FOP Design: Embedding FOP in Other
Applications

$Revision: 911792 $

by Keiron Liddle
Table of contents

10100 [8Tox 1 o o AR RPRURPRSN 2
P 1] 00 USSP 2
PO < g o | PO UR PR PPN 2
22 I oo o 1 1o TR 2
20 35 AV T o | OSSR 2
p 20 (= = = 0] 0] 2
2.5 RENAEITNG OPLIONS......iiueeitieieeieseese e s e se et et e e e e e eeesse e seeseesseesseenseaseesseensesseessennseaneesseensens 2
2.6 RENAET RESUITS.....c.eeeiieiieciieie ettt et te e e s se e seentesseesseensesseesseensesseessennsenneennnnnsens 3
P2 S 111 070 1L o PP PRSP RS PRPTPRPPPRN 3

T O 1 1< £ 3

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

FOP Design: Embedding FOP in Other Applications

1. Introduction

Thisisthe design for the external interface when FOP is to be embedded inside another java application.

Common places where FOP is embedded is in a report production application of a server side
application such as Cocoon.

2. Settings

2.1. User Agent

Possible meanings for a user agent:

« something that makes decisions where the specifiction indicates that the user agent should decide

« FOP asthe user agent, represented by a class that handles various setup and decision values

» anclassthat handles context for a particular FOP conversion that can be configured/overridden when
embedding

The user agent is responsible for supplying user or context specific information. The list of user agent
values can be found on the User Agent page.

2.2. Logging

» logging level

» logging messages of various levels

e error handling

» Logging setup (LogKit, Log4Jd, JDK 14L ogging)

2.3. XML input

« various ways to supply FOP with the xd:fo file, fo, xml+xsl
e sax handler

2.4. general options

e baseurl
e uri resolvers
« which implementation of a particular LayoutManager to use

2.5. Rendering Options
« embedding fonts

e compression in pdf
e image embedding

http://xml.apache.org/cocoon/index.html
useragent.html
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

FOP Design: Embedding FOP in Other Applications

for the PS renderer (eventualy):

» PostScript Level
e PPDtouse
« binary/ascii switch

2.6. Render Results

Generate Output statistics from FOP:

e Number of pagestota

» Number of pages of each page-sequence

» page-master used for each page (could be used to control the paper bin to get paper from, important
for me in conjunction with PS Renderer)

» recoverable errors such as overflow

2.7. Setting Up

The Driver handles the XML input. The user agent information is through the FOUserAgent. Handle
logging through the user agent. Options could also be handled through the user agent, using mime type
selection for renderer options.

2.8. Others

Render to more than one renderer at once (maybe not from the command line). For example you could
generate a PDF for the archive and the PS for the printer in one run. It would probably be faster than
converting the PDF to PostScript afterwards. Make the fo tree reuseable. If the fonts are the same then
use the same area tree to output to different renderers.

Several code pieces for resolving URLs and/or file locations are scattered all over FOP and Batik. These
should be replaced with an URIResolver invocation to unify behaviour and remove redundancies.

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

	1 Introduction
	2 Settings
	2.1 User Agent
	2.2 Logging
	2.3 XML input
	2.4 general options
	2.5 Rendering Options
	2.6 Render Results
	2.7 Setting Up
	2.8 Others

