Apache FOP Output Formats

$Revision: 681307 $

by Keiron Liddle, Art Welch
Table of contents

1. GeNEral INFOIMBLION.eiiiiieiie e ettt e st e e s bt e e e e beesateebeeeaseesseesaseenbeesnneensenss 3
I 0 1TSS 3
1.2 Output to @ Printer Or Other DEVICE.........ccui ettt sreennesneens 3

20 I3 USSP 4
20 0 5SS 4
2.2 POSE-PIOCESSINQ. .. eeueeaeetesteete et ittt ee e s et e s bt esbeeb e e it aeeae e e e s e besEeabe e b e e bt e heese e s e s e seareabenbenneenenneas 4
R R AT 0= TS 5

K 0 5o 1 o OSSPSR 5
T B o 1 101U = 1 oo VSRS 5
728 I 0= 1o RS 6

O 6
I S = = 0SSR 7
8 I 1 0= 1o OSSP 7
L @0 o1 {0 U= (o] IO SRR 7
(= 15 0] 8

T S SRR 8
T I (= 1= = 1 =SS 8
3 I 10 1= 4o PSSR 8
SR ol o1 101U = 1 o o FEU SR URTSPRRT 9
Y T TS 0] PSPPSRI 12

LS N 13

A Y I AN == T I == Y TSSOSO 14

S = (V7= 74 0 AN VL S 14

N T SRS 14

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Apache FOP Output Formats

10 BItMap (TIFF/PING)......eiueeiieieiieie ettt sttt sesaesteeseeseeseeseensetessessesseanennennens 14
L0 IR0 g1 {0 0 1o o TSR 14
10.2 TIFF-SPECifiCc CONfIQUIALION........oceeieeie ettt st et be e e sneesre e e 15

R 15 PSSO P PPN 15

12 Output FOrmats in the SANADOX..........ciiriie e 16
25 T 1 ST 16
220V €SSO 16

IV o T ST 16

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Apache FOP Output Formats

FOP supports multiple output formats by using a different renderer for each format. The renderers do
not all have the same set of capabilities, sometimes because of the output format itself, sometimes
because some renderers get more development attention than others.

1. General Information

1.1. Fonts

Most FOP renderers use a FOP-specific system for font registration. However, the Java2D/AWT and
print renderers use the Java AWT package, which gets its font information from the operating system
registration. This can result in severa differences, including actually using different fonts, and having
different font metrics for the same font. The net effect is that the layout of a given FO document can be
quite different between renderers that do not use the same font information.

Theoretically, there's some potential to make the output of the PDF/PS renderers match the output of the
Java2D-based renderers. If FOP used the font metrics from its own font subsystem but still used Java2D
for text painting in the Java2D-based renderers, this could probably be achieved. However, this
approach hasn't been implemented, yet.

With a work-around, it is possible to match the PDF/PS output in a Java2D-based renderer pretty
closely. The clueis to use the intermediate format. The trick is to layout the document using FOP's own
font subsystem but then render the document using Java2D. Here are the necessary steps (using the
command-line):

1. Produceanl|Ffileefop -fo nyfile.fo -at application/pdf nyfile.at.xm
Specifying "application/pdf" for the "-at" parameter causes FOP to use FOP's own font subsystem
(which is used by the PDF renderer). Note that no PDF fileis created in this step.

2. RendertoaPDFfilefop -atin nyfile.at.xm -pdf nyfile. pdf

3. Render to a Java2D-based renderer:

» fop -atin nyfile.at.xm -print
o fop -atin nyfile. at.xm -aw
o fop -atin nyfile.at.xm -tiff nmyfile. tiff

1.2. Output to a Printer or Other Device

The most obvious way to print your document is to use the FOP print renderer, which uses the Java2D
API (AWT). However, you can aso send output from the Postscript renderer directly to a Postscript
device, or output from the PCL renderer directly to a PCL device.

Here are Windows command-line examples for Postscript and PCL:

fop ... -ps \\conputernane\printer
fop ... -pcl \\conputernane\printer

Here is some Java code to accomplish the task in UNIX:

proc = Runtime. get Runtime().exec("lp -d" + print_queue + " -0 -dp -");
out = proc. get Qut put Strean();

intermediate.html
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Apache FOP Output Formats

Set the output MIME type to "application/x-pcl" (MimeConstants.MIME_PCL) and it happily sends the
PCL to the UNIX printer queue.

2. PDF

PDF is the best supported output format. It is also the most accurate with text and layout. This creates a
PDF document that is streamed out as each page is rendered. This means that the internal page index
information is stored near the end of the document. The PDF version supported is 1.4. PDF versions are
forwards/backwards compatible.

Note that FOP does not currently support "tagged PDF" or PDF/A-la. Support for PDF/A-1b and
PDFE/X has recently been added, however.

2.1. Fonts

PDF has a set of fonts that are aways available to all PDF viewers; to quote from the PDF Specification:
"PDF prescribes a set of 14 standard fonts that can be used without prior definition. These include four
faces each of three Latin text typefaces (Courier, Helvetica, and Times), as well as two symbolic fonts
(Symbol and ITC Zapf Dingbats). These fonts, or suitable substitute fonts with the same metrics, are
guaranteed to be available in all PDF viewer applications.”

2.2. Post-processing

FOP does not currently support several desirable PDF features. watermarks and signatures. One
workaround is to use Adobe Acrobat (the full version, not the Reader) to process the file manually or
with scripting that it supports.

Another popular post-processing tool is iText, which has tools for adding security features, document
properties, watermarks, and many other features to PDF files.

i Caveat: iText may swallow PDF bookmarks. But Jens Stavnstrup tells us that this doesn't happen if you use i Text's PDFStamper. |

Here is some sample code that uses iText to encrypt a FOP-generated PDF. (Note that FOP now
supports PDFE encryption. However the principles for using iText for other PDF features are similar.)

publ i c{stati c void main(String args[]) {
try
Byt eAr rayQut put St ream f opout = new Byt eArrayQut put Streamn() ;
Fil eQutput Stream outfile = new Fil eQut put St ream(args[2]);
FopFact ory fopFactory = FopFactory. new nstance();
Fop fop = fopFactory. newFop(M neConst ants. M VE_PDF, fopout);

Transfornmer transfornmer = TransfornmerFactory. new nst ance() . newlr ansf or ner (
new St reanBSour ce(new File(args[1])));

transforner.transfornm new StreanSource(new File(args[0])),
new SAXResul t (f op. get Def aul t Handl er ())) ;

Pdf Reader reader = new Pdf Reader (f opout. toByt eArray());

int n = reader. get Nunmber O Pages() ;

pdfa.html
pdfx.html
http://www.lowagie.com/iText
http://issues.apache.org/bugzilla/show_bug.cgi?id=37589
pdfencryption.html
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Apache FOP Output Formats

Check the iText tutoria and documentation for setting access flags, password, encryption strength and
other parameters.

2.3. Watermarks

In addition to the PDF Post-processing options, consider the following workarounds:

» Use abackground image for the body region.

o (submitted by Trevor Campbell) Place an image in aregion that overlaps the flowing text. For
example, make region-before large enough to contain your image. Then include a block (if
necessary, use an absolutely positioned block-container) containing the watermark image in the
static-content for the region-before. Note that the image will be drawn on top of the normal content.

3. PostScript

The PostScript renderer has been brought up to a similar quality as the PDF renderer, but may still be
missing certain features. It provides good support for most text and layout. Images and SVG are not
fully supported, yet. Currently, the PostScript renderer generates PostScript Level 3 with most DSC
comments. Actualy, the only Level 3 features used are the FlateDecode and DCTDecode filter (the
latter isused for 1:1 embedding of JPEG images), everything elseis Level 2.

3.1. Configuration

The PostScript renderer configuration currently allows the following settings:

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Apache FOP Output Formats

<renderer m ne="application/postscript">
<aut o- r ot at e- | andscape>f al se</ aut o-r ot at e-| andscape>
<l anguage- | evel >3</| anguage- | evel >
<opti m ze-resour ces>fal se</ opti m ze-resour ces>
<saf e- set - page- devi ce>f al se</ saf e- set - page- devi ce>
<dsc- conpl | ant >t r ue</ dsc- conpl i ant >
</ renderer>
The default value for the "auto-rotate-landscape” setting is "false”. Setting it to "true” will automatically

rotate landscape pages and will mark them as landscape.

The default value for the "language-level" setting is "3". This setting specifies the PostScript language
level which should be used by FOP. Set thisto "2" only if you don't have aLevel 3 capable interpreter.

The default value for the "optimize-resources’ setting is "false". Setting it to "true" will produce the
PostScript file in two steps. A temporary file will be written first which will then be processed to add
only the fonts which were really used and images are added to the stream only once as PostScript forms.
Thiswill reduce file size but can potentially increase the memory needed in the interpreter to process.

The default value for the "safe-set-page-device" setting is "false”. Setting it to "true” will cause the
renderer to invoke a postscript macro which guards against the possibility of invalid/unsupported
postscript key/values being issued to the implementing postscript page device.

The default value for the "dsc-compliant” setting is "true". Setting it to "false" will break DSC
compliance by minimizing the number of setpagedevice calls in the postscript document output. This
feature may be useful when unwanted blank pages are experienced in your postscript output. This
problem is caused by the particular postscript implementation issuing unwanted postscript subsystem
initgraphics/erasepage calls on each setpagedevice call.

3.2. Limitations

« Imagesand SVG may not be displayed correctly. SV G support is far from being complete. No image
transparency is available.

e Only Type 1 fonts are supported.

« Multibyte characters are not supported.

« PPD support is still missing.

4. PCL

This format is for the Hewlett-Packard PCL printers and other printers supporting PCL. It should
produce output as close to identical as possible to the printed output of the PDFRenderer within the
limitations of the renderer, and output device.

The output created by the PCLRenderer is generic PCL 5, HP GL/2 and PJL. This should allow any
device fully supporting PCL 5 to be able to print the output generated by the PCLRenderer. PJL is used
to control the print job and switch to the PCL language. PCL 5 is used for text, raster graphics and
rectangular fill graphics. HP GL/2 is used for more complex painting operations. Certain painting
operations are done off-screen and rendered to PCL as bitmaps because of limitationsin PCL 5.

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Apache FOP Output Formats

4.1. References

o WikiPediaentry on PCL
o Technical reference documents on PCL from Hewlett-Packard

4.2. Limitations

« Text or graphics outside the left or top of the printable area are not rendered properly. Thisisa
limitation of PCL, not FOP. In general, things that should print to the left of the printable area are
shifted to the right so that they start at the left edge of the printable area.

« The Helveticaand Times fonts are not well supported among PCL printers so Helveticais mapped to
Aria and Timesis mapped to Times New. Thisis done in the PCLRenderer, no changes are required
in the FO's. The metrics and appearance for Helvetica/Arial and Times/Times New are nearly
identical, so this has not been a problem so far.

« For the non-symbol fonts, the SO 8859-1 symbol set isused (PCL set "ON").

« All fonts available to the Java2D subsystem are usable. The texts are painted as bitmap much like the
Windows PCL drivers do.

« Multibyte characters are not supported.

« At the moment, only monochrome output is supported. PCL5c color extensions will only be
implemented on demand. Color and grayscale images are converted to monochrome bitmaps (1-bit).
Dithering only occursif the JAI image library is available.

« Images are scaled up to the next resolution level supported by PCL (75, 100, 150, 200, 300, 600 dpi).
For color and grayscale images an even higher PCL resolution is selected to give the dithering
algorithm a chance to improve the bitmap quality.

« Currently, there's no support for clipping and image transparency, largely because PCL 5 has certain
l[imitations.

4.3. Configuration

The PCL renderer configuration currently allows the following settings:

<renderer m me="application/vnd. hp- PCL">

<r enderi ng>qual i t y</renderi ng>

<t ext -renderi ng>bi t map</t ext-renderi ng>

<di sabl e- pj | >f al se</ di sabl e-pj | >
</ renderer >
The default value for the "rendering" setting is "speed" which causes borders to be painted as plain
rectangles. In this mode, no specia borders (dotted, dashed etc.) are available. If you want support for
all border modes, set the value to "quality” as indicated above. This will cause the borders to be painted

as bitmaps.

The default value for the "text-rendering” setting is "auto” which paints the base fonts using PCL fonts.
Non-base fonts are painted as bitmaps through Java2D. If the mix of painting methods results in
unwel come output, you can set this to "bitmap" which causes all text to be rendered as bitmaps.

The default value for the "disable-pjl" setting is "false”. This means that the PCL renderer usually
generates PJL commands before and after the document in order to switch a printer into PCL language.

http://en.wikipedia.org/wiki/Printer_Control_Language
http://h20000.www2.hp.com/bizsupport/TechSupport/Document.jsp?objectID=bpl04568
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Apache FOP Output Formats

PJL commands can be disabled if you set thisvaueto "true".

You can control the output resolution for the PCL using the "target resolution” setting on the
FOUserAgent. The actual value will be rounded up to the next supported PCL resolution. Currently,
only 300 and 600 dpi are supported which should be enough for most use cases. Note that this setting
directly affects the size of the output file and the print quality.

4.4. Extensions

The PCL Renderer supports some PCL specific extensions which can be embedded into the input FO
document. To use the extensions the appropriate namespace must be declared in the fo:root element like
this:

<fo:root xm ns:fo="http:
tt

[[www. wW3. or g/ 1999/ XSL/ For mat "
xm ns: pcl =" ht /1

p: m gr aphi cs. apache. or g/ f op/ ext ensi ons/ pcl "

4.4.1. Page Sour ce (Tray selection)

The page-source extension attribute on fo:simple-page-master allows to select the paper tray the sheet
for a particular smple-page-master is to be taken from. Example:

<f o: | ayout - mast er - set >
<f o: si npl e- page- mast er mast er - name="si npl e" pcl : paper - sour ce="2">

</ fo: si npl e- page- nast er >
</ fo:l ayout - nast er - set >

Note: the tray number is a positive integer and the value depends on the target printer. Not all PCL
printers support the same paper trays. Usually, "1" isthe default tray, "2" is the manual paper feed, "3" is
the manual envelope feed, "4" is the "lower" tray and "7" is "auto-select”. Consult the technical
reference for your printer for all available values.

5. AFP

} The AFP Renderer is anew addition (27-Apr-2006) to the sandbox and as such not yet fully tested or feature complete. ‘

The FOP AFP Renderer deals with creating documents conforming to the IBM AFP document
architecture also refered to as MO:DCA (Mixed Object Document Content Architecture).

5.1. References

» AFP (Advanced Function Presentation)
e« AFP Resources on the FOP WIKI

5.2. Limitations

http://en.wikipedia.org/wiki/Advanced_Function_Presentation
http://wiki.apache.org/xmlgraphics-fop/AFPResources
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Apache FOP Output Formats

Thislist ismost likely badly incomplete.

« Clipping of text and graphicsis not supported.
« Only IBM outline and raster fonts and to a limited extend the original fonts built into FOP are
supported. Support for TrueType fonts may be added later.

5.3. Configuration

5.3.1. Fonts

The AFP Renderer requires special configuration particularly related to fonts. AFP Render configuration
is done through the normal FOP configuration file. The MIME type for the AFP Renderer is
application/x-afp which means the AFP Renderer section in the FOP configuration file looks like:

There are 3 font configuration variants supported:

1. IBM Raster fonts
2. IBM Outline fonts
3. FOP built-in Basel4 fonts

A typical raster font configuration looks like:

©

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Apache FOP Output Formats

An outline font configuration is simpler as the individual font size entries are not required. However, the
characterset definition is now required within the afp-font element.

Experimentation has shown that the font metrics for the FOP built-in Basel4 fonts are actualy very
similar to some of the IBM outline and raster fonts. In cases were the IBM font files are not available the
path attribute in the afp-font element can be replaced by a basel4-font attribute giving the name of the
matching Basel4 font. In this case the AFP Renderer will take the font metrics from the built-in font.

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Apache FOP Output Formats

5.3.2. Output Resolution

By default the AFP Renderer creates output with a resolution of 240 dpi. This can be overridden by the
<renderer-resolution/> configuration element. Example:

5.3.3. Images

By default the AFP Renderer converts all images to 8 bit grey level. This can be overridden by the
<images> configuration element. Example:

Thiswill put images as RGB images into the AFP output stream. The default setting is:

Only the values "color" and "b+w" are allowed for the mode attribute. The bits-per-pixel attribute is
ignored if modeis"color”. For "b+w" modeis must be 1, 4, or 8.

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Apache FOP Output Formats

5.4. Extensions

The AFP Renderer supports some AFP specific extensions which can be embedded into the input fo
document. To use the extensions the appropriate namespace must be declared in the fo:root element like
this:

<fo:root xmns:fo="http://ww. w3. org/ 1999/ XSL/ For mat "
xm ns: af p="http://xm graphi cs. apache. or g/ f op/ ext ensi ons/ af p" >

5.4.1. Page Overlay Extension

The include-page-overlay extension element allows to define on a per simple-page-master basis a page
overlay resource. Example:

<f o: | ayout - mast er - set >
<f o: si npl e- page- mast er nast er - nane="si npl e" >
<af p: 1 ncl ude- page- over| ay name="OLSAMP1 " />

</f6;sinple-page-naster>
</fo:|ayout - mast er - set >
The mandatory name attribute must refer to an 8 character (space padded) resource name that must be
known in the AFP processing environment.

5.4.2. Page Segment Extension

The include-page-segment extension element alows to define resource substitution for
fo:external-graphics elements. Example:

<fo:root xmns:fo="http://ww. w3. org/ 1999/ XSL/ For nat "
xm ns: af p="htt p: // xm gr aphi cs. apache. or g/ f op/ ext ensi ons/ af p" >
<fo: | ayout - mast er - set >
<f 0: si npl e- page- mast er nast er - nanme="si npl e" >
<af p: i ncl ude- page- segnent nane="S1| SLOGO'
src="../../resources/i mages/ bgi nrg300dpi . j pg" />
<f 0: r egi on- body/ >
</ f o: si npl e- page- nast er >
</ fo:l ayout - nast er - set >
The include-page-segment extension element can only occur within a simple-page-master. Multiple
include-page-segment extension elements within a ssimple-page-master are allowed. The mandatory
name attribute must refer to an 8 character (space padded) resource name that must be known in the AFP
processing environment. The value of the mandatory src attribute is compared against the value of the
src attribute in fo:external-graphic elements and if it is identical (string matching is used) in the

generated AFP the external graphic is replaced by areference to the given resource.

5.4.3. Tag L ogical Element Extension
The tag-logical-element extension element allows to injects TLES into the AFP output stream. Example:

<fo:root xmns:fo="http://ww. w3. org/ 1999/ XSL/ For mat "

12

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Apache FOP Output Formats

xm ns: af p="http://xm graphi cs. apache. or g/ f op/ ext ensi ons/ af p" >
<f o: | ayout - mast er - set >
<f 0: si npl e- page- mast er nast er - name="si npl e" >
<af p: tag-1 ogi cal - el ement nane="The TLE Nanme" val ue="The TLE Val ue" />
<f 0: r egi on- body/ >
</ f o: si npl e- page- mast er >
</fo:layout - mast er - set >
The tag-logical-element extension element can only occur within a simple-page-master. Multiple
tag-logical-element extension elements within a simple-page-master are allowed. The name and value

attributes are mandatory.

5.4.4. No Operation Extension

The no-operation extension provides the ability to carry up to 32K of comments or any other type of
unarchitected datainto the AFP output stream. Example:

<fo:root xmns:fo="http://ww. w3. org/ 1999/ XSL/ For nat "
xm ns: af p="htt p: // xm gr aphi cs. apache. or g/ f op/ ext ensi ons/ af p" >
<f o: | ayout - mast er - set >
<f o: si npl e- page- mast er nast er - nane="si npl e" >
<af p: no-operati on name="My NOP">insert up to 32k of character data
her e! </ af p: no- oper ati on>
</ f o: si npl e- page- nast er >
</ fo:l ayout - nast er - set >
The no-operation extension element can only occur within a simple-page-master. Multiple no-operation

extension elements within a simple-page-master are allowed. The name attribute is mandatory.

6. RTF

JFOR, an open source XSL-FO to RTF converter has been integrated into Apache FOP. Thiswill create
an RTF (rich text format) document that will attempt to contain as much information from the XSL-FO
document as possible. It should be noted that is not possible (due to RTF's limitations) to map all
XSL-FO features to RTF. For complex documents, the RTF output will never reach the feature level
from PDF, for example. Thus, using RTF output is only recommended for simple documents such as
letters.

The RTF output follows Microsoft's RTF specifications and produces best results on Microsoft Word.

RTF output is currently unmaintained and lacks many features compared to other output formats. Using other editable formats like Open
Document Format, instead of producing X SL-FO then RTF through FOP, might give better results.

These are some known restrictions compared to other supported output formats (not a complete list):

« Not supported/implemented:
* Dbreak-before/after (supported by the RTF library but not tied into the RTFHandler)
» fo:page-number-citation-last
» keeps (supported by the RTF library but not tied into the RTFHandler)
* region-start/end (RTF limitation)

13

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Apache FOP Output Formats

* multiple columns

» Only asingle page-master is supported
e Not al variations of fo:leader are supported (RTF limitation)
» percentages are not supported everywhere

7. XML (AreaTree XML)

Thisis primarily for testing and verification. The XML created is simply a representation of the internal
areatree put into XML. We use that to verify the functionality of FOP's layout engine.

The other use case of the Area Tree XML is as FOP's "intermediate format". More information on that
can be found on the page dedicated to the Intermediate Format.

8. Java2D/AWT

The Java2DRenderer provides the basic functionality for all Java2D-based output formats (AWT
viewer, direct print, PNG, TIFF).

The AWT viewer shows a window with the pages displayed inside a Java graphic. It displays one page
at atime. The fonts used for the formatting and viewing depend on the fonts available to your JRE.

9. Print

It is possible to directly print the document from the command line. This is done with the same code that
renders to the Java2D/AWT renderer.

9.1. Known issues

If you run into the problem that the printed output is incomplete on Windows: this often happens to
users printing to a PCL printer. There seems to be an incompatibility between Java and certain PCL
printer drivers on Windows. Since most network-enabled laser printers support PostScript, try switching
to the PostScript printer driver for that printer model.

10. Bitmap (TIFF/PNG)

It is possible to directly create bitmap images from the individual pages generated by the layout engine.
Thisis done with the same code that renders to the Java2D/AWT renderer.

Currently, two output formats are supported: PNG and TIFF. TIFF produces one file with multiple
pages, while PNG output produces one file per page. The quality of the bitmap depends on the target
resolution setting on the FOUserAgent.

10.1. Configuration

14

intermediate.html
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Apache FOP Output Formats

The TIFF and PNG renderer configuration currently allows the following settings:

<renderer m me="i mage/ png" >

<t ranspar ent - page- backgr ound>t r ue</ t r anspar ent - page- backgr ound>

<fonts><!-- described el sewhere --></fonts>
</ renderer >
The default value for the "transparent-page-background™ setting is "false”" which paints an opaque, white
background for the whole image. If you set this to true, no such background will be painted and you will
get atransparent image if an apha channel is available in the output format.

10.2. TIFF-specific Configuration

In addition to the above values the TIFF renderer configuration allows some additional settings:

<renderer m me="i mage/tiff">

<t ranspar ent - page- backgr ound>t r ue</ t r anspar ent - page- backgr ound>

<conpr essi on>CCl TT T. 6</ conpr essi on>

<fonts><!-- described el sewhere --></fonts>
</renderer>
The default value for the "compression” setting is "PackBits" which which is a widely supported RLE
compression scheme for TIFF. The set of compression hames to be used here matches the set that the
Image 1/O API uses. Note that not all compression schemes may be available during runtime. This

depends on the actual codecs being available. Hereisalist of possible values:

NONE (no compression)

PackBits (RLE, run-length encoding)
JPEG

Deflate

LZW

ZLib

CCITT T.4 (Fax Group 3)

CCITT T.6 (Fax Group 4)

If you want to use CCITT compression, please make sure you've got a J2SE 1.4 or later and Java Advanced Imaging Image 1/0 Toals in your
classpath. The Sun JRE doesn't come with a TIFF codec built in, so it has to be added separately. The internal TIFF codec from XML Graphics
Commons only supports PackBits, Deflate and JPEG compression for writing.

11. TXT

The text renderer produces plain ASCII text output that attempts to match the output of the
PDFRenderer as closely as possible. This was originally developed to accommodate an archive system
that could only accept plain text files, and is primarily useful for getting a quick-and-dirty view of the
document text. The renderer isvery limited, so do not be surprised if it gives unsatisfactory results.

The Text renderer works with a fixed size page buffer. The size of this buffer is controlled with the
textCPI and textL Pl public variables. The textCPlI is the effective horizontal characters per inch to use.
The textL Pl is the vertical lines per inch to use. From these values and the page width and height the

15

http://java.sun.com/products/java-media/jai/current.html
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Apache FOP Output Formats

size of the buffer is calculated. The formatting objects to be rendered are then mapped to this grid.
Graphic elements (lines, borders, etc) are assigned a lower priority than text, so text will overwrite any
graphic element representations.

Because FOP lays the text onto a grid during layout, there are frequently extra or missing spaces
between characters and lines, which is generally unsatisfactory. Users have reported that the optimal
settings to avoid such spacing problems are:

o font-family="Courier"

o font-size="7.3pt"

e line-height="10.5pt"

12. Output Formatsin the Sandbox

Due to the state of certain renderers we moved some of them to a"sandbox" area until they are ready for
more serious use. The renderers and FOEventHandlers in the sandbox can be found under src/sandbox
and are compiled into build/fop-sandbox.jar during the main build. The output formats in the sandbox
are marked as such below.

12.1. MIF

} The MIF handler isin the sandbox and not yet functional in FOP Trunk!!! Please help us ressurrect this feature. (

Thisformat isthe Maker Interchange Format which is used by Adobe Framemaker.

12.2. SVG

} The SVG renderer is in the sandbox and may not work as expected in FOP Trunk!!! Please help usimprove this feature. ‘

This format creates an SVG document that has links between the pages. This is primarily for sides and
creating svg images of pages. Large documents will create SV G files that are far too large for an SVG
viewer to handle. Since FO documents usually have text the SV G document will have alarge number of
text elements. The font information for the text is obtained from the JVM in the same way as for the
AWT viewer. If the SVG is viewed on a system where the fonts are different, such as another platform,
then the page may look wrong.

13. Wish list

Apache FOP is easily extensible and alows you to add new output formats to enhance FOP's
functionality. There's a number of output formats which are on our wish list. We're looking for
volunteers to help usimplement them.

16

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Apache FOP Output Formats

e ODF (Open Document Format): The standardized successor to OpenOffice's file format.

17

http://en.wikipedia.org/wiki/OpenDocument
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

	1 General Information
	1.1 Fonts
	1.2 Output to a Printer or Other Device

	2 PDF
	2.1 Fonts
	2.2 Post-processing
	2.3 Watermarks

	3 PostScript
	3.1 Configuration
	3.2 Limitations

	4 PCL
	4.1 References
	4.2 Limitations
	4.3 Configuration
	4.4 Extensions
	4.4.1 Page Source (Tray selection)

	5 AFP
	5.1 References
	5.2 Limitations
	5.3 Configuration
	5.3.1 Fonts
	5.3.2 Output Resolution
	5.3.3 Images

	5.4 Extensions
	5.4.1 Page Overlay Extension
	5.4.2 Page Segment Extension
	5.4.3 Tag Logical Element Extension
	5.4.4 No Operation Extension

	6 RTF
	7 XML (Area Tree XML)
	8 Java2D/AWT
	9 Print
	9.1 Known issues

	10 Bitmap (TIFF/PNG)
	10.1 Configuration
	10.2 TIFF-specific Configuration

	11 TXT
	12 Output Formats in the Sandbox
	12.1 MIF
	12.2 SVG

	13 Wish list

