Intermediate Format

$Revision: 746664 $
Table of contents

21 ArEaTIEE XIML (AT XIML) ..ottt st b e e b e ene e
2.2 Intermediate FOrMEL (1F)......ooveeee et e e b e s ne e nreesnreens
N o T o 0 = IO Y= VT Y OSSR
4 Usage of the AreaTree XML format (AT XIML)..cui oottt
4.1 CoNCAeNatiNg DOCUMIBINES.........eeveieerieeieeteesteeteseesteeaeseesteeeesseesseeseesseeseeseesseeseasesssennsessenssennsens
4.2 MOAITYING DOCUMIENLES.......cueiiitiitesiiete sttt sttt e et sb e e bbbt e e s et e b e b b ebenneenes
0 (V7= g (o= o [U
5 Usage of the Intermediate FOrmMat (1F).........ooiuieiii i
5.1 CONCAENatiNg DOCUMENLS.........ccuieiiiieiteesie et esteeee st e te e e s e e ae et e saeesteesesseesseesesseesseensesneesneensens
5.2 MOifYiNG DOCUMENTS........ccuiiieitieieeiesteesie et seeste et et e e e ee s e e seeeesseesseensesseesseensesseesseensesneesseensens
5.3 AAVANCEI USE.......oiuiiiiieieie sttt sttt bbbt s bt bt st et e e et et e b et e s be bt e st et nes

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Intermediate Format

} Please note that the intermediate formats described here are advanced features and can be ignored by most users of Apache FOP. {

1. Introduction

Apache FOP now provides two different so-called intermediate formats. The first one (let's cal it the
area tree XML format) is basically a 1:1 XML representation of FOP's area tree as generated by the
layout engine. The area tree is conceptually defined in the XSL-FO specification in chapter 1.1.2. Even
though the area tree is mentioned in the XSL-FO specification, this part is not standardized. Therefore,
the area tree XML format is a FOP-proprietary XML file format. The area tree XML can be generated
through the areatree XML Renderer (the XML Renderer).

The second intermediate format (which we shall name exactly like this: the intermediate format) is a
recent addition which tries to meet a dlightly different set of goals. It is highly optimized for speed.

The intermediate format can be used to generate intermediate documents that are modified before they
are finally rendered to their ultimate output format. Modifications include adjusting and changing trait
values, adding or modifying area objects, inserting prefabricated pages, overlays, imposition (n-up,
rotation, scaling etc.). Multiple IF files can be combined to a single output file.

2. Which Inter mediate For mat to choose?

Both formats have their use cases, so the choice you will make will depend on your particular situation.
Hereisalist of strengths and use cases for both formats:

2.1. AreaTree XML (AT XML)

o 1.1 representation of FOP's areatreein XML.
« Contains more structure information than the new intermediate format.
« Usedin FOP'slayout engine test suite for regression testing.

2.2. Intermediate Format (I1F)

Highly optimized for speed.

Smaller XML files.

Easier to post-process.

XML Schemaisavailable.

Recommended for use cases where documents are formatted concurrently and later concatenated to a
single print job.

More technical information about the two formats can be found on the FOP WiKki.

3. Architectural Overview

http://www.w3.org/TR/2001/REC-xsl-20011015/slice1.html#section-N742-Formatting
http://wiki.apache.org/xmlgraphics-fop/AreaTreeIntermediateXml/NewDesign
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Intermediate Format

| sAx Stream

FOTreeBuilder

fo:l aynm-master-setm

el
==

fo:page-sequence

kriorace:
FOEventHandier

AreaTreeHandler

f i 2 (Layout Engine)

.l P: | AreaTreeModel |

—{

T

PageSequence | Page

Intertace:
Aaniarar

N

AreaTreeParser

XMLRenderer

IFRenderer

_E

Interfecas:
NFDoownancHandley
FPanbar

IFSerializer

PDFDocumentHandler/
PDFPainter

:

Nbariaca:
Contantr{anadar (GAK]

N
Contertflonder (RAX)

IFParser

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Intermediate Format

4. Usage of the Area Tree XML format (AT XML)

As already mentioned, the areatree XML format is generated by using the XML Renderer (MIME type:
application/X-fop-areatree). So, you basically set the right MIME type for the output format and
process your FO filesasif you would create a PDF file.

However, there is an important detail to consider: The various Renderers don't all use the same font
sources. To be able to create the right areatree for the ultimate output format, you need to create the area
tree XML file using the right font setup. Thisis achieved by telling the XMLRenderer to mimic another
renderer. This is done by calling the XMLRenderer's mimicRenderer() method with an instance of the
ultimate target renderer as the single parameter. This has a consequence: An areatree XML file rendered
with the Java2DRenderer may not look as expected when it was actually generated for the PDF renderer.
For renderers that use the same font setup, this restriction does not apply (PDF and PS, for example).
Generating the areatree XML format fileisthe first step.

The second step is to reparse the file using the AreaTreeParser which is found in the
org.apache.fop.area package. The pages retrieved from the area tree XML file are added to an
AreaTreeModel instance from where they are normally rendered using one of the available Renderer
implementations. You can find examples for the area tree XML processing in the
exanpl es/ enbeddi ng directory in the FOP distribution.

The basic pattern to parse the areatree XML format looks like this:

FopFactory fopFactory = FopFactory. new nstance();

/1 Setup out put
Qut put Stream out = new java.io. Fil eQutputStrean(pdffile);
out {= new j ava. i o. Buf f er edQut put St rean{ out) ;
try
/] Setup fonts and user agent
FontInfo fontlnfo = new Fontlnfo();
FQUser Agent user Agent = fopFactory. newFQUser Agent () ;

/] Construct the AreaTreeMdodel that will received the individual pages
AreaTr eeMbdel treeMddel = new Render PagesModel (user Agent,
M neConst ants. M ME_PDF, fontlnfo, out);

[/l Parse the area tree file into the area tree
Ar eaTr eePar ser parser = new AreaTreeParser();
Source src = new StreantSource(nyl FFil e);
par ser. parse(src, treeMdel, userAgent);

/1 Signal the end of the processing. The renderer can finalize the target
document .
t reeModel . endDocunent () ;

} finally {
) out . cl ose();

This example simply reads an areatree file and renders it to a PDF file. Please note, that in norma FOP
operation you're shielded from having to instantiate the FontInfo object yourself. Thisis normally atask
of the AreaTreeHandler which is not present in this scenario. The same applies to the ArealreeModel

http://svn.apache.org/viewvc/xmlgraphics/fop/trunk/examples/embedding/java/embedding/intermediate/
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Intermediate Format

instance, in this case an instance of a subclass called RenderPagesModel. RenderPagesModel isidead in
this case as it has very little overhead processing the individual pages. An important line in the example
isthe call toendDocunent () onthe AreaTreeModel. This lets the Renderer know that the processing
is now finished.

The area tree XML format can aso be used from the command-line by using the "-atin" parameter for
specifying the area tree XML as input file. You can also specify a "mimic renderer" by inserting a
MIME type between "-at" and the output file.

4.1. Concatenating Documents

This initial example is obviously not very useful. It would be faster to create the PDF file directly. As
the ExampleConcat.java example shows you can easily parse multiple area tree files in a row and add
the parsed pages to the same AreaTreeModel instance which essentially concatenates all the input
document to one single output document.

4.2. Modifying Documents

One of the most important use cases for this format is obviously modifying the area tree XML before
finally rendering it to the target format. You can easily use XSLT to process the AT XML file according
to your needs. Please note, that we will currently not formally describe the area tree XML format. You
need to have a good understanding its structure so you don't create any non-parseable files. We may add
an XML Schema and more detailed documentation at alater time. You're invited to help us with that.

The areatree XML format is sensitive to changes in whitespace. If you're not careful, the modified file may not render correctly.

4.3. Advanced Use

The generation of the area tree format as well as it parsing process has been designed to alow for
maximum flexibility and optimization. Please note that you can call set Tr ansf or mer Handl er ()
on XMLRenderer to give the XMLRenderer your own TransformerHandler instance in case you would
like to do custom serialization (to a W3C DOM, for example) and/or to directly modify the area tree
using XSLT. The AreaTreeParser on the other side alows you to retrieve a ContentHandler instance
where you can manuadly send SAX events to to stat the parsing process (see
get Cont ent Handl er ()).

5. Usage of the Intermediate Format (1 F)

The Intermediate Format (IF) is generated by the IFSerializrr (MIME type:
application/X-fop-intermediate-for mat). So, you basically set the right MIME type for the output
format and process your FO files asif you would create a PDF file.

The |IFSerializer is an implementation of the IFDocumentHandler and |FPainter interfaces. The

running.html#standalone-start
http://svn.apache.org/repos/asf/xmlgraphics/fop/trunk/examples/embedding/java/embedding/atxml/ExampleConcat.java
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Intermediate Format

|FRenderer classisresponsible for converting FOP's area tree into calls against these two interfaces.

e |FDocumentHandler: Thisinterfaceis used on the document-level and defines the overall structure
of the Intermediate Format.
« |FPainter: Thisinterface is used to generate graphical page content like text, images and borders.

Aswith the AT XML, thereis an important detail to consider: The various output implementations don't
all use the same font sources. To be able to create the right IF for the ultimate output file, you need to
create the IF file using the right font setup. This is achieved by telling the IFRenderer (responsible for
converting the area tree into calls to the IFDocumentHandler and IFPainter interfaces) to mimic another
renderer. Thisis done by calling the IFSeriaizer's mimicDocumentHandler() method with an instance of
the ultimate target document handler as the single parameter. This has a consequence: An IF file
rendered with the Java2DDocumentHandler may not look as expected when it was actually generated
for the PDF implementation. For implementations that use the same font setup, this restriction does not
apply (PDF and PS, for example). Generating the Intermediate Format file is the first step.

The second step is to reparse the file using the IFParser which is found in the
org.apache.fop.render.intermediate package. The IFParser simply takes an IFDocumentHandler instance
against which it generates the appropriate calls. The IFParser is implemented as a SAX ContentHandler
so you're free to choose the method for post-processing the IF file(s). You can use XSLT or write SAX-
or DOM-based code to manipulate the contents. You can find examples for the Intermediate Format
processing inthe exanpl es/ enbeddi ng directory in the FOP distribution.

The basic pattern to parse the intermediate format looks like this:

FopFact ory fopFactory = FopFactory. new nstance();

/1 Setup out put
Qut put Stream out = new java.io. Fil eQutputStrean(pdffile);
out = new java. i 0. Buf f er edQut put St r eam(out) ;
try {
/] Setup user agent
FOQUser Agent user Agent = fopFact ory. newrQUser Agent () ;

/| Creat e | FDocunent Handl er i nstance

| FDocunent Handl er t ar get Handl er;

String mine = M nmeConst ants. M VE_PDF;

target Handl er = fopFactory. get Render er Fact ory() . cr eat eDocunent Handl er (
user Agent, mine);

/] Setup fonts
| FUtil.setupFonts(targetHandl er);

/I Tell the target handler where to wite the PDF to
tar get Handl er . set Resul t (new St reanResul t (pdffile));

//Parse the IF file

| FPar ser parser = new | FParser();

Source src = new StreanSource(nyl FFile);

par ser. parse(src, targetHandl er, userAgent);

} finally {
, out . cl ose();

http://svn.apache.org/viewvc/xmlgraphics/fop/trunk/examples/embedding/java/embedding/intermediate/
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Intermediate Format

This example simply reads an intermediate file and renders it to a PDF file. Here |FParser.parse() is
used, but you can also just get a SAX ContentHandler by using the |FParser.getContentHandler()
method.

5.1. Concatenating Documents

This initial example is obviously not very useful. It would be faster to create the PDF file directly
(without the intermediate step). As the ExampleConcat.java example shows you can easily parse
multiple intermediate files in a row and use the IFConcatenator class to concatenate page sequences
from multiple source files to a single output file. This particular example does the concatenation on the
level of the IFDocumentHandler interface. You could also do thisin XSLT or using SAX on the XML
level. Whatever suits your process best.

5.2. Modifying Documents

One of the most important use cases for this format is obviously modifying the intermediate format
before finally rendering it to the target format. Y ou can easily use XSLT to process the IF file according
to your needs.

There is an XML Schema (located under src/documentation/intermediate-format-ng) that helps you
verify that your modified content is correct.

For certain output formats there's a caveat: Formats like AFP and PCL do not support arbitrary
transformations on the IF's "viewport" and "g" elements. Possible are only rotations in 90 degree steps
and trandations.

5.3. Advanced Use

The generation of the intermediate format as well as it parsing process has been designed to alow for
maximum flexibility and optimization. So rather than just passing in a StreamResult to IFSeriaizer's
setResult() method, you can aso use a SAXResult or a DOMResult. And as you've aready seen , the
|FParser on the other side allows you to retrieve a ContentHandler instance where you can manually
send SAX events to start the parsing process (see get Cont ent Handl er ()).

http://svn.apache.org/repos/asf/xmlgraphics/fop/trunk/examples/embedding/java/embedding/intermediate/ExampleConcat.java
http://svn.apache.org/viewvc/xmlgraphics/fop/trunk/src/documentation/intermediate-format-ng/
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

	1 Introduction
	2 Which Intermediate Format to choose?
	2.1 Area Tree XML (AT XML)
	2.2 Intermediate Format (IF)

	3 Architectural Overview
	4 Usage of the Area Tree XML format (AT XML)
	4.1 Concatenating Documents
	4.2 Modifying Documents
	4.3 Advanced Use

	5 Usage of the Intermediate Format (IF)
	5.1 Concatenating Documents
	5.2 Modifying Documents
	5.3 Advanced Use

