
Examples for program extraction in Higher-Order
Logic

Stefan Berghofer

September 11, 2023

Contents
1 Auxiliary lemmas used in program extraction examples 1

2 Quotient and remainder 3

3 Greatest common divisor 4

4 Warshall’s algorithm 6

5 Higman’s lemma 11
5.1 Extracting the program . 18
5.2 Some examples . 19

6 The pigeonhole principle 21

7 Euclid’s theorem 26

1 Auxiliary lemmas used in program extraction
examples

theory Util
imports Main
begin

Decidability of equality on natural numbers.
lemma nat-eq-dec:

∧
n::nat. m = n ∨ m 6= n

apply (induct m)
apply (case-tac n)
apply (case-tac [3] n)
apply (simp only: nat.simps, iprover?)+
done

1

Well-founded induction on natural numbers, derived using the standard
structural induction rule.
lemma nat-wf-ind:

assumes R:
∧

x::nat. (
∧

y. y < x =⇒ P y) =⇒ P x
shows P z

proof (rule R)
show

∧
y. y < z =⇒ P y

proof (induct z)
case 0
then show ?case by simp

next
case (Suc n y)
from nat-eq-dec show ?case
proof

assume ny: n = y
have P n

by (rule R) (rule Suc)
with ny show ?case by simp

next
assume n 6= y
with Suc have y < n by simp
then show ?case by (rule Suc)

qed
qed

qed

Bounded search for a natural number satisfying a decidable predicate.
lemma search:

assumes dec:
∧

x::nat. P x ∨ ¬ P x
shows (∃ x<y. P x) ∨ ¬ (∃ x<y. P x)

proof (induct y)
case 0
show ?case by simp

next
case (Suc z)
then show ?case
proof

assume ∃ x<z. P x
then obtain x where le: x < z and P: P x by iprover
from le have x < Suc z by simp
with P show ?case by iprover

next
assume nex: ¬ (∃ x<z. P x)
from dec show ?case
proof

assume P: P z
have z < Suc z by simp
with P show ?thesis by iprover

next

2

assume nP: ¬ P z
have ¬ (∃ x<Suc z. P x)
proof

assume ∃ x<Suc z. P x
then obtain x where le: x < Suc z and P: P x by iprover
have x < z
proof (cases x = z)

case True
with nP and P show ?thesis by simp

next
case False
with le show ?thesis by simp

qed
with P have ∃ x<z. P x by iprover
with nex show False ..

qed
then show ?case by iprover

qed
qed

qed

end

2 Quotient and remainder
theory QuotRem
imports Util HOL−Library.Realizers
begin

Derivation of quotient and remainder using program extraction.
theorem division: ∃ r q. a = Suc b ∗ q + r ∧ r ≤ b
proof (induct a)

case 0
have 0 = Suc b ∗ 0 + 0 ∧ 0 ≤ b by simp
then show ?case by iprover

next
case (Suc a)
then obtain r q where I : a = Suc b ∗ q + r and r ≤ b by iprover
from nat-eq-dec show ?case
proof

assume r = b
with I have Suc a = Suc b ∗ (Suc q) + 0 ∧ 0 ≤ b by simp
then show ?case by iprover

next
assume r 6= b
with ‹r ≤ b› have r < b by (simp add: order-less-le)
with I have Suc a = Suc b ∗ q + (Suc r) ∧ (Suc r) ≤ b by simp
then show ?case by iprover

qed

3

qed

extract division

The program extracted from the above proof looks as follows

division ≡
λx xa.

nat-induct-P x (0 , 0)
(λa H . let (x, y) = H

in case nat-eq-dec x xa of Left ⇒ (0 , Suc y)
| Right ⇒ (Suc x, y))

The corresponding correctness theorem is

a = Suc b ∗ snd (division a b) + fst (division a b) ∧ fst (division a b) ≤ b

lemma division 9 2 = (0 , 3) by eval

end

3 Greatest common divisor
theory Greatest-Common-Divisor
imports QuotRem
begin

theorem greatest-common-divisor :∧
n::nat. Suc m < n =⇒
∃ k n1 m1 . k ∗ n1 = n ∧ k ∗ m1 = Suc m ∧
(∀ l l1 l2 . l ∗ l1 = n −→ l ∗ l2 = Suc m −→ l ≤ k)

proof (induct m rule: nat-wf-ind)
case (1 m n)
from division obtain r q where h1 : n = Suc m ∗ q + r and h2 : r ≤ m

by iprover
show ?case
proof (cases r)

case 0
with h1 have Suc m ∗ q = n by simp
moreover have Suc m ∗ 1 = Suc m by simp
moreover have l ∗ l1 = n =⇒ l ∗ l2 = Suc m =⇒ l ≤ Suc m for l l1 l2

by (cases l2) simp-all
ultimately show ?thesis by iprover

next
case (Suc nat)
with h2 have h: nat < m by simp
moreover from h have Suc nat < Suc m by simp
ultimately have ∃ k m1 r1 . k ∗ m1 = Suc m ∧ k ∗ r1 = Suc nat ∧

(∀ l l1 l2 . l ∗ l1 = Suc m −→ l ∗ l2 = Suc nat −→ l ≤ k)

4

by (rule 1)
then obtain k m1 r1 where h1 ′: k ∗ m1 = Suc m

and h2 ′: k ∗ r1 = Suc nat
and h3 ′:

∧
l l1 l2 . l ∗ l1 = Suc m =⇒ l ∗ l2 = Suc nat =⇒ l ≤ k

by iprover
have mn: Suc m < n by (rule 1)
from h1 h1 ′ h2 ′ Suc have k ∗ (m1 ∗ q + r1) = n

by (simp add: add-mult-distrib2 mult.assoc [symmetric])
moreover have l ≤ k if ll1n: l ∗ l1 = n and ll2m: l ∗ l2 = Suc m for l l1 l2
proof −

have l ∗ (l1 − l2 ∗ q) = Suc nat
by (simp add: diff-mult-distrib2 h1 Suc [symmetric] mn ll1n ll2m [symmetric])
with ll2m show l ≤ k by (rule h3 ′)

qed
ultimately show ?thesis using h1 ′ by iprover

qed
qed

extract greatest-common-divisor

The extracted program for computing the greatest common divisor is

greatest-common-divisor ≡
λx. nat-wf-ind-P x

(λx H2 xa.
let (xa, y) = division xa x
in nat-exhaust-P xa (Suc x, y, 1)

(λnat. let (x, ya) = H2 nat (Suc x); (xa, ya) = ya
in (x, xa ∗ y + ya, xa)))

instantiation nat :: default
begin

definition default = (0 ::nat)

instance ..

end

instantiation prod :: (default, default) default
begin

definition default = (default, default)

instance ..

end

instantiation fun :: (type, default) default
begin

5

definition default = (λx. default)

instance ..

end

lemma greatest-common-divisor 7 12 = (4 , 3 , 2) by eval

end

4 Warshall’s algorithm
theory Warshall
imports HOL−Library.Realizers
begin

Derivation of Warshall’s algorithm using program extraction, based on Berger,
Schwichtenberg and Seisenberger [1].
datatype b = T | F

primrec is-path ′ :: (′a ⇒ ′a ⇒ b) ⇒ ′a ⇒ ′a list ⇒ ′a ⇒ bool
where

is-path ′ r x [] z ←→ r x z = T
| is-path ′ r x (y # ys) z ←→ r x y = T ∧ is-path ′ r y ys z

definition is-path :: (nat ⇒ nat ⇒ b) ⇒ (nat ∗ nat list ∗ nat) ⇒ nat ⇒ nat ⇒
nat ⇒ bool

where is-path r p i j k ←→
fst p = j ∧ snd (snd p) = k ∧
list-all (λx. x < i) (fst (snd p)) ∧
is-path ′ r (fst p) (fst (snd p)) (snd (snd p))

definition conc :: ′a × ′a list × ′a ⇒ ′a × ′a list × ′a ⇒ ′a × ′a list ∗ ′a
where conc p q = (fst p, fst (snd p) @ fst q # fst (snd q), snd (snd q))

theorem is-path ′-snoc [simp]:
∧

x. is-path ′ r x (ys @ [y]) z = (is-path ′ r x ys y ∧
r y z = T)

by (induct ys) simp+

theorem list-all-scoc [simp]: list-all P (xs @ [x]) ←→ P x ∧ list-all P xs
by (induct xs) (simp+, iprover)

theorem list-all-lemma: list-all P xs =⇒ (
∧

x. P x =⇒ Q x) =⇒ list-all Q xs
proof −

assume PQ:
∧

x. P x =⇒ Q x
show list-all P xs =⇒ list-all Q xs
proof (induct xs)

case Nil

6

show ?case by simp
next

case (Cons y ys)
then have Py: P y by simp
from Cons have Pys: list-all P ys by simp
show ?case

by simp (rule conjI PQ Py Cons Pys)+
qed

qed

theorem lemma1 :
∧

p. is-path r p i j k =⇒ is-path r p (Suc i) j k
unfolding is-path-def
apply (simp cong add: conj-cong add: split-paired-all)
apply (erule conjE)+
apply (erule list-all-lemma)
apply simp
done

theorem lemma2 :
∧

p. is-path r p 0 j k =⇒ r j k = T
unfolding is-path-def
apply (simp cong add: conj-cong add: split-paired-all)
apply (case-tac a)
apply simp-all
done

theorem is-path ′-conc: is-path ′ r j xs i =⇒ is-path ′ r i ys k =⇒
is-path ′ r j (xs @ i # ys) k

proof −
assume pys: is-path ′ r i ys k
show

∧
j. is-path ′ r j xs i =⇒ is-path ′ r j (xs @ i # ys) k

proof (induct xs)
case (Nil j)
then have r j i = T by simp
with pys show ?case by simp

next
case (Cons z zs j)
then have jzr : r j z = T by simp
from Cons have pzs: is-path ′ r z zs i by simp
show ?case

by simp (rule conjI jzr Cons pzs)+
qed

qed

theorem lemma3 :∧
p q. is-path r p i j i =⇒ is-path r q i i k =⇒
is-path r (conc p q) (Suc i) j k

apply (unfold is-path-def conc-def)
apply (simp cong add: conj-cong add: split-paired-all)
apply (erule conjE)+

7

apply (rule conjI)
apply (erule list-all-lemma)
apply simp
apply (rule conjI)
apply (erule list-all-lemma)
apply simp
apply (rule is-path ′-conc)
apply assumption+
done

theorem lemma5 :∧
p. is-path r p (Suc i) j k =⇒ ¬ is-path r p i j k =⇒
(∃ q. is-path r q i j i) ∧ (∃ q ′. is-path r q ′ i i k)

proof (simp cong add: conj-cong add: split-paired-all is-path-def , (erule conjE)+)
fix xs
assume asms:

list-all (λx. x < Suc i) xs
is-path ′ r j xs k
¬ list-all (λx. x < i) xs

show (∃ ys. list-all (λx. x < i) ys ∧ is-path ′ r j ys i) ∧
(∃ ys. list-all (λx. x < i) ys ∧ is-path ′ r i ys k)

proof
have

∧
j. list-all (λx. x < Suc i) xs =⇒ is-path ′ r j xs k =⇒

¬ list-all (λx. x < i) xs =⇒
∃ ys. list-all (λx. x < i) ys ∧ is-path ′ r j ys i (is PROP ?ih xs)
proof (induct xs)

case Nil
then show ?case by simp

next
case (Cons a as j)
show ?case
proof (cases a=i)

case True
show ?thesis
proof

from True and Cons have r j i = T by simp
then show list-all (λx. x < i) [] ∧ is-path ′ r j [] i by simp

qed
next

case False
have PROP ?ih as by (rule Cons)
then obtain ys where ys: list-all (λx. x < i) ys ∧ is-path ′ r a ys i
proof

from Cons show list-all (λx. x < Suc i) as by simp
from Cons show is-path ′ r a as k by simp
from Cons and False show ¬ list-all (λx. x < i) as by (simp)

qed
show ?thesis
proof

8

from Cons False ys
show list-all (λx. x<i) (a#ys) ∧ is-path ′ r j (a#ys) i by simp

qed
qed

qed
from this asms show ∃ ys. list-all (λx. x < i) ys ∧ is-path ′ r j ys i .
have

∧
k. list-all (λx. x < Suc i) xs =⇒ is-path ′ r j xs k =⇒

¬ list-all (λx. x < i) xs =⇒
∃ ys. list-all (λx. x < i) ys ∧ is-path ′ r i ys k (is PROP ?ih xs)

proof (induct xs rule: rev-induct)
case Nil
then show ?case by simp

next
case (snoc a as k)
show ?case
proof (cases a=i)

case True
show ?thesis
proof

from True and snoc have r i k = T by simp
then show list-all (λx. x < i) [] ∧ is-path ′ r i [] k by simp

qed
next

case False
have PROP ?ih as by (rule snoc)
then obtain ys where ys: list-all (λx. x < i) ys ∧ is-path ′ r i ys a
proof

from snoc show list-all (λx. x < Suc i) as by simp
from snoc show is-path ′ r j as a by simp
from snoc and False show ¬ list-all (λx. x < i) as by simp

qed
show ?thesis
proof

from snoc False ys
show list-all (λx. x < i) (ys @ [a]) ∧ is-path ′ r i (ys @ [a]) k

by simp
qed

qed
qed
from this asms show ∃ ys. list-all (λx. x < i) ys ∧ is-path ′ r i ys k .

qed
qed

theorem lemma5 ′:∧
p. is-path r p (Suc i) j k =⇒ ¬ is-path r p i j k =⇒
¬ (∀ q. ¬ is-path r q i j i) ∧ ¬ (∀ q ′. ¬ is-path r q ′ i i k)

by (iprover dest: lemma5)

theorem warshall:
∧

j k. ¬ (∃ p. is-path r p i j k) ∨ (∃ p. is-path r p i j k)

9

proof (induct i)
case (0 j k)
show ?case
proof (cases r j k)

assume r j k = T
then have is-path r (j, [], k) 0 j k

by (simp add: is-path-def)
then have ∃ p. is-path r p 0 j k ..
then show ?thesis ..

next
assume r j k = F
then have r j k 6= T by simp
then have ¬ (∃ p. is-path r p 0 j k)

by (iprover dest: lemma2)
then show ?thesis ..

qed
next

case (Suc i j k)
then show ?case
proof

assume h1 : ¬ (∃ p. is-path r p i j k)
from Suc show ?case
proof

assume ¬ (∃ p. is-path r p i j i)
with h1 have ¬ (∃ p. is-path r p (Suc i) j k)

by (iprover dest: lemma5 ′)
then show ?case ..

next
assume ∃ p. is-path r p i j i
then obtain p where h2 : is-path r p i j i ..
from Suc show ?case
proof

assume ¬ (∃ p. is-path r p i i k)
with h1 have ¬ (∃ p. is-path r p (Suc i) j k)

by (iprover dest: lemma5 ′)
then show ?case ..

next
assume ∃ q. is-path r q i i k
then obtain q where is-path r q i i k ..
with h2 have is-path r (conc p q) (Suc i) j k

by (rule lemma3)
then have ∃ pq. is-path r pq (Suc i) j k ..
then show ?case ..

qed
qed

next
assume ∃ p. is-path r p i j k
then have ∃ p. is-path r p (Suc i) j k

by (iprover intro: lemma1)

10

then show ?case ..
qed

qed

extract warshall

The program extracted from the above proof looks as follows

warshall ≡
λx xa xb xc.

nat-induct-P xa
(λxa xb. case x xa xb of T ⇒ Some (xa, [], xb) | F ⇒ None)
(λx H2 xa xb.

case H2 xa xb of
None ⇒

case H2 xa x of None ⇒ None
| Some q ⇒

case H2 x xb of None ⇒ None | Some qa ⇒ Some (conc q qa)
| Some q ⇒ Some q)

xb xc

The corresponding correctness theorem is

case warshall r i j k of None ⇒ ∀ x. ¬ is-path r x i j k
| Some q ⇒ is-path r q i j k

ML-val @{code warshall}

end

5 Higman’s lemma
theory Higman
imports Main
begin

Formalization by Stefan Berghofer and Monika Seisenberger, based on Co-
quand and Fridlender [2].
datatype letter = A | B

inductive emb :: letter list ⇒ letter list ⇒ bool
where

emb0 [Pure.intro]: emb [] bs
| emb1 [Pure.intro]: emb as bs =⇒ emb as (b # bs)
| emb2 [Pure.intro]: emb as bs =⇒ emb (a # as) (a # bs)

inductive L :: letter list ⇒ letter list list ⇒ bool
for v :: letter list

where

11

L0 [Pure.intro]: emb w v =⇒ L v (w # ws)
| L1 [Pure.intro]: L v ws =⇒ L v (w # ws)

inductive good :: letter list list ⇒ bool
where

good0 [Pure.intro]: L w ws =⇒ good (w # ws)
| good1 [Pure.intro]: good ws =⇒ good (w # ws)

inductive R :: letter ⇒ letter list list ⇒ letter list list ⇒ bool
for a :: letter

where
R0 [Pure.intro]: R a [] []
| R1 [Pure.intro]: R a vs ws =⇒ R a (w # vs) ((a # w) # ws)

inductive T :: letter ⇒ letter list list ⇒ letter list list ⇒ bool
for a :: letter

where
T0 [Pure.intro]: a 6= b =⇒ R b ws zs =⇒ T a (w # zs) ((a # w) # zs)
| T1 [Pure.intro]: T a ws zs =⇒ T a (w # ws) ((a # w) # zs)
| T2 [Pure.intro]: a 6= b =⇒ T a ws zs =⇒ T a ws ((b # w) # zs)

inductive bar :: letter list list ⇒ bool
where

bar1 [Pure.intro]: good ws =⇒ bar ws
| bar2 [Pure.intro]: (

∧
w. bar (w # ws)) =⇒ bar ws

theorem prop1 : bar ([] # ws)
by iprover

theorem lemma1 : L as ws =⇒ L (a # as) ws
by (erule L.induct) iprover+

lemma lemma2 ′: R a vs ws =⇒ L as vs =⇒ L (a # as) ws
supply [[simproc del: defined-all]]
apply (induct set: R)
apply (erule L.cases)
apply simp+
apply (erule L.cases)
apply simp-all
apply (rule L0)
apply (erule emb2)
apply (erule L1)
done

lemma lemma2 : R a vs ws =⇒ good vs =⇒ good ws
supply [[simproc del: defined-all]]
apply (induct set: R)
apply iprover
apply (erule good.cases)

12

apply simp-all
apply (rule good0)
apply (erule lemma2 ′)
apply assumption

apply (erule good1)
done

lemma lemma3 ′: T a vs ws =⇒ L as vs =⇒ L (a # as) ws
supply [[simproc del: defined-all]]
apply (induct set: T)
apply (erule L.cases)
apply simp-all
apply (rule L0)
apply (erule emb2)
apply (rule L1)
apply (erule lemma1)
apply (erule L.cases)
apply simp-all
apply iprover+
done

lemma lemma3 : T a ws zs =⇒ good ws =⇒ good zs
supply [[simproc del: defined-all]]
apply (induct set: T)
apply (erule good.cases)
apply simp-all
apply (rule good0)
apply (erule lemma1)
apply (erule good1)
apply (erule good.cases)
apply simp-all
apply (rule good0)
apply (erule lemma3 ′)
apply iprover+
done

lemma lemma4 : R a ws zs =⇒ ws 6= [] =⇒ T a ws zs
supply [[simproc del: defined-all]]
apply (induct set: R)
apply iprover
apply (case-tac vs)
apply (erule R.cases)
apply simp
apply (case-tac a)
apply (rule-tac b=B in T0)
apply simp
apply (rule R0)
apply (rule-tac b=A in T0)
apply simp

13

apply (rule R0)
apply simp
apply (rule T1)
apply simp
done

lemma letter-neq: a 6= b =⇒ c 6= a =⇒ c = b for a b c :: letter
apply (case-tac a)
apply (case-tac b)
apply (case-tac c, simp, simp)
apply (case-tac c, simp, simp)
apply (case-tac b)
apply (case-tac c, simp, simp)
apply (case-tac c, simp, simp)
done

lemma letter-eq-dec: a = b ∨ a 6= b for a b :: letter
apply (case-tac a)
apply (case-tac b)
apply simp
apply simp
apply (case-tac b)
apply simp
apply simp
done

theorem prop2 :
assumes ab: a 6= b and bar : bar xs
shows

∧
ys zs. bar ys =⇒ T a xs zs =⇒ T b ys zs =⇒ bar zs

using bar
proof induct

fix xs zs
assume T a xs zs and good xs
then have good zs by (rule lemma3)
then show bar zs by (rule bar1)

next
fix xs ys
assume I :

∧
w ys zs. bar ys =⇒ T a (w # xs) zs =⇒ T b ys zs =⇒ bar zs

assume bar ys
then show

∧
zs. T a xs zs =⇒ T b ys zs =⇒ bar zs

proof induct
fix ys zs
assume T b ys zs and good ys
then have good zs by (rule lemma3)
then show bar zs by (rule bar1)

next
fix ys zs
assume I ′:

∧
w zs. T a xs zs =⇒ T b (w # ys) zs =⇒ bar zs

and ys:
∧

w. bar (w # ys) and Ta: T a xs zs and Tb: T b ys zs

14

show bar zs
proof (rule bar2)

fix w
show bar (w # zs)
proof (cases w)

case Nil
then show ?thesis by simp (rule prop1)

next
case (Cons c cs)
from letter-eq-dec show ?thesis
proof

assume ca: c = a
from ab have bar ((a # cs) # zs) by (iprover intro: I ys Ta Tb)
then show ?thesis by (simp add: Cons ca)

next
assume c 6= a
with ab have cb: c = b by (rule letter-neq)
from ab have bar ((b # cs) # zs) by (iprover intro: I ′ Ta Tb)
then show ?thesis by (simp add: Cons cb)

qed
qed

qed
qed

qed

theorem prop3 :
assumes bar : bar xs
shows

∧
zs. xs 6= [] =⇒ R a xs zs =⇒ bar zs

using bar
proof induct

fix xs zs
assume R a xs zs and good xs
then have good zs by (rule lemma2)
then show bar zs by (rule bar1)

next
fix xs zs
assume I :

∧
w zs. w # xs 6= [] =⇒ R a (w # xs) zs =⇒ bar zs

and xsb:
∧

w. bar (w # xs) and xsn: xs 6= [] and R: R a xs zs
show bar zs
proof (rule bar2)

fix w
show bar (w # zs)
proof (induct w)

case Nil
show ?case by (rule prop1)

next
case (Cons c cs)
from letter-eq-dec show ?case
proof

15

assume c = a
then show ?thesis by (iprover intro: I [simplified] R)

next
from R xsn have T : T a xs zs by (rule lemma4)
assume c 6= a
then show ?thesis by (iprover intro: prop2 Cons xsb xsn R T)

qed
qed

qed
qed

theorem higman: bar []
proof (rule bar2)

fix w
show bar [w]
proof (induct w)

show bar [[]] by (rule prop1)
next

fix c cs assume bar [cs]
then show bar [c # cs] by (rule prop3) (simp, iprover)

qed
qed

primrec is-prefix :: ′a list ⇒ (nat ⇒ ′a) ⇒ bool
where

is-prefix [] f = True
| is-prefix (x # xs) f = (x = f (length xs) ∧ is-prefix xs f)

theorem L-idx:
assumes L: L w ws
shows is-prefix ws f =⇒ ∃ i. emb (f i) w ∧ i < length ws
using L

proof induct
case (L0 v ws)
then have emb (f (length ws)) w by simp
moreover have length ws < length (v # ws) by simp
ultimately show ?case by iprover

next
case (L1 ws v)
then obtain i where emb: emb (f i) w and i < length ws

by simp iprover
then have i < length (v # ws) by simp
with emb show ?case by iprover

qed

theorem good-idx:
assumes good: good ws
shows is-prefix ws f =⇒ ∃ i j. emb (f i) (f j) ∧ i < j
using good

16

proof induct
case (good0 w ws)
then have w = f (length ws) and is-prefix ws f by simp-all
with good0 show ?case by (iprover dest: L-idx)

next
case (good1 ws w)
then show ?case by simp

qed

theorem bar-idx:
assumes bar : bar ws
shows is-prefix ws f =⇒ ∃ i j. emb (f i) (f j) ∧ i < j
using bar

proof induct
case (bar1 ws)
then show ?case by (rule good-idx)

next
case (bar2 ws)
then have is-prefix (f (length ws) # ws) f by simp
then show ?case by (rule bar2)

qed

Strong version: yields indices of words that can be embedded into each other.
theorem higman-idx: ∃ (i::nat) j. emb (f i) (f j) ∧ i < j
proof (rule bar-idx)

show bar [] by (rule higman)
show is-prefix [] f by simp

qed

Weak version: only yield sequence containing words that can be embedded
into each other.
theorem good-prefix-lemma:

assumes bar : bar ws
shows is-prefix ws f =⇒ ∃ vs. is-prefix vs f ∧ good vs
using bar

proof induct
case bar1
then show ?case by iprover

next
case (bar2 ws)
from bar2 .prems have is-prefix (f (length ws) # ws) f by simp
then show ?case by (iprover intro: bar2)

qed

theorem good-prefix: ∃ vs. is-prefix vs f ∧ good vs
using higman
by (rule good-prefix-lemma) simp+

end

17

5.1 Extracting the program
theory Higman-Extraction
imports Higman HOL−Library.Realizers HOL−Library.Open-State-Syntax
begin

declare R.induct [ind-realizer]
declare T .induct [ind-realizer]
declare L.induct [ind-realizer]
declare good.induct [ind-realizer]
declare bar .induct [ind-realizer]

extract higman-idx

Program extracted from the proof of higman-idx:

higman-idx ≡ λx. bar-idx x higman

Corresponding correctness theorem:

emb (f (fst (higman-idx f))) (f (snd (higman-idx f))) ∧
fst (higman-idx f) < snd (higman-idx f)

Program extracted from the proof of higman:

higman ≡
bar2 [] (rec-list (prop1 []) (λa w H . prop3 a [a # w] H (R1 [] [] w R0)))

Program extracted from the proof of prop1 :

prop1 ≡
λx. bar2 ([] # x) (λw. bar1 (w # [] # x) (good0 w ([] # x) (L0 [] x)))

Program extracted from the proof of prop2 :

prop2 ≡
λx xa xb xc H .

compat-barT .rec-split-barT
(λws xa xb xba H Ha Haa. bar1 xba (lemma3 x Ha xa))
(λws xb r xba xbb H .

compat-barT .rec-split-barT (λws x xb H Ha. bar1 xb (lemma3 xa Ha x))
(λwsa xb ra xc H Ha.

bar2 xc
(λw. case w of [] ⇒ prop1 xc

| a # list ⇒
case letter-eq-dec a x of
Left ⇒

r list wsa ((x # list) # xc) (bar2 wsa xb)
(T1 ws xc list H) (T2 x wsa xc list Ha)

| Right ⇒

18

ra list ((xa # list) # xc) (T2 xa ws xc list H)
(T1 wsa xc list Ha)))

H xbb)
H xb xc

Program extracted from the proof of prop3 :

prop3 ≡
λx xa H .

compat-barT .rec-split-barT (λws xa xb H . bar1 xb (lemma2 x H xa))
(λws xa r xb H .

bar2 xb
(rec-list (prop1 xb)
(λa w Ha.

case letter-eq-dec a x of
Left ⇒ r w ((x # w) # xb) (R1 ws xb w H)
| Right ⇒

prop2 a x ws ((a # w) # xb) Ha (bar2 ws xa)
(T0 x ws xb w H) (T2 a ws xb w (lemma4 x H)))))

H xa

5.2 Some examples
instantiation LT and TT :: default
begin

definition default = L0 [] []

definition default = T0 A [] [] [] R0

instance ..

end

function mk-word-aux :: nat ⇒ Random.seed ⇒ letter list × Random.seed
where

mk-word-aux k = exec {
i ← Random.range 10 ;
(if i > 7 ∧ k > 2 ∨ k > 1000 then Pair []
else exec {

let l = (if i mod 2 = 0 then A else B);
ls ← mk-word-aux (Suc k);
Pair (l # ls)
})}

by pat-completeness auto
termination

by (relation measure ((−) 1001)) auto

definition mk-word :: Random.seed ⇒ letter list × Random.seed

19

where mk-word = mk-word-aux 0

primrec mk-word-s :: nat ⇒ Random.seed ⇒ letter list × Random.seed
where

mk-word-s 0 = mk-word
| mk-word-s (Suc n) = exec {

- ← mk-word;
mk-word-s n
}

definition g1 :: nat ⇒ letter list
where g1 s = fst (mk-word-s s (20000 , 1))

definition g2 :: nat ⇒ letter list
where g2 s = fst (mk-word-s s (50000 , 1))

fun f1 :: nat ⇒ letter list
where

f1 0 = [A, A]
| f1 (Suc 0) = [B]
| f1 (Suc (Suc 0)) = [A, B]
| f1 - = []

fun f2 :: nat ⇒ letter list
where

f2 0 = [A, A]
| f2 (Suc 0) = [B]
| f2 (Suc (Suc 0)) = [B, A]
| f2 - = []

ML-val ‹
local

val higman-idx = @{code higman-idx};
val g1 = @{code g1};
val g2 = @{code g2};
val f1 = @{code f1};
val f2 = @{code f2};

in
val (i1 , j1) = higman-idx g1 ;
val (v1 , w1) = (g1 i1 , g1 j1);
val (i2 , j2) = higman-idx g2 ;
val (v2 , w2) = (g2 i2 , g2 j2);
val (i3 , j3) = higman-idx f1 ;
val (v3 , w3) = (f1 i3 , f1 j3);
val (i4 , j4) = higman-idx f2 ;
val (v4 , w4) = (f2 i4 , f2 j4);

end;
›

20

end

6 The pigeonhole principle
theory Pigeonhole
imports Util HOL−Library.Realizers HOL−Library.Code-Target-Numeral
begin

We formalize two proofs of the pigeonhole principle, which lead to extracted
programs of quite different complexity. The original formalization of these
proofs in Nuprl is due to Aleksey Nogin [3].
This proof yields a polynomial program.
theorem pigeonhole:∧

f . (
∧

i. i ≤ Suc n =⇒ f i ≤ n) =⇒ ∃ i j. i ≤ Suc n ∧ j < i ∧ f i = f j
proof (induct n)

case 0
then have Suc 0 ≤ Suc 0 ∧ 0 < Suc 0 ∧ f (Suc 0) = f 0 by simp
then show ?case by iprover

next
case (Suc n)
have r :

k ≤ Suc (Suc n) =⇒
(
∧

i j. Suc k ≤ i =⇒ i ≤ Suc (Suc n) =⇒ j < i =⇒ f i 6= f j) =⇒
(∃ i j. i ≤ k ∧ j < i ∧ f i = f j) for k

proof (induct k)
case 0
let ?f = λi. if f i = Suc n then f (Suc (Suc n)) else f i
have ¬ (∃ i j. i ≤ Suc n ∧ j < i ∧ ?f i = ?f j)
proof

assume ∃ i j. i ≤ Suc n ∧ j < i ∧ ?f i = ?f j
then obtain i j where i: i ≤ Suc n and j: j < i and f : ?f i = ?f j

by iprover
from j have i-nz: Suc 0 ≤ i by simp
from i have iSSn: i ≤ Suc (Suc n) by simp
have S0SSn: Suc 0 ≤ Suc (Suc n) by simp
show False
proof cases

assume fi: f i = Suc n
show False
proof cases

assume fj: f j = Suc n
from i-nz and iSSn and j have f i 6= f j by (rule 0)
moreover from fi have f i = f j

by (simp add: fj [symmetric])
ultimately show ?thesis ..

next
from i and j have j < Suc (Suc n) by simp
with S0SSn and le-refl have f (Suc (Suc n)) 6= f j

21

by (rule 0)
moreover assume f j 6= Suc n
with fi and f have f (Suc (Suc n)) = f j by simp
ultimately show False ..

qed
next

assume fi: f i 6= Suc n
show False
proof cases

from i have i < Suc (Suc n) by simp
with S0SSn and le-refl have f (Suc (Suc n)) 6= f i

by (rule 0)
moreover assume f j = Suc n
with fi and f have f (Suc (Suc n)) = f i by simp
ultimately show False ..

next
from i-nz and iSSn and j
have f i 6= f j by (rule 0)
moreover assume f j 6= Suc n
with fi and f have f i = f j by simp
ultimately show False ..

qed
qed

qed
moreover have ?f i ≤ n if i ≤ Suc n for i
proof −

from that have i: i < Suc (Suc n) by simp
have f (Suc (Suc n)) 6= f i

by (rule 0) (simp-all add: i)
moreover have f (Suc (Suc n)) ≤ Suc n

by (rule Suc) simp
moreover from i have i ≤ Suc (Suc n) by simp
then have f i ≤ Suc n by (rule Suc)
ultimately show ?thesis

by simp
qed
then have ∃ i j. i ≤ Suc n ∧ j < i ∧ ?f i = ?f j

by (rule Suc)
ultimately show ?case ..

next
case (Suc k)
from search [OF nat-eq-dec] show ?case
proof

assume ∃ j<Suc k. f (Suc k) = f j
then show ?case by (iprover intro: le-refl)

next
assume nex: ¬ (∃ j<Suc k. f (Suc k) = f j)
have ∃ i j. i ≤ k ∧ j < i ∧ f i = f j
proof (rule Suc)

22

from Suc show k ≤ Suc (Suc n) by simp
fix i j assume k: Suc k ≤ i and i: i ≤ Suc (Suc n)

and j: j < i
show f i 6= f j
proof cases

assume eq: i = Suc k
show ?thesis
proof

assume f i = f j
then have f (Suc k) = f j by (simp add: eq)
with nex and j and eq show False by iprover

qed
next

assume i 6= Suc k
with k have Suc (Suc k) ≤ i by simp
then show ?thesis using i and j by (rule Suc)

qed
qed
then show ?thesis by (iprover intro: le-SucI)

qed
qed
show ?case by (rule r) simp-all

qed

The following proof, although quite elegant from a mathematical point of
view, leads to an exponential program:
theorem pigeonhole-slow:∧

f . (
∧

i. i ≤ Suc n =⇒ f i ≤ n) =⇒ ∃ i j. i ≤ Suc n ∧ j < i ∧ f i = f j
proof (induct n)

case 0
have Suc 0 ≤ Suc 0 ..
moreover have 0 < Suc 0 ..
moreover from 0 have f (Suc 0) = f 0 by simp
ultimately show ?case by iprover

next
case (Suc n)
from search [OF nat-eq-dec] show ?case
proof

assume ∃ j < Suc (Suc n). f (Suc (Suc n)) = f j
then show ?case by (iprover intro: le-refl)

next
assume ¬ (∃ j < Suc (Suc n). f (Suc (Suc n)) = f j)
then have nex: ∀ j < Suc (Suc n). f (Suc (Suc n)) 6= f j by iprover
let ?f = λi. if f i = Suc n then f (Suc (Suc n)) else f i
have

∧
i. i ≤ Suc n =⇒ ?f i ≤ n

proof −
fix i assume i: i ≤ Suc n
show ?thesis i
proof (cases f i = Suc n)

23

case True
from i and nex have f (Suc (Suc n)) 6= f i by simp
with True have f (Suc (Suc n)) 6= Suc n by simp
moreover from Suc have f (Suc (Suc n)) ≤ Suc n by simp
ultimately have f (Suc (Suc n)) ≤ n by simp
with True show ?thesis by simp

next
case False
from Suc and i have f i ≤ Suc n by simp
with False show ?thesis by simp

qed
qed
then have ∃ i j. i ≤ Suc n ∧ j < i ∧ ?f i = ?f j by (rule Suc)
then obtain i j where i: i ≤ Suc n and ji: j < i and f : ?f i = ?f j

by iprover
have f i = f j
proof (cases f i = Suc n)

case True
show ?thesis
proof (cases f j = Suc n)

assume f j = Suc n
with True show ?thesis by simp

next
assume f j 6= Suc n
moreover from i ji nex have f (Suc (Suc n)) 6= f j by simp
ultimately show ?thesis using True f by simp

qed
next

case False
show ?thesis
proof (cases f j = Suc n)

assume f j = Suc n
moreover from i nex have f (Suc (Suc n)) 6= f i by simp
ultimately show ?thesis using False f by simp

next
assume f j 6= Suc n
with False f show ?thesis by simp

qed
qed
moreover from i have i ≤ Suc (Suc n) by simp
ultimately show ?thesis using ji by iprover

qed
qed

extract pigeonhole pigeonhole-slow

The programs extracted from the above proofs look as follows:

pigeonhole ≡
λx. nat-induct-P x (λx. (Suc 0 , 0))

24

(λx H2 xa.
nat-induct-P (Suc (Suc x)) default
(λx H2 .

case search (Suc x) (λxb. nat-eq-dec (xa (Suc x)) (xa xb)) of
None ⇒ let (x, y) = H2 in (x, y) | Some p ⇒ (Suc x, p)))

pigeonhole-slow ≡
λx. nat-induct-P x (λx. (Suc 0 , 0))

(λx H2 xa.
case search (Suc (Suc x))

(λxb. nat-eq-dec (xa (Suc (Suc x))) (xa xb)) of
None ⇒

let (x, y) =
H2 (λi. if xa i = Suc x then xa (Suc (Suc x)) else xa i)

in (x, y)
| Some p ⇒ (Suc (Suc x), p))

The program for searching for an element in an array is

search ≡
λx H . nat-induct-P x None

(λy Ha.
case Ha of None ⇒ case H y of Left ⇒ Some y | Right ⇒ None
| Some p ⇒ Some p)

The correctness statement for pigeonhole is

(
∧

i. i ≤ Suc n =⇒ f i ≤ n) =⇒
fst (pigeonhole n f) ≤ Suc n ∧
snd (pigeonhole n f) < fst (pigeonhole n f) ∧
f (fst (pigeonhole n f)) = f (snd (pigeonhole n f))

In order to analyze the speed of the above programs, we generate ML code
from them.
instantiation nat :: default
begin

definition default = (0 ::nat)

instance ..

end

instantiation prod :: (default, default) default
begin

definition default = (default, default)

instance ..

25

end

definition test n u = pigeonhole (nat-of-integer n) (λm. m − 1)
definition test ′ n u = pigeonhole-slow (nat-of-integer n) (λm. m − 1)
definition test ′′ u = pigeonhole 8 (List.nth [0 , 1 , 2 , 3 , 4 , 5 , 6 , 3 , 7 , 8])

ML-val timeit (@{code test} 10)
ML-val timeit (@{code test ′} 10)
ML-val timeit (@{code test} 20)
ML-val timeit (@{code test ′} 20)
ML-val timeit (@{code test} 25)
ML-val timeit (@{code test ′} 25)
ML-val timeit (@{code test} 500)
ML-val timeit @{code test ′′}

end

7 Euclid’s theorem
theory Euclid
imports

HOL−Computational-Algebra.Primes
Util
HOL−Library.Code-Target-Numeral
HOL−Library.Realizers

begin

A constructive version of the proof of Euclid’s theorem by Markus Wenzel
and Freek Wiedijk [4].
lemma factor-greater-one1 : n = m ∗ k =⇒ m < n =⇒ k < n =⇒ Suc 0 < m

by (induct m) auto

lemma factor-greater-one2 : n = m ∗ k =⇒ m < n =⇒ k < n =⇒ Suc 0 < k
by (induct k) auto

lemma prod-mn-less-k: 0 < n =⇒ 0 < k =⇒ Suc 0 < m =⇒ m ∗ n = k =⇒ n
< k

by (induct m) auto

lemma prime-eq: prime (p::nat) ←→ 1 < p ∧ (∀m. m dvd p −→ 1 < m −→ m
= p)

apply (simp add: prime-nat-iff)
apply (rule iffI)
apply blast
apply (erule conjE)
apply (rule conjI)
apply assumption
apply (rule allI impI)+

26

apply (erule allE)
apply (erule impE)
apply assumption
apply (case-tac m = 0)
apply simp
apply (case-tac m = Suc 0)
apply simp
apply simp
done

lemma prime-eq ′: prime (p::nat) ←→ 1 < p ∧ (∀m k. p = m ∗ k −→ 1 < m −→
m = p)

by (simp add: prime-eq dvd-def HOL.all-simps [symmetric] del: HOL.all-simps)

lemma not-prime-ex-mk:
assumes n: Suc 0 < n
shows (∃m k. Suc 0 < m ∧ Suc 0 < k ∧ m < n ∧ k < n ∧ n = m ∗ k) ∨ prime

n
proof −

from nat-eq-dec have (∃m<n. n = m ∗ k) ∨ ¬ (∃m<n. n = m ∗ k) for k
by (rule search)

then have (∃ k<n. ∃m<n. n = m ∗ k) ∨ ¬ (∃ k<n. ∃m<n. n = m ∗ k)
by (rule search)

then show ?thesis
proof

assume ∃ k<n. ∃m<n. n = m ∗ k
then obtain k m where k: k<n and m: m<n and nmk: n = m ∗ k

by iprover
from nmk m k have Suc 0 < m by (rule factor-greater-one1)
moreover from nmk m k have Suc 0 < k by (rule factor-greater-one2)
ultimately show ?thesis using k m nmk by iprover

next
assume ¬ (∃ k<n. ∃m<n. n = m ∗ k)
then have A: ∀ k<n. ∀m<n. n 6= m ∗ k by iprover
have ∀m k. n = m ∗ k −→ Suc 0 < m −→ m = n
proof (intro allI impI)

fix m k
assume nmk: n = m ∗ k
assume m: Suc 0 < m
from n m nmk have k: 0 < k

by (cases k) auto
moreover from n have n: 0 < n by simp
moreover note m
moreover from nmk have m ∗ k = n by simp
ultimately have kn: k < n by (rule prod-mn-less-k)
show m = n
proof (cases k = Suc 0)

case True
with nmk show ?thesis by (simp only: mult-Suc-right)

27

next
case False
from m have 0 < m by simp
moreover note n
moreover from False n nmk k have Suc 0 < k by auto
moreover from nmk have k ∗ m = n by (simp only: ac-simps)
ultimately have mn: m < n by (rule prod-mn-less-k)
with kn A nmk show ?thesis by iprover

qed
qed
with n have prime n

by (simp only: prime-eq ′ One-nat-def simp-thms)
then show ?thesis ..

qed
qed

lemma dvd-factorial: 0 < m =⇒ m ≤ n =⇒ m dvd fact n
proof (induct n rule: nat-induct)

case 0
then show ?case by simp

next
case (Suc n)
from ‹m ≤ Suc n› show ?case
proof (rule le-SucE)

assume m ≤ n
with ‹0 < m› have m dvd fact n by (rule Suc)
then have m dvd (fact n ∗ Suc n) by (rule dvd-mult2)
then show ?thesis by (simp add: mult.commute)

next
assume m = Suc n
then have m dvd (fact n ∗ Suc n)

by (auto intro: dvdI simp: ac-simps)
then show ?thesis by (simp add: mult.commute)

qed
qed

lemma dvd-prod [iff]: n dvd (
∏

m::nat ∈# mset (n # ns). m)
by (simp add: prod-mset-Un)

definition all-prime :: nat list ⇒ bool
where all-prime ps ←→ (∀ p∈set ps. prime p)

lemma all-prime-simps:
all-prime []
all-prime (p # ps) ←→ prime p ∧ all-prime ps
by (simp-all add: all-prime-def)

lemma all-prime-append: all-prime (ps @ qs) ←→ all-prime ps ∧ all-prime qs
by (simp add: all-prime-def ball-Un)

28

lemma split-all-prime:
assumes all-prime ms and all-prime ns
shows ∃ qs. all-prime qs ∧
(
∏

m::nat ∈# mset qs. m) = (
∏

m::nat ∈# mset ms. m) ∗ (
∏

m::nat ∈# mset
ns. m)
(is ∃ qs. ?P qs ∧ ?Q qs)

proof −
from assms have all-prime (ms @ ns)

by (simp add: all-prime-append)
moreover
have (

∏
m::nat ∈# mset (ms @ ns). m) = (

∏
m::nat ∈# mset ms. m) ∗

(
∏

m::nat ∈# mset ns. m)
using assms by (simp add: prod-mset-Un)

ultimately have ?P (ms @ ns) ∧ ?Q (ms @ ns) ..
then show ?thesis ..

qed

lemma all-prime-nempty-g-one:
assumes all-prime ps and ps 6= []
shows Suc 0 < (

∏
m::nat ∈# mset ps. m)

using ‹ps 6= []› ‹all-prime ps›
unfolding One-nat-def [symmetric]
by (induct ps rule: list-nonempty-induct)

(simp-all add: all-prime-simps prod-mset-Un prime-gt-1-nat less-1-mult del:
One-nat-def)

lemma factor-exists: Suc 0 < n =⇒ (∃ ps. all-prime ps ∧ (
∏

m::nat ∈# mset ps.
m) = n)
proof (induct n rule: nat-wf-ind)

case (1 n)
from ‹Suc 0 < n›
have (∃m k. Suc 0 < m ∧ Suc 0 < k ∧ m < n ∧ k < n ∧ n = m ∗ k) ∨ prime

n
by (rule not-prime-ex-mk)

then show ?case
proof

assume ∃m k. Suc 0 < m ∧ Suc 0 < k ∧ m < n ∧ k < n ∧ n = m ∗ k
then obtain m k where m: Suc 0 < m and k: Suc 0 < k and mn: m < n

and kn: k < n and nmk: n = m ∗ k
by iprover

from mn and m have ∃ ps. all-prime ps ∧ (
∏

m::nat ∈# mset ps. m) = m
by (rule 1)

then obtain ps1 where all-prime ps1 and prod-ps1-m: (
∏

m::nat ∈# mset
ps1 . m) = m

by iprover
from kn and k have ∃ ps. all-prime ps ∧ (

∏
m::nat ∈# mset ps. m) = k

by (rule 1)
then obtain ps2 where all-prime ps2 and prod-ps2-k: (

∏
m::nat ∈# mset

29

ps2 . m) = k
by iprover

from ‹all-prime ps1 › ‹all-prime ps2 ›
have ∃ ps. all-prime ps ∧ (

∏
m::nat ∈# mset ps. m) =

(
∏

m::nat ∈# mset ps1 . m) ∗ (
∏

m::nat ∈# mset ps2 . m)
by (rule split-all-prime)

with prod-ps1-m prod-ps2-k nmk show ?thesis by simp
next

assume prime n then have all-prime [n] by (simp add: all-prime-simps)
moreover have (

∏
m::nat ∈# mset [n]. m) = n by (simp)

ultimately have all-prime [n] ∧ (
∏

m::nat ∈# mset [n]. m) = n ..
then show ?thesis ..

qed
qed

lemma prime-factor-exists:
assumes N : (1 ::nat) < n
shows ∃ p. prime p ∧ p dvd n

proof −
from N obtain ps where all-prime ps and prod-ps: n = (

∏
m::nat ∈# mset

ps. m)
using factor-exists by simp iprover

with N have ps 6= []
by (auto simp add: all-prime-nempty-g-one)

then obtain p qs where ps: ps = p # qs
by (cases ps) simp

with ‹all-prime ps› have prime p
by (simp add: all-prime-simps)

moreover from ‹all-prime ps› ps prod-ps have p dvd n
by (simp only: dvd-prod)

ultimately show ?thesis by iprover
qed

Euclid’s theorem: there are infinitely many primes.
lemma Euclid: ∃ p::nat. prime p ∧ n < p
proof −

let ?k = fact n + (1 ::nat)
have 1 < ?k by simp
then obtain p where prime: prime p and dvd: p dvd ?k

using prime-factor-exists by iprover
have n < p
proof −

have ¬ p ≤ n
proof

assume pn: p ≤ n
from ‹prime p› have 0 < p by (rule prime-gt-0-nat)
then have p dvd fact n using pn by (rule dvd-factorial)
with dvd have p dvd ?k − fact n by (rule dvd-diff-nat)
then have p dvd 1 by simp

30

with prime show False by auto
qed
then show ?thesis by simp

qed
with prime show ?thesis by iprover

qed

extract Euclid

The program extracted from the proof of Euclid’s theorem looks as follows.

Euclid ≡ λx. prime-factor-exists (fact x + 1)

The program corresponding to the proof of the factorization theorem is

factor-exists ≡
λx. nat-wf-ind-P x

(λx H2 .
case not-prime-ex-mk x of None ⇒ [x]
| Some p ⇒ let (x, y) = p in split-all-prime (H2 x) (H2 y))

instantiation nat :: default
begin

definition default = (0 ::nat)

instance ..

end

instantiation list :: (type) default
begin

definition default = []

instance ..

end

primrec iterate :: nat ⇒ (′a ⇒ ′a) ⇒ ′a ⇒ ′a list
where

iterate 0 f x = []
| iterate (Suc n) f x = (let y = f x in y # iterate n f y)

lemma factor-exists 1007 = [53 , 19] by eval
lemma factor-exists 567 = [7 , 3 , 3 , 3 , 3] by eval
lemma factor-exists 345 = [23 , 5 , 3] by eval
lemma factor-exists 999 = [37 , 3 , 3 , 3] by eval
lemma factor-exists 876 = [73 , 3 , 2 , 2] by eval

31

lemma iterate 4 Euclid 0 = [2 , 3 , 7 , 71] by eval

end

References

[1] U. Berger, H. Schwichtenberg, and M. Seisenberger. The Warshall algo-
rithm and Dickson’s lemma: Two examples of realistic program extrac-
tion. Journal of Automated Reasoning, 26:205–221, 2001.

[2] T. Coquand and D. Fridlender. A proof of Higman’s lemma by structural
induction. Technical report, Chalmers University, November 1993.

[3] A. Nogin. Writing constructive proofs yielding efficient extracted pro-
grams. In D. Galmiche, editor, Proceedings of the Workshop on Type-
Theoretic Languages: Proof Search and Semantics, volume 37 of Elec-
tronic Notes in Theoretical Computer Science. Elsevier Science Publish-
ers, 2000.

[4] M. Wenzel and F. Wiedijk. A comparison of the mathematical proof
languages Mizar and Isar. Journal of Automated Reasoning, 29(3-
4):389–411, 2002.

32

	Auxiliary lemmas used in program extraction examples
	Quotient and remainder
	Greatest common divisor
	Warshall's algorithm
	Higman's lemma
	Extracting the program
	Some examples

	The pigeonhole principle
	Euclid's theorem

