Servlets

How to use Apache FOP in a Servlet
$Revision: 632784 $

Table of contents

L OVEIVIBW. ...ttt et s e e b s bt bt e b e e Rt e s e e e b e e e e b e A E e e Rt e bt e Rt e Rt e n e et e b e benbeebenReeneeneeneas 2
2 Example Servletsin the FOP diStriDULION...........occoiiiiiieeeeeeeee e e 2
3 Create YOUN OWN SEIVIEL..... .o bbbttt e bbb ne b nneas 2
LA MINIMEI SEIVIEL. ...ttt e ee s ae e sae e tesse e beentesnee e 2
3.2 Adding XSL tranformation (XSLT)....cceeiueiieiicie ettt sne b ere s 3
3.3 CUSLOM CONFIGUIALION.c.ueeieeieceeeste ettt ettt et e e ae et e e e e teesaesseesseensesseesseensesseensennnens 4
3.4 IMProVING PEITOMMIBICE.ccueeie e et ce sttt e et e et e e s te e e e s e e seeseesseesseensesneenseensesneennen 4
3.5 Accessing resources in your Web appliCatiON...........oiererieieiene e 4
4 Notes on MicCrosoft INTEIMNEL EXPIOTEN........coi i 5
B SEIVIEL ENQINES......oceiiiie ettt ettt et a e et e e s b e et e e s ae e eateesbeeeaseesseeenseesbeeenseenreeenneenns 5
S 0 1[0 TP O PRSPPI 5
B.2 WEDSPNENE 3.5ttt sttt ettt e s re et e et e e a e e te et e eae e teenaeene e teeneenreenneaneens 6

6 HanNdliNg COMPIEX USE CASES........couieeeiiieiieeiestees e eeesteesteee s e teeaesreesteeeesseesseeseesseesseensesseenseensesnennrn 6

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Servlets

1. Overview

This page discusses topic all around using Apache FOP in a servlet environment.

2. Example Servletsin the FOP distribution

In the directory {fop-dir}/src/javalorg/apache/fop/serviet, you'll find a working example of a
FOP-enabled servlet.

The servlet is automatically built when you build Apache FOP using the supplied Ant script. After
building the servlet, drop fop.war into the webapps directory of Apache Tomcat (or any other web
container). Then, you can use URLs like the following to generate PDF files:

http://local host:8080/fop/f op?fo=/home/path/to/fofile.fo
http://local host:8080/f op/fop?xml=/home/path/to/xmifile.xml & xsl=/home/path/to/xdlfile.xdl

The source code for the servlet can be found under
{fop-dir}/srcl/javalorg/apachelfop/serviet/FopServiet.java.

This example servlet should not be used on a public web server connected to the Internet as it does not contain any measures to prevent
Denial-of-Service-Attacks. It is provided as an example and as a starting point for your own servlet.

3. Create your own Servlet

} This section assumes you are familiar with embedding FOP. ‘

3.1. A minimal Servlet

Hereisaminimal code snippet to demonstrate the basics:

private FopFactory fopFactory = FopFactory. new nstance();
private TransfornmerFactory tFactory = TransfornerFactory. newl nst ance();

public void doGet(HttpServl et Request request,
{ Ht t pSer vl et Response response) throws Servl et Exception {
try
response. set Cont ent Type("appl i cati on/ pdf");
Fop fop = fopFactory. newFop(M nmeConst ants. M ME_PDF,
response. get Qut put Strean()) ;
Transfornmer transfornmer = tFactory. newTr ansforner();
Source src new St r eanSour ce("foo. fo"
Result res new SAXResul t (f op. get Def aul t Handl er 0));
transformer.transform(src, res);
} catch (Exception ex) {

embedding.html
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Servlets

i There are numerous problems with the code snippet above. Its purpose is only to demonstrate the basic concepts. See below for detalls. |

3.2. Adding XSL tranformation (XSLT)

A common requirement is to transform an XML source to XSL-FO using an XSL transformation. It is
recommended to use JAXP for this task. The following snippet shows the basic code:

Buffering the generated PDF in a ByteArrayOutputStream is done to avoid potential problems with the Acrobat Reader Plug-in in Microsoft
Internet Explorer.

The Sour ce instance used above is simply an example. If you have to read the XML from a string,
supply anew St r eanSour ce(new Stri ngReader (xm string)) . Constructing and reparsing
an XML string is generally less desirable than using a SAXSource if you generate your XML. You can
alternatively supply a DOM Source as well. Y ou may also use dynamically generated XSL if you like.

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Servlets

Because you have an explicit Tr ansf or mer object, you can also use it to explicitely set parameters
for the transformation run.

3.3. Custom configuration

You can easily set up your own FOUserAgent as demonstrated on the Embedding page.

3.4. Improving performance

There are severa options to consider:

« Instead of java.io.ByteArrayOutputStream consider using the ByteArrayOutputStream
implementation from the Jakarta Commons 1O project which allocates less memory. The full class
nameis: or g. apache. commons. i 0. out put . Byt eArrayQut put St r eam

« Incertain casesit can help to write the generated PDF to atemporary file so you can quickly reuse
thefile. Thisis especially useful, if Internet Explorer calls the servliet multiple times with the same
request or if you often generate equal PDFs.

Of course, the performance hints from the Embedding page apply here, too.

3.5. Accessing resour cesin your web application

Often, you will want to use resources (stylesheets, images etc.) which are bundled with your web
application. FOP provides a URIResolver implementation that lets you access files via the Servlet's
ServletContext. The class is caled
or g. apache. f op. servl et. Servl et Cont ext URI Resol ver.

Here's how to set it up in your servlet. Instantiate a new instance in the servlet's init() method:

/** URI Resol ver for use by this servlet */
prot ect ed URI Resol ver uri Resol ver;

public void init() throws ServletException {
this.uri Resol ver = new Servl et Cont ext URI Resol ver (get Ser vl et Cont ext ());

[..]

The ServletContextURIResolver reacts on URIs beginning with "servlet-context:". If you want to access
an image in a subdirectory of your web application, you could, for example, use
"servlet-context:/images/myimage.png”. Don't forget the leading slash after the colon!

Further down, you can use the URIResolver for various things:

« With the Transformer (JAXP/XSLT) so things like document() functions can resolver
"servlet-context:" URIs.

« With the FopFactory so every resource FOP |oads can be loaded using a " servlet-context:" URI.

* You can the ServletContextURIResolver yourself in your servlet code to access stylesheets or XML
files bundled with your web application.

Here are some exampl e snippets:

embedding.html
http://commons.apache.org/io/
embedding.html#performance
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Servlets

[
/
t
t

[

Set

[/
this
this

Set
is
is

ting up the JAXP Transf or ner Fact ory
transFactory = Transformer Fact ory. new nst ance() ;
transFact ory. set URI Resol ver (thi s. uri Resol ver) ;

[—

ting up the FOP factory
f opFact ory = FopFact ory. newl nst ance() ;
f opFact ory. set URI Resol ver (thi s. uri Resol ver);

-

/1 The styl esheet for the JAXP Transf oner
Source xsltSrc = this.uriResolver.resol ve(

"servl et-context:/xslt/mystyl esheet.xsl", null);

Transformer transformer = this.transFactory. newlransformer (xsltSrc);
transforner. set URI Resol ver (t his. uri Resol ver);

4. Notes on Microsoft I nternet Explorer

Some versions of Internet Explorer will not automatically show the PDF or call the servlet multiple
times. These are well-known limitations of Internet Explorer and are not a problem of the servlet.
However, Internet Explorer can still be used to download the PDF so that it can be viewed later. Here
are some suggestions in this context:

Usean URL ending in. pdf , likehttp: // myserver/servl et/ stuff. pdf.Yes, theserviet
can be configured to handle this. If the URL has to contain parameters, try to have both the base
URL aswell asthe last parameter end in . pdf , if necessary append a dummy parameter, like
http://nyserver/servl et/ stuff. pdf?par 1=a&par 2=b&d=. pdf . The effect may
depend on IEx version.

Give |Ex the opportunity to cache. In particular, ensure the server does not set any headers causing
|EX not to cache the content. This may be areal problem if the document is sent over HTTPS,
because most 1Ex installations will by default not cache any content retrieved over HTTPS. Setting
the Expi r es header entry may help in this case:

response. set Dat eHeader (" Expi res”, SystemcurrentTinmneMIlis() +
cacheExpiringbDuration * 1000);

Consult your server manual and the relevant RFCs for further details on HTTP headers and caching.
Cachein the server. It may help to include a parameter in the URL which has a timestamp as the
value min order to decide whether arequest is repeated. |1Ex is reported to retrieve a document up to
three times, but never more often.

5. Servlet Engines

When using a servlet engine, there are potential CLASSPATH issues, and potential conflicts with
existing XML/XSLT libraries. Servlet containers also often use their own classloaders for loading
webapps, which can cause bugs and security problems.

5.1. Tomcat

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Servlets

Check Tomcat's documentation for detailed instructions about installing FOP and Cocoon. There are
known bugs that must be addressed, particularly for Tomcat 4.0.3.

5.2. WebSphere 3.5

Put a copy of a working parser in some directory where WebSphere can access it. For example, if
lusr/webapps/yourapp/servlets is the CLASSPATH for your servlets, copy the Xerces jar into it (any
other directory would also be fine). Do not add the jar to the serviet CLASSPATH, but add it to the
CLASSPATH of the application server which contains your web application. In the WebSphere
administration console, click on the "environment™ button in the "general” tab. In the "variable name"
box, enter "CLASSPATH". In the "value" box, enter the correct path to the parser jar file
(/usr/webapps/yourapp/servlets/Xerces.jar in our example here). Press "OK", then apply the change and
restart the application server.

6. Handling complex use cases

Sometimes the requirements for a serviet get quite sophisticated: SQL data sources, multiple XSL
transformations, merging of several datasources etc. In such a case consider using Apache Cocoon
instead of a custom servlet to accomplish your goal.

http://cocoon.apache.org/
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

	1 Overview
	2 Example Servlets in the FOP distribution
	3 Create your own Servlet
	3.1 A minimal Servlet
	3.2 Adding XSL tranformation (XSLT)
	3.3 Custom configuration
	3.4 Improving performance
	3.5 Accessing resources in your web application

	4 Notes on Microsoft Internet Explorer
	5 Servlet Engines
	5.1 Tomcat
	5.2 WebSphere 3.5

	6 Handling complex use cases

