
1 Introduction

Xcpu is a remote process execution system that represents execution and control
services as a set of files in a hierarchical file system. The file system can be
exported and mounted remotely over the network. Xcpu is slated to replace the
aging B-proc cluster management suite.

A cluster that uses Xcpu has one or more control nodes. The control nodes
represent the global view of the cluster and can be used to execute, view and
control the distributed programs. The rest of the cluster nodes known as com-
pute nodes and are used to run distributed applications as guided by the control
node.

Xcpu is responsible not only for the execution of the programs, but also
for their distribution to the compute nodes. It allows an arbitrary number of
files (shared libraries, configuration files) to be pushed with the executable. In
order to avoid the network bandwidth bottleneck between the control node and
the compute nodes, Xcpu uses some of the compute nodes for the program
distribution by dedicating them as distribution nodes for the duration of the
program startup. This scheme, borrowed from B-proc, decreases significantly
the start-up time for distributed applications.

The usage of a standard file-system interface makes the system easy to un-
derstand and operate. Furthermore, the ability to mount a compute node over
the network to the local file system is a significant departure from the antiquated
”remote execution” model in which little or no control over the application is
given to the end user.

Below is a sample session to an Xcpu compute node, which launches a single
process and displays its output on the console:

$ mount -t 9p 192.168.100.101 /mnt/xcpu/1 -o port=666

$ cd /mnt/xcpu/1

$ ls -l

total 0

-r--r--r-- 1 root root 0 Jul 25 10:19 arch

-r--r--r-- 1 root root 0 Jul 25 10:19 clone

-rw-r--r-- 1 root root 0 Jul 25 10:19 env

-r--r--r-- 1 root root 0 Jul 25 10:19 procs

-r--r--r-- 1 root root 0 Jul 25 10:19 state

$ tail -f clone &

[1] 8237

0tail: clone: file truncated

$ cd 0

$ ls -l

total 0

-rw-rw-rw- 1 nobody nobody 0 Jul 25 12:58 argv

-rw-rw-rw- 1 nobody nobody 0 Jul 25 12:58 ctl

-rw-rw-rw- 1 nobody nobody 0 Jul 25 12:58 env

-rw-rw-rw- 1 nobody nobody 0 Jul 25 12:58 exec

drwx------ 1 nobody nobody 0 Jul 25 12:58 fs

-r--r--r-- 1 nobody nobody 0 Jul 25 12:58 state

-r--r--r-- 1 nobody nobody 0 Jul 25 12:58 stderr

-rw-rw-rw- 1 nobody nobody 0 Jul 25 12:58 stdin

-rw-rw-rw- 1 nobody nobody 0 Jul 25 12:58 stdio

-r--r--r-- 1 nobody nobody 0 Jul 25 12:58 stdout

-rw-rw-rw- 1 nobody nobody 0 Jul 25 12:58 wait

$ cp /bin/date fs

$ echo exec date > ctl

$ cat stdout

Tue Jul 25 12:59:11 MDT 2006

$

First, the xcpufs file system is mounted at /mnt/xcpu/1. Reading from
the clone file creates a new session and returns its ID. The user can copy an
arbitrary number of files to the fs directory. The execution of the program is
done by writing exec progname to ctl file.

2 Xcpufs

Xcpufs is a file server that runs on all compute nodes and exports an interface
for program execution and control as a file hierarchy. The file server uses Plan9’s
9P2000 protocol. Xcpufs can be mounted on a Linux control node using v9fs,
or can be accessed directly using clients that speak 9P2000.

Xcpufs manages the processes it executes in sessions. In order to execute
a program, the user creates a session, copies all required files, including the
executable, sets up the argument list and the program environment and executes
the program. The user can send data to program’s standard input, read from
its standard output and error, and send signals.

Only one program can be executed per session. The process of this program
is known as main session process. That process may spawn other processes on
the compute node. Xcpufs can control (send signals, destroy) only the main
session process.

There are two types of sessions – normal and persistent. The normal session
(and the subdirectory that represents it) exists as long as there is an open file
in the session directory, or the main session process is running. The persistent
session doesn’t disappear unless the user manually wipes it.

Normally the program will run as the user that attached the filesystem (field
uname in Tattach 9P2000 message). The program can be executed as somebody
else if the ownership of the session subdirectory is changed to different user.
The files in the session directory are accessible by the owner and the members
of the owners default group.

All files that are copied to a session are stored in a temporary directory on
the compute node. Before executing the program, xcpufs changes the process’
current directory to the session directory, and sets XCPUPATH envrironment

2

variable to it. All files in the temporary storage are deleted when the session is
destroyed.

In addition to the environment set through the env file, xcpufs adds three
more variables:

XCPUPATH contains the full path to session’s temprary directory

XCPUID contains the global ID of the session (same as the id file

XCPUSID contains the local session ID (same as the session directory)

There are two groups of files that xcpufs exports – top-level files that control
the xcpufs, and session files that control the individual sessions.

2.1 Top-level files

arch

clone

env

procs

state

Arch is a read-only file, reading from it returns the architecture of the com-
pute node in a format operating-system/processor-type.

Clone is a read-only file. When it is opened, xcpufs creates a new session
and exports a new session directory in the file-system. It also copies the content
of the global env file to the session one. The open can fail if the content of the
global env file is not formatted correctly.

Reading from the file returns the name of the session directory.
Env contains the global environment to be used for all new sessions. When

a new session is created, the content of env is copied to the sessions env file.
Reading from the file returns the current environment. Writing to the file

changes the environment.
The content of the global and session environment files have the following

format:

environment = *env-line

env-line = env-name ‘‘=’’ env-value LF

env-name = ALPHA *[ALPHA | DIGIT]

env-value = ANY

If the env-value contains whitespace characters (SP, TAB or LF) or single
quotes, it is enclosed in single quotes and the original single quotes are doubled
(i.e. ’ becomes ’’).

Procs is a read-only file. The content of the file is a s-expression that list all
processes running on the compute node. The first subexpression contains list of
the fields returned for the processes. The list is architecture dependent.

State file contains the state of the node. The user can write any string to
the file.

3

2.2 Session directory

argv

ctl

exec

env

fs

state

stdin

stdout

stderr

stdio

wait

id

2.2.1 Ctl file

The ctl file is used to execute and control session’s main process.
Reading from the file returns the main process pid if the process is running

and -1 otherwise.
The operations on the session are performed by writing to it. Ctl commands

have the following format:

ctl = *cmd-line

cmd-line = command ‘‘ ‘‘ *[argument] LF

command = ‘‘exec’’ | ‘‘clone’’ | ‘‘wipe’’ |

‘‘signal’’ | ‘‘close’’ | ‘‘type’’

argument = ANY

If the argument contains whitespace characters (SP, TAB or LF) or single
quotes, it is enclosed in single quotes and the original single quotes are doubled
(i.e. ’ becomes ’’).

Writing to ctl ignores the specified offset and always appends the data to
the end of the file. It is not necessary a write to contain a whole (or single)
command line. Xcpufs appends the current write data to the end of the buffer,
and executes all full command lines. The write operation returns when all valid
commands are finished.

Ctl supports the following commands:

exec program-name directory Execute the program. For backward compat-
ibility, if program name is not specified, xcpufs executes the program
named “xc” from the session directory. If the directory is specified, xcpufs
sets the current directory to that value before executing the binary. If it
is not specified, the session directory is used.

If the program-name is a relative path (i.e. doesn’t start with ‘/’ character,
the session directory path is appended in front of it.

4

clone max-sessions address-list Copies the current session content (argument
list, environment and files from fs directory) to the specified sessions.
If max-sessions is greater than zero, and the number of the specified
sessions is bigger than max-sessions, clone pushes its content to up
to max-sessions and issues clone commands to some of them to clone
themselves to the remaining sessions from the list.

The format of the session-address is:

address-list = 1*(session-address ‘‘,’’)

session-address = [‘‘tcp!’’] node-name [‘‘!’’port]

‘‘/’’ session-id

node-name = ANY

port = NUMBER

session-id = ANY

wipe Closes the standard I/O files, if the main session process is still alive, kills
it (SIGTERM) and frees all objects used by the session. This command
is normally used to terminate persistent sessions.

signal sig Sends a signal to the main session process. The signal can be spec-
ified by number, or name. The supported signal names may depend on
the node’s architecture.

type normal | persistent Changes the type of the session.

close stdin | stdout | stderr Closes the standard input/output/error of the
main session process.

id id Sets the session id (see the id file). If the job-id or the proc-id parts are
ommited, they are not changed.

Reading from the ctl file returns the session ID.
Sending a signal to a session that doesn’t have running process will cause

the write function to return an error.

2.2.2 Exec file

The exec file is kept for backward compatibility. Writing to it creates a file
named “exec” in the fs directory.

2.3 Fs directory

The fs directory points to the temporary storage created for the session. The
user can create directories and files in that directory. Creation of special files
(symbolic links, devices, named pipes) is not allowed.

5

2.3.1 Argv file

Writing to the argv file sets the program argument list.
argv has the following format:

argument-list = 1*(argument (SP | TAB | LF))

argument = ANY

If the argument contains whitespace characters (SP, TAB or LF) or single
quotes, it is enclosed in single quotes and the original single quotes are doubled
(i.e. ’ becomes ’’).

Reading from the argv file returns the current content.

2.3.2 Env file

When the session is created, the content of the env file is populated from the
global env file.

Writing to the env file modifies the session environment. Modifications done
after the program is executed don’t change its environment.

The format of the session env file is identical to the global one.

2.3.3 State file

State is a file that can be used both for reading and writing. It is used by
the cluster monitoring framework to mark computational nodes’ states. When
Xcpu starts the state file contains no information. If a string is written to it
this string is returned by subsequent reads.

2.3.4 Stdin file

Stdin is a write-only file. The data from the write operation is passed to the
standard input of the main session process. The write may block if the main
process doesn’t consume the data.

Closing the stdin file doesn’t close the standard input stream of the main
process. The file can safely be opened and closed multiple times.

2.3.5 Stdout file

Stdout is a read-only file. The read operations blocks until the main session
process writes some data to its standard output.

If the file is opened more than once, and there are blocked read operations
for these files when some data is available from the standard output, xcpufs
sends the data to every open file.

Closing the stdout file doesn’t close the standard output stream of the main
process. The file can safely be opened and closed multiple times.

6

2.3.6 Stderr file

Stderr is a read-only file. The read operations blocks until the main session
process writes some data to its standard error.

If the file is opened more than once, and there are blocked read operations
for these files when some data is available from the standard output, xcpufs
sends the data to every open file.

Closing the stderr file doesn’t close the standard output stream of the main
process. The file can safely be opened and closed multiple times.

2.3.7 Stdio file

Stdio file combines stdin and stdout functions. Reading from stdio is equiv-
alent to reading from stdout, and writing to it is equivalent to writing to stdin.

If the file is opened more than once, and there are blocked read operations
for these files when some data is available from the standard output, xcpufs
sends the data to every open file.

2.3.8 Wait file

Wait is a read-only file. Reading from it returns the exit code of the main session
process. The read operations will block until the process ends.

2.3.9 Id file

Id is a read-only file that contains the user-specified id. The format of the id is:

id = job-id ‘‘/’’ proc-id

job-id = ANY

proc-id = NUMBER

The job-id is a global identifier of the job, the proc-id is an id of the process
within the job. Both are set by the user via “id” command.

2.4 Running Xcpufs

Xcpufs accepts the following options:

-d Optional. If set, xcpufs stays in foreground and shows all 9P2000 messages.

-p port Optional. Sets the port number that xcpufs listens on. The default
value is 666.

-t tdir Optional. Sets the directory in which xcpufs creates the temporary
session directories. The default value is /tmp.

-s Optional. If set, xcpufs runs all programs as the user that started xcpufs.

7

3 Other File Servers

3.1 Statfs

4 Auxillary Commands

4.1 Xrx

4.2 Xps

4.3 Xkill

4.4 Xstat

8

