence and results in the Unicode replacement character. In the sec-
ond, it is not a representable character in the declared input encoding of US-ASCII and is discarded by
iconv. In the last, it is correctly detected and mapped.

Limitations
preconv cannot perform any transformation on input that it cannot see. Examples include files that are in-
terpolated by preprocessors that run subsequently, including soelim(1); files included by troff itself through
“s0” and similar requests; and string definitions passed to troff through its —.d command-line option.

precony assumes that its input uses the default escape character, a backslash \, and writes special character
escape sequences accordingly.

Options
—h and —-help display a usage message, while —v and ——version show version information; all exit after-
ward.
—-d Emit debugging messages to the standard error stream.

=D fallback-encoding
Report fallback-encoding if all detection methods fail.

—e encoding
Skip detection and assume encoding; see groff’s =K option.

groff 1.23.0 5 August 2023 106

preconv(1) General Commands Manual preconv(1)

-r Write files “raw”; do not add .If requests.

See also
groff (1), iconv(3), locale(T)

groff 1.23.0 5 August 2023 107

refer(1)

Name

General Commands Manual refer(1)

refer — process bibliographic references for groff

Synopsis

refer [-bCenPRS] [-a n] [-B field.macro] [-c fields] [-f n] [—i fields] [-k field] [-] range-expression]
[-p database-file] [-s fields] [-t n] [file ...]

refer —help

refer —v
refer ——version

Description

The GNU implementation of refer is part of the groff (1) document formatting system. refer is a troff (1)
preprocessor that prepares bibilographic citations by looking up keywords specified in a roff (7) input docu-
ment, obviating the need to type such annotations, and permitting the citation style in formatted output to
be altered independently and systematically. It copies the contents of each file to the standard output
stream, except that it interprets lines between .[and .] as citations to be translated into groff input, and lines
between .R1 and .R2 as instructions regarding how citations are to be processed. Normally, refer is not ex-
ecuted directly by the user, but invoked by specifying the —R option to groff (1). If no file operands are
given on the command line, or if file is “~”, the standard input stream is read.

Each citation specifies a reference. The citation can specify a reference that is contained in a bibliographic
database by giving a set of keywords that only that reference contains. Alternatively it can specify a refer-
ence by supplying a database record in the citation. A combination of these alternatives is also possible.

For each citation, refer can produce a mark in the text. This mark consists of some label which can be sep-
arated from the text and from other labels in various ways. For each reference it also outputs groff (7) lan-
guage commands that can be used by a macro package to produce a formatted reference for each citation.
The output of refer must therefore be processed using a suitable macro package, such as me, mm, mom, or
ms. The commands to format a citation’s reference can be output immediately after the citation, or the ref-
erences may be accumulated, and the commands output at some later point. If the references are accumu-
lated, then multiple citations of the same reference will produce a single formatted reference.

The interpretation of lines between .R1 and .R2 as prepreocessor commands is a feature of GNU refer.
Documents making use of this feature can still be processed by AT&T refer just by adding the lines

.de R1

.ig R2

to the beginning of the document. This will cause #roff (1) to ignore everything between .R1 and .R2. The
effect of some commands can also be achieved by options. These options are supported mainly for compat-
ibility with AT&T refer. It is usually more convenient to use commands.

refer generates .If requests so that file names and line numbers in messages produced by commands that
read refer output will be correct; it also interprets lines beginning with .If so that file names and line num-
bers in the messages and .If lines that it produces will be accurate even if the input has been preprocessed
by a command such as soelim(1).

Bibliographic databases

The bibliographic database is a text file consisting of records separated by one or more blank lines. Within
each record fields start with a % at the beginning of a line. Each field has a one character name that imme-
diately follows the %. It is best to use only upper and lower case letters for the names of fields. The name
of the field should be followed by exactly one space, and then by the contents of the field. Empty fields are
ignored. The conventional meaning of each field is as follows:

% A The name of an author. If the name contains a suffix such as “Jr.”, it should be separated from the
last name by a comma. There can be multiple occurrences of the %A field. The order is signifi-
cant. Itis a good idea always to supply an %A field or a %Q field.

groff 1.23.0 5 August 2023 108

refer(1)

%B
% C
%D

% E

%G
%1

%J

%K
%L
%N
%0
%P
%Q

%R
%S
%'T
%V
%X

General Commands Manual refer(1)

For an article that is part of a book, the title of the book.
The place (city) of publication.

The date of publication. The year should be specified in full. If the month is specified, the name
rather than the number of the month should be used, but only the first three letters are required. It
is a good idea always to supply a %D field; if the date is unknown, a value such as in press or un-
known can be used.

For an article that is part of a book, the name of an editor of the book. Where the work has editors
and no authors, the names of the editors should be given as %A fields and “, (ed.)” or “, (eds.)”
should be appended to the last author.

U.S. government ordering number.

The publisher (issuer).

For an article in a journal, the name of the journal.

Keywords to be used for searching.

Label.

Journal issue number.

Other information. This is usually printed at the end of the reference.
Page number. A range of pages can be specified as m-n.

The name of the author, if the author is not a person. This will only be used if there are no %A
fields. There can only be one %Q field.

Technical report number.

Series name.

Title. For an article in a book or journal, this should be the title of the article.
Volume number of the journal or book.

Annotation.

For all fields except %A and %E, if there is more than one occurrence of a particular field in a record, only
the last such field will be used.

If accent strings are used, they should follow the character to be accented. This means that an ms document
must call the .AM macro when it initializes. Accent strings should not be quoted: use one \ rather than two.
Accent strings are an obsolescent feature of the me and ms macro packages; modern documents should use
groff special character escape sequences instead; see groff_char(7).

Citations

Citations have a characteristic format.

. [opening-text
flags keywords
fields

.lclosing-text

The opening-text, closing-text, and flags components are optional. Only one of the keywords and fields
components need be specified.

The keywords component says to search the bibliographic databases for a reference that contains all the
words in keywords. It is an error if more than one reference is found.

The fields components specifies additional fields to replace or supplement those specified in the reference.
When references are being accumulated and the keywords component is non-empty, then additional fields
should be specified only on the first occasion that a particular reference is cited, and will apply to all cita-
tions of that reference.

groff 1.23.0

5 August 2023 109

refer(1) General Commands Manual refer(1)

The opening-text and closing-text components specify strings to be used to bracket the label instead of
those in the bracket—label command. If either of these components is non-empty, the strings specified in
the bracket—label command will not be used; this behavior can be altered using the [and] flags. Leading
and trailing spaces are significant for these components.

The flags component is a list of non-alphanumeric characters each of which modifies the treatment of this
particular citation. AT&T refer will treat these flags as part of the keywords and so will ignore them since
they are non-alphanumeric. The following flags are currently recognized.

Use the label specified by the short-label command, instead of that specified by the label com-
mand. If no short label has been specified, the normal label will be used. Typically the short label
is used with author-date labels and consists of only the date and possibly a disambiguating letter;
the “#” is supposed to be suggestive of a numeric type of label.

[Precede opening-text with the first string specified in the bracket-label command.
] Follow closing-text with the second string specified in the bracket—label command.

An advantage of using the [and] flags rather than including the brackets in opening-text and closing-text is
that you can change the style of bracket used in the document just by changing the bracket—label com-
mand. Another is that sorting and merging of citations will not necessarily be inhibited if the flags are
used.

If a label is to be inserted into the text, it will be attached to the line preceding the .[line. If there is no such
line, then an extra line will be inserted before the .[line and a warning will be given.

There is no special notation for making a citation to multiple references. Just use a sequence of citations,
one for each reference. Don’t put anything between the citations. The labels for all the citations will be at-
tached to the line preceding the first citation. The labels may also be sorted or merged. See the description
of the <> label expression, and of the sort—adjacent—labels and abbreviate—label-ranges commands. A
label will not be merged if its citation has a non-empty opening-text or closing-text. However, the labels
for a citation using the] flag and without any closing-text immediately followed by a citation using the [
flag and without any opening-text may be sorted and merged even though the first citation’s opening-text or
the second citation’s closing-text is non-empty. (If you wish to prevent this, use the dummy character es-
cape sequence \& as the first citation’s closing-text.)

Commands
Commands are contained between lines starting with .R1 and .R2. Recognition of these lines can be pre-
vented by the —R option. When a .R1 line is recognized any accumulated references are flushed out. Nei-
ther .R1 nor .R2 lines, nor anything between them, is output.

Commands are separated by newlines or semicolons. A number sign (#) introduces a comment that extends
to the end of the line, but does not conceal the newline. Each command is broken up into words. Words
are separated by spaces or tabs. A word that begins with a (neutral) double quote ('') extends to the next
double quote that is not followed by another double quote. If there is no such double quote, the word ex-
tends to the end of the line. Pairs of double quotes in a word beginning with a double quote collapse to one
double quote. Neither a number sign nor a semicolon is recognized inside double quotes. A line can be
continued by ending it with a backslash “\”’; this works everywhere except after a number sign.

Each command name that is marked with * has an associated negative command no—name that undoes the
effect of name. For example, the no—sort command specifies that references should not be sorted. The
negative commands take no arguments.

In the following description each argument must be a single word; field is used for a single upper or lower
case letter naming a field; fields is used for a sequence of such letters; m and n are used for a non-negative
numbers; string is used for an arbitrary string; file is used for the name of a file.

abbreviate* fields stringl string?2 string3 string4
Abbreviate the first names of fields. An initial letter will be separated from another initial letter
by stringl, from the last name by string2, and from anything else (such as “von” or “de”) by
string3. These default to a period followed by a space. In a hyphenated first name, the initial of
the first part of the name will be separated from the hyphen by string4; this defaults to a period.

groff 1.23.0 5 August 2023 110

refer(1) General Commands Manual refer(1)

No attempt is made to handle any ambiguities that might result from abbreviation. Names are ab-
breviated before sorting and before label construction.

abbreviate—label-ranges™ string
Three or more adjacent labels that refer to consecutive references will be abbreviated to a label
consisting of the first label, followed by string, followed by the last label. This is mainly useful
with numeric labels. If string is omitted, it defaults to “-".

accumulate*
Accumulate references instead of writing out each reference as it is encountered. Accumulated
references will be written out whenever a reference of the form
-
SLISTS
-1

is encountered, after all input files have been processed, and whenever a .R1 line is recognized.

annotate* field string
field is an annotation; print it at the end of the reference as a paragraph preceded by the line

String

If string is omitted, it will default to AP; if field is also omitted it will default to X. Only one field
can be an annotation.

articles string . ..
Each string is a definite or indefinite article, and should be ignored at the beginning of T fields

[T I3

when sorting. Initially, “a”, “an”, and “the” are recognized as articles.

bibliography file ...
Write out all the references contained in each bibliographic database file. This command should
come last in an .R1/.R2 block.

bracket—label stringl string2 string3
In the text, bracket each label with stringl and string2. An occurrence of string2 immediately fol-
lowed by stringl will be turned into string3. The default behavior is as follows.
bracket-label *([. *(.] ", "

capitalize fields
Convert fields to caps and small caps.

compatible*
Recognize .R1 and .R2 even when followed by a character other than space or newline.

database file . ..
Search each bibliographic database file. For each file, if an index file.i created by indxbib(1) ex-
ists, then it will be searched instead; each index can cover multiple databases.

date—as—label* string
string is a label expression that specifies a string with which to replace the D field after construct-
ing the label. See subsection “Label expressions” below for a description of label expressions.
This command is useful if you do not want explicit labels in the reference list, but instead want to
handle any necessary disambiguation by qualifying the date in some way. The label used in the
text would typically be some combination of the author and date. In most cases you should also
use the no-label-in—reference command. For example,
date—-as-label D.+yD.y%a*D.-y
would attach a disambiguating letter to the year part of the D field in the reference.

default—database*
The default database should be searched. This is the default behavior, so the negative version of
this command is more useful. refer determines whether the default database should be searched
on the first occasion that it needs to do a search. Thus a no—default—database command must be
given before then, in order to be effective.

groff 1.23.0 5 August 2023 111

refer(1) General Commands Manual refer(1)

discard* fields
When the reference is read, fields should be discarded; no string definitions for fields will be out-
put. Initially, fields are XYZ.

et—al* string mn
Control use of et al. in the evaluation of @ expressions in label expressions. If the number of au-
thors needed to make the author sequence unambiguous is u and the total number of authors is ¢
then the last 7 —u authors will be replaced by string provided that # —u is not less than m and ¢ is
not less than n. The default behavior is as follows.
et-al " et al" 2 3

Note the absence of a dot from the end of the abbreviation, which is arguably not correct. (Ef all.]
is short for et alli, as etc. is short for et cetera.)

include file
Include file and interpret the contents as commands.

join—authors stringl string2 string3
Join multiple authors together with strings. When there are exactly two authors, they will be
joined with stringl. When there are more than two authors, all but the last two will be joined with
string2, and the last two authors will be joined with string3. If string3 is omitted, it will default to
stringl; if string2 is also omitted it will also default to stringl. For example,
join-authors " and " ", " ", and "
will restore the default method for joining authors.

label-in—reference*
When outputting the reference, define the string [F to be the reference’s label. This is the default
behavior, so the negative version of this command is more useful.

label-in—text*
For each reference output a label in the text. The label will be separated from the surrounding text
as described in the bracket—label command. This is the default behavior, so the negative version
of this command is more useful.

label string
string is a label expression describing how to label each reference.

separate—label-second—parts string
When merging two-part labels, separate the second part of the second label from the first label
with string. See the description of the <> label expression.

move—punctuation*
In the text, move any punctuation at the end of line past the label. It is usually a good idea to give
this command unless you are using superscripted numbers as labels.

reverse* string
Reverse the fields whose names are in string. Each field name can be followed by a number which
says how many such fields should be reversed. If no number is given for a field, all such fields will
be reversed.

search—ignore* fields
While searching for keys in databases for which no index exists, ignore the contents of fields. Ini-
tially, fields XYZ are ignored.

search—truncate* n
Only require the first n characters of keys to be given. In effect when searching for a given key
words in the database are truncated to the maximum of # and the length of the key. Initially, n
is 6.

short-label* string
string is a label expression that specifies an alternative (usually shorter) style of label. This is used
when the # flag is given in the citation. When using author-date style labels, the identity of the au-
thor or authors is sometimes clear from the context, and so it may be desirable to omit the author

groff 1.23.0 5 August 2023 112

refer(1)

General Commands Manual refer(1)

or authors from the label. The short-label command will typically be used to specify a label con-
taining just a date and possibly a disambiguating letter.

sort* string

Sort references according to string. References will automatically be accumulated. string should
be a list of field names, each followed by a number, indicating how many fields with the name
should be used for sorting. “+” can be used to indicate that all the fields with the name should be
used. Also . can be used to indicate the references should be sorted using the (tentative) label.
(Subsection “Label expressions” below describes the concept of a tentative label.)

sort—adjacent—labels*

Sort labels that are adjacent in the text according to their position in the reference list. This com-
mand should usually be given if the abbreviate—label-ranges command has been given, or if the
label expression contains a <> expression. This will have no effect unless references are being ac-
cumulated.

Label expressions
Label expressions can be evaluated both normally and tentatively. The result of normal evaluation is used
for output. The result of tentative evaluation, called the fentative label, is used to gather the information
that normal evaluation needs to disambiguate the label. Label expressions specified by the date—as—label
and short-label commands are not evaluated tentatively. Normal and tentative evaluation are the same for
all types of expression other than @, *, and % expressions. The description below applies to normal evalu-
ation, except where otherwise specified.

field
fieldn

'string'

@

% n
% a
%0 A
%01
%1

expr*

expr+n
expr—n

groff 1.23.0

The n-th part of field. If n is omitted, it defaults to 1.
The characters in string literally.

All the authors joined as specified by the join—authors command. The whole of each author’s
name will be used. However, if the references are sorted by author (that is, the sort specification
starts with “A+”), then authors’ last names will be used instead, provided that this does not intro-
duce ambiguity, and also an initial subsequence of the authors may be used instead of all the au-
thors, again provided that this does not introduce ambiguity. The use of only the last name for the
i-th author of some reference is considered to be ambiguous if there is some other reference, such
that the first i — 1 authors of the references are the same, the i-th authors are not the same, but the i-
th authors last names are the same. A proper initial subsequence of the sequence of authors for
some reference is considered to be ambiguous if there is a reference with some other sequence of
authors which also has that subsequence as a proper initial subsequence. When an initial subse-
quence of authors is used, the remaining authors are replaced by the string specified by the et—al
command; this command may also specify additional requirements that must be met before an ini-
tial subsequence can be used. @ tentatively evaluates to a canonical representation of the authors,
such that authors that compare equally for sorting purpose will have the same representation.

The serial number of the reference formatted according to the character following the %. The ser-
ial number of a reference is 1 plus the number of earlier references with same tentative label as
this reference. These expressions tentatively evaluate to an empty string.

If there is another reference with the same tentative label as this reference, then expr, otherwise an
empty string. It tentatively evaluates to an empty string.

The first (+) or last (=) n upper or lower case letters or digits of expr. roff special characters (such
as \('a) count as a single letter. Accent strings are retained but do not count towards the total.

5 August 2023 113

refer(1)

General Commands Manual refer(1)

expr.l expr converted to lowercase.

expraa expr converted to uppercase.

expr.c expr converted to caps and small caps.
expr.r expr reversed so that the last name is first.

expr.a expr with first names abbreviated. Fields specified in the abbreviate command are abbreviated
before any labels are evaluated. Thus .a is useful only when you want a field to be abbreviated in
a label but not in a reference.

expr.y The year part of expr.

expr.ty
The part of expr before the year, or the whole of expr if it does not contain a year.

expr.=y
The part of expr after the year, or an empty string if expr does not contain a year.

expr.n The last name part of expr.

exprl~expr2
exprl except that if the last character of expr! is — then it will be replaced by expr2.

exprl expr2
The concatenation of exprl and expr2.

exprl|expr2
If exprl is non-empty then exprl otherwise expr2.

exprl &expr2
If exprl is non-empty then expr2 otherwise an empty string.

expri?expr2:expr3
If exprl is non-empty then expr2 otherwise expr3.

<expr> The label is in two parts, which are separated by expr. Two adjacent two-part labels which have
the same first part will be merged by appending the second part of the second label onto the first
label separated by the string specified in the separate—label-second—parts command (initially, a
comma followed by a space); the resulting label will also be a two-part label with the same first
part as before merging, and so additional labels can be merged into it. It is permissible for the first
part to be empty; this may be desirable for expressions used in the short-label command.

(expr) The same as expr. Used for grouping.

The above expressions are listed in order of precedence (highest first); & and | have the same precedence.

Macro interface

Each reference starts with a call to the macro]-. The string [F will be defined to be the label for this refer-
ence, unless the no—label-in—reference command has been given. There then follows a series of string de-
finitions, one for each field: string [X corresponds to field X. The register [P is set to 1 if the P field con-
tains a range of pages. The [T, [A and [O registers are set to 1 according as the T, A and O fields end with
any of .?! (an end-of-sentence character). The [E register will be set to 1 if the [E string contains more than
one name. The reference is followed by a call to the][macro. The first argument to this macro gives a
number representing the type of the reference. If a reference contains a J field, it will be classified as
type 1, otherwise if it contains a B field, it will be type 3, otherwise if it contains a G or R field it will be
type 4, otherwise if it contains an I field it will be type 2, otherwise it will be type 0. The second argument
is a symbolic name for the type: other, journal-article, book, article—in—book, or tech—report. Groups
of references that have been accumulated or are produced by the bibliography command are preceded by a
call to the]< macro and followed by a call to the]> macro.

groff 1.23.0 5 August 2023 114

refer(1)

General Commands Manual refer(1)

Options

—-help displays a usage message, while —v and ——version show version information; all exit afterward.
-R Don’t recognize lines beginning with .R1/.R2.

Other options are equivalent to refer commands.

-an reverse An

-b no-label-in—text; no—label-in—reference
-B See below.

—c fields capitalize fields

-C compatible

—-e accumulate

—fn label %n

—i fields search—ignore fields

-k label L~%a

-k field label field~%a

-1 label A.nD.y%a

-1m label A.n+mD.y%a

-1,n label A.nD.y—n%a

-1 myn label A.n+mD.y—n%a

-n no—default—database

—p db-file database db-file

-P move—punctuation

—S spec sort spec

-S label ""(A.n|Q) ', ' (D.y|D)"; bracket-label " ("') "; "'
-tn search—truncate n

The B option has command equivalents with the addition that the file names specified on the command line
are processed as if they were arguments to the bibliography command instead of in the normal way.

-B annotate X AP; no-label-in—reference

-B field.macro annotate field macro; no-label-in—reference

Environment

Files

Bugs

REFER
If set, overrides the default database.

Jusr/dict/papers/Ind
Default database.

file.i Index files.

/usr/share/groff/1.23.0/tmac/refer.tmac
defines macros and strings facilitating integration with macro packages that wish to support refer.

refer uses temporary files. See the groff (1) man page for details of where such files are created.

In label expressions, <> expressions are ignored inside .char expressions.

groff 1.23.0 5 August 2023 115

refer(1) General Commands Manual refer(1)

Examples
We can illustrate the operation of refer with a sample bibliographic database containing one entry and a
simple roff document to cite that entry.

$ cat > my-db-file

%A Daniel P.\& Friedman

%$A Matthias Felleisen

%$C Cambridge, Massachusetts

$D 1996

%I The MIT Press

%T The Little Schemer, Fourth Edition
$ refer -p my-db-file

Read the book

-0

friedman

-1

on your summer vacation.

<Control+D>

J1f 1 -

Read the book* ([.1*(.]

.ds [F 1

1=

.ds [A Daniel P. Friedman and Matthias Felleisen
.ds [C Cambridge, Massachusetts

.ds [D 1996

.ds [I The MIT Press

.ds [T The Little Schemer, Fourth Edition
.nr [T O

.nr [A O

.10 2 book

1f 5 -

on your summer vacation.

The foregoing shows us that refer (a) produces a label “17; (b) brackets that label with interpolations of the
“[.” and “.]” strings; (c) calls a macro “]-"; (d) defines strings and registers containing the label and bibli-
ographic data for the reference; (e) calls a macro “][”’; and (f) uses the If request to restore the line numbers
of the original input. As discussed in subsection “Macro interface” above, it is up to the document or a
macro package to employ and format this information usefully. Let us see how we might turn groff_ms(7)
to this task.

$ REFER=my-db-file groff -R -ms
.LP

Read the book

-

friedman

-1

on your summer vacation.
Commentary is available.*{**}
CFS *{**}

Space reserved for penetrating insight.
.FE

ms’s automatic footnote numbering mechanism is not aware of refer’s label numbering, so we have manu-
ally specified a (superscripted) symbolic footnote for our non-bibliographic aside.

groff 1.23.0 5 August 2023 116

refer(1) General Commands Manual refer(1)

See also
“Some Applications of Inverted Indexes on the Unix System”, by M. E. Lesk, 1978, AT&T Bell Laborato-
ries Computing Science Technical Report No. 69.

indxbib(1), lookbib(1), lkbib(1)

groff 1.23.0 5 August 2023 117

soelim(1) General Commands Manual soelim(1)

Name

soelim — recursively interpolate source requests in roff or other text files
Synopsis

soelim [-Crt] [-I dir] [input-file . . .]

soelim ——help

soelim —v

soelim ——version
Description

GNU soelim is a preprocessor for the groff (7) document formatting system. soelim works as a filter to
eliminate source requests in roff (7) input files; that is, it replaces lines of the form “.so included-file” within
each text input-file with the contents of included-file, recursively. By default, it writes If requests as well to
record the name and line number of each input-file and included-file, so that any diagnostics produced by
later processing can be accurately traced to the original input. Options allow this information to be sup-
pressed (—r) or supplied in TEX comments instead (—t). In the absence of input-file arguments, soelim reads
the standard input stream. Output is written to the standard output stream.

If the name of a macro-file contains a backslash, use \\ or \e to embed it. To embed a space, write “\ ”
(backslash followed by a space). Any other escape sequence in macro-file, including “\[rs]”, prevents
soelim from replacing the source request.

The dot must be at the beginning of a line and must be followed by “so” without intervening spaces or tabs
for soelim to handle it. This convention allows source requests to be “protected” from processing by
soelim, for instance as part of macro definitions or “if”” requests.

There must also be at least one space between “so” and its macro-file argument. The —C option overrides
this requirement.

The foregoing is the limit of soelim’s understanding of the roff language; it does not, for example, replace
the input line

.if 1 .so otherfile
with the contents of otherfile. With its —r option, therefore, soelim can be used to process text files in gen-
eral, to flatten a tree of input documents.

soelim was designed to handle situations where the target of a roff source request requires a preprocessor
such as egn(1), pic(1), refer(1), or tbl(1). The usual processing sequence of groff (1) is as follows.

input sourced
file file

' '

preprocessor —= troff — postprocessor

'

output
file

That is, files sourced with “so” are normally read only by the formatter, troff. soelim is not required for
troff to source files.

If a file to be sourced should also be preprocessed, it must already be read before the input file passes
through the preprocessor. soelim, normally invoked via groff”’s —s option, handles this.

groff 1.23.0 5 August 2023 118

soelim(1) General Commands Manual soelim(1)

input
file

'

soelim — preprocessor — troff —= postprocessor

T '

sourced output
file file
Options
——help displays a usage message, while —v and ——version show version information; all exit afterward.
-C Recognize an input line starting with .so even if a character other than a space or newline follows.

-1 dir Search the directory dir path for input- and included-files. —1 may be specified more than once;
each dir is searched in the given order. To search the current working directory before others, add
“—I.” at the desired place; it is otherwise searched last.

-r Write files “raw”’; do not add If requests.

-t Emit TEX comment lines starting with “%” indicating the current file and line number, rather than
If requests for the same purpose.

If both —r and -t are given, the last one specified controls.

See also
groff (1)

groff 1.23.0 5 August 2023 119

(1)

Name

General Commands Manual tbl(1)

Synopsis

tbl — prepare tables for groff documents
tbl [-C] [file ...]

tbl —help

tbl —v

tbl ——version

Description

The GNU implementation of bl is part of the groff (1) document formatting system. bl is a troff (1) pre-
processor that translates descriptions of tables embedded in roff (7) input files into the language understood
by troff. It copies the contents of each file to the standard output stream, except that lines between .TS and
.TE are interpreted as table descriptions. While GNU ¢b!’s input syntax is highly compatible with AT&T
tbl, the output GNU 1bl produces cannot be processed by AT&T troff ; GNU troff (or a troff implementing
any GNU extensions employed) must be used. Normally, tbl is not executed directly by the user, but in-
voked by specifying the —t option to groff (1). If no file operands are given on the command line, or if file
is “=”, tbl reads the standard input stream.

Overview

tbl expects to find table descriptions between input lines that begin with .TS (table start) and .TE (table
end). Each such rable region encloses one or more table descriptions. Within a table region, table descrip-
tions beyond the first must each be preceded by an input line beginning with .T&. This mechanism does
not start a new table region; all table descriptions are treated as part of their .TS/.TE enclosure, even if they
are boxed or have column headings that repeat on subsequent pages (see below).

(Experienced roff users should observe that th[is not a roff language interpreter: the default control charac-
ter must be used, and no spaces or tabs are permitted between the control character and the macro name.
These tbl input tokens remain as-is in the output, where they become ordinary macro calls. Macro pack-
ages often define TS, T&, and TE macros to handle issues of table placement on the page. b/ produces
groff code to define these macros as empty if their definitions do not exist when the formatter encounters a
table region.)

Each table region may begin with region options, and must contain one or more fable definitions; each table
definition contains a format specification followed by one or more input lines (rows) of entries. These en-
tries comprise the table data.

Region options

The line immediately following the .T'S token may specify region options, keywords that influence the in-
terpretation or rendering of the region as a whole or all table entries within it indiscriminately. They must
be separated by commas, spaces, or tabs. Those that require a parenthesized argument permit spaces and
tabs between the option’s name and the opening parenthesis. Options accumulate and cannot be unset
within a region once declared; if an option that takes a parameter is repeated, the last occurrence controls.
If present, the set of region options must be terminated with a semicolon (3).

Any of the allbox, box, doublebox, frame, and doubleframe region options makes a table “boxed” for the
purpose of later discussion.

allbox Enclose each table entry in a box; implies box.

box Enclose the entire table region in a box. As a GNU extension, the alternative option name frame
is also recognized.

center Center the table region with respect to the current indentation and line length; the default is to left-
align it. As a GNU extension, the alternative option name centre is also recognized.

decimalpoint(c)
Recognize character ¢ as the decimal separator in columns using the N (numeric) classifier (see
subsection “Column classifiers” below). This is a GNU extension.

groff 1.23.0 5 August 2023 120

(1)

General Commands Manual tbl(1)

delim(xy)
Recognize characters x and y as start and end delimiters, respectively, for egn(1) input, and ignore
input between them. x and y need not be distinct.

doublebox
Enclose the entire table region in a double box; implies box. As a GNU extension, the alternative
option name doubleframe is also recognized.

expand
Spread the table horizontally to fill the available space (line length minus indentation) by increas-
ing column separation. Ordinarily, a table is made only as wide as necessary to accommodate the
widths of its entries and its column separations (whether specified or default). When expand ap-
plies to a table that exceeds the available horizontal space, column separation is reduced as far as
necessary (even to zero). tbl produces groff input that issues a diagnostic if such compression oc-
curs. The column modifier x (see below) overrides this option.

linesize(n)
Draw lines or rules (e.g., from box) with a thickness of n points. The default is the current type
size when the region begins. This option is ignored on terminal devices.

nokeep Don’t use roff diversions to manage page breaks. Normally, bl employs them to avoid breaking a
page within a table row. This usage can sometimes interact badly with macro packages’ own use
of diversions—when footnotes, for example, are employed. This is a GNU extension.

nospaces
Ignore leading and trailing spaces in table entries. This is a GNU extension.

nowarn
Suppress diagnostic messages produced at document formatting time when the line or page
lengths are inadequate to contain a table row. This is a GNU extension.

tab(c) Use the character c instead of a tab to separate entries in a row of table data.

Table format specification

The table format specification is mandatory: it determines the number of columns in the table and directs
how the entries within it are to be typeset. The format specification is a series of column descriptors. Each
descriptor encodes a classifier followed by zero or more modifiers. Classifiers are letters (recognized case-
insensitively) or punctuation symbols; modifiers consist of or begin with letters or numerals. Spaces, tabs,
newlines, and commas separate descriptors. Newlines and commas are special; they apply the descriptors
following them to a subsequent row of the table. (This enables column headings to be centered or embold-
ened while the table entries for the data are not, for instance.) We term the resulting group of column de-
scriptors a row definition. Within a row definition, separation between column descriptors (by spaces or
tabs) is often optional; only some modifiers, described below, make separation necessary.

Each column descriptor begins with a mandatory classifier, a character that selects from one of several
arrangements. Some determine the positioning of table entries within a rectangular cell: centered, left-
aligned, numeric (aligned to a configurable decimal separator), and so on. Others perform special opera-
tions like drawing lines or spanning entries from adjacent cells in the table. Except for “|”, any classifier
can be followed by one or more modifiers; some of these accept an argument, which in GNU #bl can be
parenthesized. Modifiers select fonts, set the type size, and perform other tasks described below.

The format specification can occupy multiple input lines, but must conclude with a dot “.” followed by a
newline. Each row definition is applied in turn to one row of the table. The last row definition is applied to
rows of table data in excess of the row definitions.

For clarity in this document’s examples, we shall write classifiers in uppercase and modifiers in lowercase.
Thus, “CbCb,LR.” defines two rows of two columns. The first row’s entries are centered and boldfaced;
the second and any further rows’ first and second columns are left- and right-aligned, respectively.

The row definition with the most column descriptors determines the number of columns in the table; any
row definition with fewer is implicitly extended on the right-hand side with L classifiers as many times as
necessary to make the table rectangular.

groff 1.23.0 5 August 2023 121

thl(1) General Commands Manual thi(1)

Column classifiers
The L, R, and C classifiers are the easiest to understand and use.

A a Center longest entry in this column, left-align remaining entries in the column with respect to the
centered entry, then indent all entries by one en. Such “alphabetic” entries (hence the name of the
classifier) can be used in the same column as L-classified entries, as in “LL,AR.”. The A entries
are often termed “sub-columns” due to their indentation.

C,c Center entry within the column.
L,1 Left-align entry within the column.

N,n Numerically align entry in the column. tbl aligns columns of numbers vertically at the units place.
If multiple decimal separators are adjacent to a digit, it uses the rightmost one for vertical align-
ment. If there is no decimal separator, the rightmost digit is used for vertical alignment; otherwise,
tbl centers the entry within the column. The roff dummy character \& in an entry marks the glyph
preceding it (if any) as the units place; if multiple instances occur in the data, the leftmost is used
for alignment.

If N-classified entries share a column with L or R entries, 7bl centers the widest N entry with re-
spect to the widest L or R entry, preserving the alignment of N entries with respect to each other.

The appearance of egn equations within N-classified columns can be troublesome due to the fore-
going textual scan for a decimal separator. Use the delim region option to make bl ignore the
data within egn delimiters for that purpose.

R r Right-align entry within the column.
S,s Span previous entry on the left into this column.
A Span entry in the same column from the previous row into this row.

- Replace table entry with a horizontal rule. An empty table entry is expected to correspond to this
classifier; if data are found there, tb/ issues a diagnostic message.

= Replace table entry with a double horizontal rule. An empty table entry is expected to correspond
to this classifier; if data are found there, bl issues a diagnostic message.

Place a vertical rule (line) on the corresponding row of the table (if two of these are adjacent, a
double vertical rule). This classifier does not contribute to the column count and no table entries
correspond to it. A | to the left of the first column descriptor or to the right of the last one pro-
duces a vertical rule at the edge of the table; these are redundant (and ignored) in boxed tables.

To change the table format within a b/ region, use the .T& token at the start of a line. It is followed by a
format specification and table data, but not region options. The quantity of columns in a new table format
thus introduced cannot increase relative to the previous table format; in that case, you must end the table re-
gion and start another. If that will not serve because the region uses box options or the columns align in an
undesirable manner, you must design the initial table format specification to include the maximum quantity
of columns required, and use the S horizontal spanning classifier where necessary to achieve the desired
columnar alignment.

Attempting to horizontally span in the first column or vertically span on the first row is an error. Non-rec-
tangular span areas are also not supported.

Column modifiers
Any number of modifiers can follow a column classifier. Arguments to modifiers, where accepted, are
case-sensitive. If the same modifier is applied to a column specifier more than once, or if conflicting modi-
fiers are applied, only the last occurrence has effect. The modifier x is mutually exclusive with e and w, but
e is not mutually exclusive with w; if these are used in combination, x unsets both e and w, while either e or
w overrides X.

groff 1.23.0 5 August 2023 122

(1)

b,B
d,D

e, E

f,F

i1
m, M

p. P

t, T
u, U
v,V

x, X

z,7

groff 1.23.0

General Commands Manual tbl(1)

Typeset entry in boldface, abbreviating f(B).

Align a vertically spanned table entry to the bottom (“down”), instead of the center, of its range.
This is a GNU extension.

Equalize the widths of columns with this modifier. The column with the largest width controls.
This modifier sets the default line length used in a text block.

Select the typeface for the table entry. This modifier must be followed by a font or style name
(one or two characters not starting with a digit), font mounting position (a single digit), or a name
or mounting position of any length in parentheses. The last form is a GNU extension. (The para-
meter corresponds to that accepted by the troff ft request.) A one-character argument not in
parentheses must be separated by one or more spaces or tabs from what follows.

Typeset entry in an oblique or italic face, abbreviating f(I).

Call a groff macro before typesetting a text block (see subsection “Text blocks” below). This is a
GNU extension. This modifier must be followed by a macro name of one or two characters or a
name of any length in parentheses. A one-character macro name not in parentheses must be sepa-
rated by one or more spaces or tabs from what follows. The named macro must be defined before
the table region containing this column modifier is encountered. The macro should contain only
simple groff requests to change text formatting, like adjustment or hyphenation. The macro is
called after the column modifiers b, f, i, p, and v take effect; it can thus override other column
modifiers.

Set the type size for the table entry. This modifier must be followed by an integer n with an op-
tional leading sign. If unsigned, the type size is set to n scaled points. Otherwise, the type size is
incremented or decremented per the sign by #n scaled points. The use of a signed multi-digit num-
ber is a GNU extension. (The parameter corresponds to that accepted by the troff ps request.) If a
type size modifier is followed by a column separation modifier (see below), they must be separated
by at least one space or tab.

Align a vertically spanned table entry to the top, instead of the center, of its range.
Move the column up one half-line, “staggering” the rows. This is a GNU extension.

Set the vertical spacing to be used in a text block. This modifier must be followed by an integer n
with an optional leading sign. If unsigned, the vertical spacing is set to n points. Otherwise, the
vertical spacing is incremented or decremented per the sign by n points. The use of a signed
multi-digit number is a GNU extension. (This parameter corresponds to that accepted by the troff
vs request.) If a vertical