Constructive Analysis of Esterel Programs
The -Icheck Option of the Esterel vb Compiler

The Esterel Team
esterel-request@sophia.inria.fr
http://www.esterel.org

May 17, 2000

Contents

1 Introduction 1

2 Examples 2
2.1 A Non-Trivial Non-Constructive Program 2
2.2 Relations and Constructiveness 4
2.3 Constructiveness and Data-Paths)

3 Checking Single Emission of Single Signals 6

4 Exploiting the Symbolic Input Sequences 7

5 Additional Options 8

6 The sccausal Code Generator 9

1 Introduction

The -Icheck option of the Esterel v5 compiler makes it possible to check Es-
terel programs for two essential properties:

1. The constructiveness of the reaction for any reachable state and any valid
input.

2. The respect of single signal emission constraints for any reachable state
and any valid input.

To perform the checks, just type

esterel -Icheck foo.strl

or any other valid esterel command line containing the -Icheck option.

The option first performs an exact constructive causality analysis of an Es-
terel program with respect to the constructive Esterel semantics defined in [1].
This semantics is used in the Esterel v5 compiler when programs are compiled
with the -I option. If a program passes the check, then the C code generated
by option -I will never detect a causality problem at run-time, and the C reac-
tion function will never return the error code —1. If the program is found to be
non-constructive, then this fact is reported, a counter-example input sequence is
given, and the problem is displayed graphically on the source code as for option
-I1.

The option also checks for single emission of single signals. This check was
available for Esterel v3 but it had disappeared in Esterel v4. It is now available
again in Esterel v5 (-single option). If a single signal can be emitted more
than once at a given instant, then the error is reported, a counter-example input
sequence is given, and a graphical error message is displayed.

The -Icheck option only performs a check on the program. No code is gen-
erated. Beware: the ~Icheck option uses a state reachability analysis technique
that is expensive in computation time and space. The algorithm is described in
[2].

The sccheck processor called by the option is based on the TIGER Binary
Decision Diagram library, which is a property of Digital Equipment Corp. and is
distributed by the XORIX company. Please read the attached copyright license.

2 Examples

All the basic examples of non-constructive programs are given in [1]. They can
be found in the distribution directory. Try them yourself.

2.1 A Non-Trivial Non-Constructive Program

Consider the following program, also to be found in the distribution tape:

module NonConstructive :
input I1, I2;
output 01, 02;
await tick;
L
present [01 and I1] then
emit 02
end present
[
present [02 and I2] then
emit 01
end present
]

end module

The NonConstructive program is constructive at first instant, since it only
executes “await tick”, but it is non-constructive at second instant if the input
signals I1 and I2 are both present. In that case, one cannot determine whether
the signals 01 and 02 must or cannot be emitted since the program’s body boils
down to

present 01 then

emit 02
end present

I
present 02 then
emit 01
end present

which is a typical example of a non-constructive program, see [1].
Type the following command:
esterel -Icheck non-constructive.strl

(esterel is assumed to refer to esterelv5.90 or later). This prints an input
message on stderr and pops an error box. The error message contains an input
sequence that leads to a non-constructive state. Here, the sequence is

I1 I2;

It is formed by the empty event followed by the event where both I1 and I2
are present. The input sequence is printed in a format that can be read by the
Esterel simulators.

To view the error proper, click on Show. This pops a window which displays
the source of the program using a color code that emphasizes the problem just
as for option -I:

e The keywords written in red foreground identify the (reachable) state in
which the error occurs.

e The statements that must be executed and the signals that must be
present are shown on a green background. In particular, the present input
signals appear on green background at their declaration point.

e The statements that cannot be executed and the signals that cannot be
present remain on standard background. In particular, the absent input
signals remain on standard background.

e The statements and signals for which we cannot prove either must or
cannot are shown on a pink background.

To identify the problem, look at the current state and at the boundary between
green and red backgrounds.

For NonConstructive, the current state is identified by the instruction
“await tick”. The input signals I1 and I2 are shown on green background since
they are present, and the first present statement is also on green background
since it must be executed. The rest is shown on pink background. Click on the
Help button for a more detailed explanation.

2.2 Relations and Constructiveness

In NonConstructive, one can forbid simultaneous presence of I1 and I2 by
asserting the relation I1#I2. The program becomes:

module Constructive:
input I1, I2;
relation I1 # I2;
output 01, 02;
await tick;
[
present [01 and I1] then
emit 02
end present

present [02 and I2] then
emit 01
end present

]

end module

The constructiveness analysis takes care of relations and the Constructive
program is found constructive by the -Icheck option.

Notice that both Constructive an NonConstructive are statically cyclic
and are rejected by the default sorted-circuit generation option of the esterel
command. When using the -I option, NonConstructive will provoke a run-
time error if fed with a blank event and then with the event “I1, I2”. In
Constructive, the relation states that the user guarantees that such a second
event cannot be generated. The satisfaction of relations is taken for granted by
the generated code. It is not checked at run-time, unless in simulation mode
(-simul option).

2.3 Constructiveness and Data-Paths

In Esterel, data tests and actions are controlled by signals. In a constructive
cyclic behavior, the set of data tests and actions have to be ordered in a deter-
ministic way. For a program that is checked constructive for its control part, it
is checked whether the set of actions appearing in each cycle can be ordered or
not.

We consider a simple example for which the control part is constructive but
a cyclic dependency exists between actions so that they can not be ordered:

module CyclicActions
input I;
signal S1, S2 in
present I then
emit S1
else
emit S2
end

present S1 then
if true then emit S2 end
end

I
present S2 then
if true then emit S1 end
end
end signal
end

In this example s cyclic dependency between the control signals S1, S2. In
fact, there is no reachable states for which there is an input event that lead to
an actual cyclic dependency. Indeed, the dependency is broken by the presence
status of the input signal I: if I is present, then S1 is emitted; so S1 does not
depend on S2, while S2 depends on S1. When I is absent, the reverse situation
happens. The control part is thus constructive. However, there is a cyclic
dependency between the data test actions performed in the bodies of the two
lasts present statements. Actually, there is no way to order the two data test
actions. Hence, this program is rejected by the compiler. The error message
that is printed out on stderr lists the list of data action tests for which such a
cyclic dependency exists.

3 Checking Single Emission of Single Signals

In Esterel, a signal that is not declared to be combined (also called multiple)

should not be emitted more than once in any reaction. That fact is checked by

the -Icheck option, only for programs previously found to be constructive.
The following program does not respect the single emission condition:

module SingleError :

input IO, I1, I2;

output 01: integer, 02: integer;

present I0 then
emit 01(0);
emit 02(0)

end present;

present I1 then
emit 01(1)

end present;

present I2 then
emit 02(2)

end present

end module

If the input signals I0 and I1 are both present, then the output signal 01 is
emitted twice. Similarly, if I0 and I2 are simultaneously present, then the signal
02 is emitted twice. To get the error messages, type

esterel -Icheck SingleError.strl

Two counter-examples will be displayed, one for each signal that violates the
single property. As for constructiveness checking, each counter-example is com-
posed of an input sequence and of a graphical presentation of the execution path
that leads to the error.

As before, one can make this program correct by adding the relation

relation I1 # I2;

to make the input signals exclusive. This is done in program SingleQOk.strl to
be found in the distribution tape. The -Icheck option then stops complaining.

4 Exploiting the Symbolic Input Sequences

With each error is associated an input sequence printed on stderr. For pure
signal programs without counters, the sequence is directly usable as an input
to simulators generated using the libcsimul.a and libxsimul.a libraries. If
the program handles values, the input sequence is a symbolic one: it includes
no values for valued input signals, and it also contains strange names that
correspond to results of tests executed in the reaction. Tests are performed by
if statements or repeat statements.

In a future release of the simulation libraries, you will be able to replay
symbolic sequences in the simulators. Until this is available, proceed as follows
if you really need to know which test a name characterizes:

e Build the 1c code, using option -1c or option -Klc of the esterel com-
mand.

e Take the first number in the name, for example 30 in Ift_30._5_.

e Find the statement numbered “30:” in the 1c code. It should be a Test:
statement. At the end of the line, you will find a 1c: source pragma of
the form %lc: [¢ ¢%. Then [is a line number, ¢ is a column number,
and 7 is a module instance number.

e Find entry ¢ in the module instance table, which is the first table in the
1c module. Here you find the source file name f and possibly a directory
name d that tell you where to find the source file.

e The source test is to be found in directory d, file f, line I, column c.

A test that prints a name in the input sequence takes its then branch. A test
that prints no name takes its else branch if it is executed at all in the reaction.

5 Additional Options

The options common to all Esterel processors are available:

e -version
Print the version name on the standard error output stream and terminate,
ignoring all other arguments.

e -info
Display various information about the current sccheck processor on the
standard error output stream and terminate, ignoring all other arguments.

e -V
Verbose mode. Explain what is happening (for experts).

e -access
Print access rights to the processor on the standard error output stream
and terminate, ignoring all other arguments.

If sccheck exhausts the available memory (that you should set to the max-
imum available, for example under Unix using the ulimit command), TIGER
outputs a failure message. In that case, try the following option:

-sift Enables dynamic reordering of the BDD variables when performing BDD
operations. This option reduces the size of the memory used and the
number of BDD node labels involved, but it increases the time of the
computation.

To pass these options to sccheck, use the standard esterel command syntax:

esterel -Icheck:"-sift -v" foo.strl

6 The sccausal Code Generator

The sccheck processor is in fact a shell script that calls the sccausal proces-
sor that can also perform sorted circuit (ssc) code generation for constructive
programs. Try for example

esterel -causal constructive.strl

This command performs the same causality analysis as sccheck and produces
ssc and C code exactly as for acyclic programs. The resulting C program can
be used just as any other C program generated by the Esterel v5 compiler. The
-causal option can be combined with other options of the esterel command
as usual.

Technically, the —causal option tells the esterel compiler to replace the
standard scssc circuit sorting processor by sccausal. The sccausal processor
first tries a topological sorting, just as scssc. It the sort succeeds, the code is
directly generated. Otherwise, if the program is found constructive, sccausal
replaces the original cyclic circuit by an equivalent acyclic circuit obtained by
direct implementation of the output and register BDDs using gates. As far as
circuit’s size is concerned, this is not the best way of making the circuit acyclic.
We are currently working on more elaborate cycle removal techniques.

In its current state, the sccausal processor may fail generating code if a
strongly connected control component contains data actions that can not be
ordered (share variables in read /write mode, or dependencies like in the example
of section 2.3). An error message is then printed. We give no more explanation
here, contact us if you are confronted in such a situation and/or if you want the
details.

Warning: by default, the —causal option does not check for single emission of
single signals. To perform the check, either use the ~Icheck option first, or pass
the -single option to sccausal by typing

esterel -causal -single foo.strl

References

[1] G. Berry. The constructive semantics of Esterel. http://www.esterel.org/,
1996.

[2] T. Shiple and G. Berry. Constructive analysis of cyclic circuits. In Proc.
ITDC’96, Paris, 1996.

