Examples for program extraction in Higher-Order
Logic

Stefan Berghofer

September 11, 2023

Contents

1 Auxiliary lemmas used in program extraction examples 1
2 Quotient and remainder 3
3 Greatest common divisor 4
4 Warshall's algorithm 6
5 Higman's lemma 11
5.1 Extracting the program 18
5.2 Some examples 19
6 The pigeonhole principle 21
7 Euclid's theorem 26
1 Auxiliary lemmas used in program extraction examples

```
theory Util
imports Main
begin
Decidability of equality on natural numbers.
lemma nat-eq-dec: \bigwedgen::nat. m=n\vee 
    apply (induct m)
    apply (case-tac n)
    apply (case-tac [3] n)
    apply (simp only: nat.simps, iprover?)+
    done
```

Well-founded induction on natural numbers, derived using the standard structural induction rule.

```
lemma nat-wf-ind:
    assumes R: \bigwedgex::nat. (\bigwedgey.y<x\LongrightarrowP y)\LongrightarrowPx
    shows Pz
proof (rule R)
    show }\y.y<z\LongrightarrowP
    proof (induct z)
        case 0
        then show ?case by simp
    next
        case (Suc n y)
        from nat-eq-dec show ?case
        proof
            assume ny: n= y
            have P n
                by (rule R) (rule Suc)
            with ny show ?case by simp
        next
            assume n\not=y
            with Suc have y<n by simp
            then show ?case by (rule Suc)
        qed
    qed
qed
```

Bounded search for a natural number satisfying a decidable predicate.

```
lemma search:
    assumes dec: \bigwedgex::nat. P x \vee ᄀP P
    shows (\existsx<y.P x)\vee\neg(\existsx<y.P x)
proof (induct y)
    case 0
    show ?case by simp
next
    case (Suc z)
    then show ?case
    proof
        assume }\existsx<z.P
        then obtain }x\mathrm{ where le: x<z and P:P x by iprover
        from le have x<Suc z by simp
        with P show ?case by iprover
    next
        assume nex: }\neg(\existsx<z.Px
        from dec show ?case
        proof
            assume P: Pz
            have z<Sucz by simp
            with P show ?thesis by iprover
        next
```

```
        assume nP:\negPz
        have }\neg(\existsx<\mathrm{ Suc z. P x}
        proof
            assume \existsx<Suc z. P x
            then obtain x where le:x<Sucz and P:Px}\mathrm{ by iprover
            have }x<
            proof (cases x=z)
                case True
                with nP and P show ?thesis by simp
            next
                case False
                with le show ?thesis by simp
            qed
            with P have }\existsx<z.Px\mathrm{ by iprover
            with nex show False ..
            qed
            then show ?case by iprover
        qed
    qed
qed
end
```


2 Quotient and remainder

theory QuotRem
imports Util HOL-Library.Realizers
begin
Derivation of quotient and remainder using program extraction.

```
theorem division: \(\exists r q . a=\) Suc \(b * q+r \wedge r \leq b\)
proof (induct a)
    case 0
    have \(0=S u c b * 0+0 \wedge 0 \leq b\) by simp
    then show? case by iprover
next
    case (Suc a)
    then obtain \(r q\) where \(I: a=S u c b * q+r\) and \(r \leq b\) by iprover
    from nat-eq-dec show ?case
    proof
        assume \(r=b\)
        with \(I\) have Suc \(a=S u c b *(S u c q)+0 \wedge 0 \leq b\) by simp
        then show? case by iprover
    next
        assume \(r \neq b\)
        with \(\langle r \leq b\rangle\) have \(r<b\) by (simp add: order-less-le)
        with \(I\) have Suc \(a=\) Suc \(b * q+(\) Suc \(r) \wedge(\) Suc \(r) \leq b\) by simp
        then show? case by iprover
    qed
```


qed

extract division
The program extracted from the above proof looks as follows

```
division \(\equiv\)
\(\lambda x x a\).
    nat-induct-P \(x(0,0)\)
    \((\lambda a H\). let \((x, y)=H\)
            in case nat-eq-dec \(x\) xa of Left \(\Rightarrow(0\), Suc \(y)\)
                        \(\mid\) Right \(\Rightarrow(\) Suc \(x, y))\)
```

The corresponding correctness theorem is

```
a=Suc b*snd (division a b) +fst (division a b) ^fst (division a b) \leqb
```

lemma division $92=(0,3)$ by eval
end

3 Greatest common divisor

```
theory Greatest-Common-Divisor
imports QuotRem
begin
theorem greatest-common-divisor:
    \n::nat. Suc m < n\Longrightarrow
        \existskn1 m1.k*n1=n^k*m1=Suc m ^
        (\forallll1 l2.l*l1 = n\longrightarrowl*l2 =Suc m\longrightarrowl\leqk)
proof (induct m rule: nat-wf-ind)
    case (1 m n)
    from division obtain rq where h1:n=Suc m*q+r and h2:r\leqm
        by iprover
    show ?case
    proof (cases r)
        case 0
        with h1 have Suc m * q=n by simp
        moreover have Suc m*1=Suc m by simp
        moreover have l*l1=n\Longrightarrowl*l2=Suc m\Longrightarrowl\leqSuc m for ll1 l2
            by (cases l2) simp-all
        ultimately show ?thesis by iprover
    next
        case (Suc nat)
        with h2 have h: nat < m by simp
        moreover from h have Suc nat <Suc m by simp
        ultimately have \existsk m1 r1.k*m1=Suc m ^k*r1=Suc nat ^
            (\foralll l1 l2. l * l1 = Suc m \longrightarrowl*l2 = Suc nat }\longrightarrowl\leqk
```

```
        by (rule 1)
        then obtain km1r1 where h1':k*m1=Suc m
            and h2':k*r1 = Suc nat
            and h3': ^ll1 l2. l*l1=Suc m\Longrightarrowl*l2 = Suc nat \Longrightarrowl\leqk
            by iprover
    have mn: Suc m<n by (rule 1)
    from h1 h1'h2' Suc have k*(m1*q+r1)=n
        by (simp add: add-mult-distrib2 mult.assoc [symmetric])
    moreover have l\leqk if ll1n:l*l1=n and ll2m: l*l2 =Suc m for l l1 l2
    proof -
        have l*(l1-l2*q)=Suc nat
        by (simp add: diff-mult-distrib2 h1 Suc [symmetric] mn ll1n ll2m [symmetric])
        with ll2m show l \leqk by (rule h3')
    qed
    ultimately show ?thesis using h1' by iprover
    qed
qed
extract greatest-common-divisor
The extracted program for computing the greatest common divisor is
```

```
greatest-common-divisor \equiv
```

greatest-common-divisor \equiv
\lambdax. nat-wf-ind-P x
\lambdax. nat-wf-ind-P x
(\lambdax H2 xa.
(\lambdax H2 xa.
let (xa,y)= division xa x
let (xa,y)= division xa x
in nat-exhaust-P xa (Suc x, y, 1)
in nat-exhaust-P xa (Suc x, y, 1)
(\lambdanat.let (x, ya) = H2 nat (Suc x); (xa, ya) = ya
(\lambdanat.let (x, ya) = H2 nat (Suc x); (xa, ya) = ya
in (x,xa*y+ya,xa)))
in (x,xa*y+ya,xa)))
instantiation nat :: default
instantiation nat :: default
begin
begin
definition default = (0::nat)
definition default = (0::nat)
instance ..
instance ..
end
end
instantiation prod :: (default, default) default
instantiation prod :: (default, default) default
begin
begin
definition default = (default, default }
definition default = (default, default }
instance ..
instance ..
end
end
instantiation fun :: (type, default) default
instantiation fun :: (type, default) default
begin

```
begin
```

```
definition default }=(\lambdax.\mathrm{ default }
```

instance ..
end
lemma greatest-common-divisor $712=(4,3,2)$ by eval
end

4 Warshall's algorithm

theory Warshall
imports HOL-Library.Realizers
begin
Derivation of Warshall's algorithm using program extraction, based on Berger, Schwichtenberg and Seisenberger [1].

```
datatype b =T|F
```



```
where
    is-path'r rx[] z\longleftrightarrowrxz=T
| is-path'}rx(y#ys)z\longleftrightarrowrxy=T^is-path'r r y ys
definition is-path :: (nat }=>\mathrm{ nat }=>b)=>(nat * nat list * nat) => nat => nat => 
nat }=>\mathrm{ bool
    where is-path r pijk\longleftrightarrow
        fst p = j^ snd (snd p)=k^
        list-all ( }\lambdax.x<i)(fst (snd p)) ^
        is-path'r r fst p) (fst (snd p)) (snd (snd p))
```



```
    where conc p q=(fst p, fst (snd p)@ fst q# fst (snd q), snd (snd q))
theorem is-path'_snoc [simp]: \x. is-path'r r (ys @ [y])z=(is-path'r r y ys y ^
ryz=T)
    by (induct ys) simp+
theorem list-all-scoc [simp]: list-all P (xs @ [x]) \longleftrightarrowP x ^ list-all P xs
    by (induct xs) (simp+, iprover)
theorem list-all-lemma: list-all P xs \Longrightarrow(\bigwedgex. Px\LongrightarrowQ x)\Longrightarrow list-all Q xs
proof -
    assume PQ: \bigwedgex. P x \Longrightarrow Q x
    show list-all P xs \Longrightarrow list-all Q xs
    proof (induct xs)
        case Nil
```

```
        show ?case by simp
    next
        case (Cons y ys)
        then have Py: P y by simp
        from Cons have Pys: list-all P ys by simp
        show ?case
            by simp (rule conjI PQ Py Cons Pys)+
        qed
qed
theorem lemma1: \p. is-path r p ijk\Longrightarrow is-path r p (Suc i) jk
    unfolding is-path-def
    apply (simp cong add: conj-cong add: split-paired-all)
    apply (erule conjE)+
    apply (erule list-all-lemma)
    apply simp
    done
theorem lemma2: \p. is-path rp 0 jk\Longrightarrowrjk=T
    unfolding is-path-def
    apply (simp cong add: conj-cong add: split-paired-all)
    apply (case-tac a)
    apply simp-all
    done
theorem is-path'-conc: is-path' r j xs i\Longrightarrow is-path'r r i ys k\Longrightarrow
    is-path'r r (xs @ i # ys)k
proof -
    assume pys: is-path'r r i ys k
    show \j. is-path'r r jxs i\Longrightarrow is-path'r rj(xs @ i##ys)k
    proof (induct xs)
        case (Nil j)
        then have rji=T by simp
        with pys show ?case by simp
    next
        case (Cons z zs j)
        then have jzr: r jz=T by simp
        from Cons have pzs: is-path'r rzs i by simp
        show ?case
            by simp (rule conjI jzr Cons pzs)+
    qed
qed
theorem lemma3:
\(\bigwedge p q\). is-path rpiji \(\Longrightarrow\) is-path \(r q i i k \Longrightarrow\) is-path r (conc pq) (Suc i) \(j k\)
apply (unfold is-path-def conc-def)
apply (simp cong add: conj-cong add: split-paired-all)
apply (erule conjE)+
```

```
apply (rule conjI)
apply (erule list-all-lemma)
apply simp
apply (rule conjI)
apply (erule list-all-lemma)
apply simp
apply (rule is-path'-conc)
apply assumption+
done
```

theorem lemma5:
$\bigwedge p$. is-path rp(Suc i) $j k \Longrightarrow \neg$ is-path r pijk \Longrightarrow
$(\exists q$. is-path $r q i j i) \wedge\left(\exists q^{\prime}\right.$. is-path $\left.r q^{\prime} i i k\right)$
proof (simp cong add: conj-cong add: split-paired-all is-path-def, (erule conjE)+)
fix $x s$
assume asms:
list-all $(\lambda x . x<S u c i) x s$
is-path' r j xs k
\neg list-all $(\lambda x . x<i) x s$
show $(\exists$ ys. list-all $(\lambda x . x<i)$ ys \wedge is-path'r j ys $i) \wedge$
$\left(\exists\right.$ ys. list-all $\left.(\lambda x . x<i) y s \wedge i s-p a t h{ }^{\prime} r i y s k\right)$
proof
have $\bigwedge j$. list-all $(\lambda x . x<$ Suc $i) x s \Longrightarrow i s-p a t h '^{\prime} r j x s k \Longrightarrow$
\neg list-all $(\lambda x . x<i) x s \Longrightarrow$
\exists ys. list-all $(\lambda x . x<i) y s \wedge i s-p a t h^{\prime} r j$ ys i (is PROP ?ih $\left.x s\right)$
proof (induct $x s$)
case Nil
then show? case by simp
next
case (Cons a as j)
show ?case
proof (cases $a=i$)
case True
show ?thesis
proof
from True and Cons have r ji $i=T$ by simp
then show list-all $(\lambda x . x<i)[] \wedge i s-p a t h^{\prime} r j[] i$ by simp
qed
next
case False
have PROP ?ih as by (rule Cons)
then obtain $y s$ where ys: list-all $(\lambda x . x<i) y s \wedge i s-p a t h^{\prime} r$ a ys i
proof
from Cons show list-all ($\lambda x . x<S u c i)$ as by simp
from Cons show is-path' r a as k by simp
from Cons and False show \neg list-all $(\lambda x . x<i)$ as by (simp)
qed
show ?thesis
proof

```
            from Cons False ys
            show list-all (\lambdax. x<i)(a#ys) ^is-path'r r j(a#ys) i by simp
        qed
        qed
    qed
    from this asms show \existsys.list-all ( }\lambdax.x<i) ys \wedge is-path'r r j ys i
    have \k.list-all ( }\lambdax.x<Suci) xs\Longrightarrow \s-path'r r jxs k
        \neg ~ l i s t - a l l ~ ( ~ \lambda x . ~ x < i ) x s \Longrightarrow
        \existsys.list-all ( }\lambdax.x<i) ys \wedgeis-path'r i ys k (is PROP ?ih xs
    proof (induct xs rule: rev-induct)
        case Nil
        then show ?case by simp
    next
        case (snoc a as k)
        show ?case
        proof (cases a=i)
            case True
            show ?thesis
            proof
                from True and snoc have rik=T by simp
                    then show list-all ( }\lambdax.x<i)[]^is-path'r i [] k by sim
        qed
    next
            case False
            have PROP ?ih as by (rule snoc)
            then obtain ys where ys: list-all ( }\lambdax.x<i) ys \wedge is-path'r r i ys a
            proof
            from snoc show list-all ( }\lambdax.x<Suc i) as by sim
            from snoc show is-path'r r as a by simp
            from snoc and False show }\neg\mathrm{ list-all }(\lambdax.x<i) as by sim
        qed
        show ?thesis
        proof
            from snoc False ys
            show list-all (\lambdax.x<i)(ys @ [a])^is-path'ri(ys @ [a])k
                by }\operatorname{simp
            qed
        qed
    qed
    from this asms show \existsys. list-all ( }\lambdax.x<i) ys^is-path'r ri ysk
    qed
qed
theorem lemma5 \({ }^{\prime}\) :
\(\bigwedge p\). is-path rp(Suc i) jk \(\quad\) 万is-path rpijk \(\Longrightarrow\)
        \neg(\forallq.\neg is-path rqiji)^\neg(\forall\mp@subsup{q}{}{\prime}.\neg is-path r q}\mp@subsup{q}{}{\prime}iik
    by (iprover dest: lemma5)
theorem warshall: }\bigwedgejk.\neg(\existsp. is-path r pijk)\vee(\existsp.is-path r pijk
```

```
proof (induct i)
    case (0 j k)
    show ?case
    proof (cases r jk)
        assume r jk=T
        then have is-path r (j, [],k) 0 jk
            by (simp add: is-path-def)
        then have \exists p. is-path rp 0jk..
        then show ?thesis ..
    next
        assume r jk=F
        then have rjk\not=T by simp
        then have }\neg(\existsp. is-path rp0jk
            by (iprover dest: lemma2)
        then show ?thesis ..
    qed
next
    case (Suc ijk)
    then show ?case
    proof
        assume h1: \neg(\existsp.is-path r pijk)
        from Suc show ?case
        proof
            assume }\neg(\exists\textrm{p}.is-path rpiji
            with h1 have }\neg(\existsp\mathrm{ . is-path r p (Suc i) jk)
            by (iprover dest: lemma5')
                then show ?case ..
        next
            assume \exists p. is-path r piji
            then obtain p}\mathrm{ where h2: is-path rpiji ..
            from Suc show ?case
            proof
                    assume }\neg(\existsp.is-path r p i i k
                    with h1 have }\neg(\exists\mathrm{ p. is-path r p (Suc i) jk)
                    by (iprover dest: lemma5')
                    then show ?case ..
            next
                    assume \existsq. is-path r q i i k
                    then obtain q}\mathrm{ where is-path r qii k..
                    with h2 have is-path r (conc p q) (Suc i) jk
                    by (rule lemma3)
                    then have }\exists\mathrm{ pq. is-path r pq(Suc i) jk..
                    then show ?case ..
            qed
        qed
    next
        assume \exists
        then have \existsp. is-path r p (Suc i) jk
            by (iprover intro: lemma1)
```

```
        then show ?case ..
    qed
qed
extract warshall
```

The program extracted from the above proof looks as follows

```
warshall \(\equiv\)
\(\lambda x\) xa \(x b\) xc.
    nat-induct-P xa
    ( \(\lambda x a x b\). case \(x\) xa \(x b\) of \(T \Rightarrow \operatorname{Some}(x a,[], x b) \mid F \Rightarrow\) None)
    ( \(\lambda x\) H2 \(x a x b\).
        case H2 xa xb of
        None \(\Rightarrow\)
            case H2 xa \(x\) of None \(\Rightarrow\) None
            | Some \(q \Rightarrow\)
                case H2 x xb of None \(\Rightarrow\) None \(\mid\) Some \(q a \Rightarrow\) Some \((\) conc \(q\) qa)
            | Some \(q \Rightarrow\) Some q)
    \(x b x c\)
```

The corresponding correctness theorem is

```
case warshall rijk of None }=>\forallx.\neg is-path rxij
| Some q = is-path r qi jk
```

ML-val @\{code warshall\}
end

5 Higman's lemma

theory Higman
imports Main
begin
Formalization by Stefan Berghofer and Monika Seisenberger, based on Coquand and Fridlender [2].
datatype letter $=A \mid B$
inductive emb :: letter list \Rightarrow letter list \Rightarrow bool
where
emb0 [Pure.intro]: emb [] bs
| emb1 [Pure.intro]: emb as bs \Longrightarrow emb as $(b \# b s)$
| emb2 [Pure.intro]: emb as bs $\Longrightarrow e m b(a \# a s)(a \# b s)$
inductive $L::$ letter list \Rightarrow letter list list \Rightarrow bool
for v :: letter list
where

```
    L0 [Pure.intro]: emb wv\LongrightarrowLv(w# ws)
| L1 [Pure.intro]:L v ws \LongrightarrowLv(w# ws)
inductive good :: letter list list }=>\mathrm{ bool
where
    good0 [Pure.intro]: L w ws\Longrightarrow good (w# ws)
| good1 [Pure.intro]: good ws \Longrightarrow good (w# ws)
inductive R :: letter }=>\mathrm{ letter list list }=>\mathrm{ letter list list }=>\mathrm{ bool
    for a :: letter
where
    R0 [Pure.intro]: R a [] []
| R1[Pure.intro]: R a vs ws\LongrightarrowRa(w#vs)((a#w)# ws)
inductive T :: letter }=>\mathrm{ letter list list }=>\mathrm{ letter list list }=>\mathrm{ bool
    for a :: letter
where
    T0 [Pure.intro]: a\not=b\LongrightarrowR b ws zs\LongrightarrowTa(w#zs) ((a#w) # zs)
| T1 [Pure.intro]: T a ws zs\LongrightarrowT a (w# ws) ((a#w) # zs)
| T2 [Pure.intro]: a\not=b\LongrightarrowT a ws zs\LongrightarrowT a ws ((b#w) #zs)
inductive bar :: letter list list }=>\mathrm{ bool
where
    bar1 [Pure.intro]: good ws \Longrightarrow bar ws
| bar2 [Pure.intro]: (\w.bar (w # ws)) \Longrightarrow bar ws
theorem prop1: bar ([] # ws)
    by iprover
theorem lemma1:L as ws \LongrightarrowL(a# as) ws
    by (erule L.induct) iprover+
lemma lemma2': R a vs ws \LongrightarrowL as vs \LongrightarrowL(a# as) ws
    supply [[simproc del: defined-all]]
    apply (induct set: R)
    apply (erule L.cases)
    apply simp+
    apply (erule L.cases)
    apply simp-all
    apply (rule LO)
    apply (erule emb2)
    apply (erule L1)
    done
lemma lemma2: R a vs ws \Longrightarrow good vs \Longrightarrow good ws
    supply [[simproc del: defined-all]]
    apply (induct set: R)
    apply iprover
    apply (erule good.cases)
```

```
apply simp-all
apply (rule good0)
apply (erule lemma2')
    apply assumption
apply (erule good1)
done
lemma lemma3': T a vs ws \LongrightarrowL as vs \LongrightarrowL(a#as)ws
    supply [[simproc del: defined-all]]
    apply (induct set:T)
    apply (erule L.cases)
    apply simp-all
    apply (rule LO)
    apply (erule emb2)
    apply (rule L1)
    apply (erule lemma1)
    apply (erule L.cases)
    apply simp-all
    apply iprover+
    done
lemma lemma3:T a ws zs \Longrightarrow good ws \Longrightarrow good zs
    supply [[simproc del: defined-all]]
    apply (induct set: T)
    apply (erule good.cases)
    apply simp-all
    apply (rule good0)
    apply (erule lemma1)
    apply (erule good1)
    apply (erule good.cases)
    apply simp-all
    apply (rule good0)
    apply (erule lemma3')
    apply iprover+
    done
lemma lemma4: R a ws zs\Longrightarrowws }\not=[]\LongrightarrowT a ws z
    supply [[simproc del: defined-all]]
    apply (induct set: R)
    apply iprover
    apply (case-tac vs)
    apply (erule R.cases)
    apply simp
    apply (case-tac a)
    apply (rule-tac b=B in T0)
    apply simp
    apply (rule R0)
    apply (rule-tac b=A in T0)
    apply simp
```

```
    apply (rule R0)
    apply simp
    apply (rule T1)
    apply simp
    done
lemma letter-neq: }a\not=b\Longrightarrowc\not=a\Longrightarrowc=b\mathrm{ for a b c :: letter
    apply (case-tac a)
    apply (case-tac b)
    apply (case-tac c, simp, simp)
    apply (case-tac c, simp, simp)
    apply (case-tac b)
    apply (case-tac c, simp, simp)
    apply (case-tac c, simp, simp)
    done
lemma letter-eq-dec: a=b\vee a\not=b for a b :: letter
    apply (case-tac a)
    apply (case-tac b)
    apply simp
    apply simp
    apply (case-tac b)
    apply simp
    apply simp
    done
theorem prop2:
    assumes ab: a\not=b and bar: bar xs
    shows \ys zs.bar ys \LongrightarrowT a xs zs \LongrightarrowTbys zs \Longrightarrow barzs
    using bar
proof induct
    fix xs zs
    assume T a xs zs and good xs
    then have good zs by (rule lemma3)
    then show bar zs by (rule bar1)
next
    fix xs ys
    assume I: \w ys zs.bar ys \LongrightarrowTa (w# xs)zs\LongrightarrowTbyszs\Longrightarrowbarzs
    assume bar ys
    then show \bigwedgezs.T a xs zs \LongrightarrowTbys zs \Longrightarrow bar zs
    proof induct
        fix ys zs
        assume T b ys zs and good ys
        then have good zs by (rule lemma3)
        then show bar zs by (rule bar1)
    next
        fix ys zs
        assume I': \wzs.T T xs zs \LongrightarrowTb (w# ys)zs \Longrightarrow bar zs
            and ys: \bigwedgew.bar (w#ys) and Ta:T a xs zs and Tb:T b ys zs
```

```
        show bar zs
        proof (rule bar2)
        fix w
        show bar (w # zs)
        proof (cases w)
            case Nil
            then show ?thesis by simp (rule prop1)
        next
            case (Cons c cs)
            from letter-eq-dec show ?thesis
            proof
                assume ca:c=a
                from ab have bar ((a# cs) #zs) by (iprover intro: I ys Ta Tb)
                then show ?thesis by (simp add: Cons ca)
                next
                    assume c\not=a
                    with ab have cb:c=b by (rule letter-neq)
                    from ab have bar ((b# #s) # zs) by (iprover intro: I' Ta Tb)
                then show ?thesis by (simp add: Cons cb)
            qed
        qed
    qed
    qed
qed
theorem prop3:
    assumes bar: bar xs
    shows \bigwedgezs. xs }\not=[]\LongrightarrowR\mathrm{ a xs zs }\Longrightarrow\mathrm{ bar zs
    using bar
proof induct
    fix xs zs
    assume R a xs zs and good xs
    then have good zs by (rule lemma2)
    then show bar zs by (rule bar1)
next
    fix xs zs
    assume I: \bigwedgewzs.w#xs # [] \Longrightarrow Ra(w#xs)zs \Longrightarrow bar zs
        and xsb: \bigwedgew.bar (w # xs) and xsn: xs # [] and R: R a xs zs
show bar zs
proof (rule bar2)
    fix w
    show bar (w # zs)
    proof (induct w)
        case Nil
        show ?case by (rule prop1)
    next
        case (Cons c cs)
        from letter-eq-dec show ?case
        proof
```

```
            assume c=a
            then show ?thesis by (iprover intro: I [simplified] R)
        next
            from R xsn have T:T a xs zs by (rule lemma4)
            assume c\not=a
            then show ?thesis by (iprover intro: prop2 Cons xsb xsn R T)
        qed
        qed
    qed
qed
theorem higman: bar []
proof (rule bar2)
    fix }
    show bar [w]
    proof (induct w)
        show bar [[]] by (rule prop1)
    next
        fix c cs assume bar [cs]
        then show bar [c# cs] by (rule prop3) (simp, iprover)
    qed
qed
primrec is-prefix :: 'a list }=>(nat=>'a)=> boo
where
    is-prefix [] f = True
| is-prefix (x # xs) f=(x=f (length xs) ^ is-prefix xs f)
theorem L-idx:
    assumes L: L wws
    shows is-prefix ws f\Longrightarrow\existsi. emb (fi) w^i< length ws
    using L
proof induct
    case (L0 v ws)
    then have emb (f (length ws)) w by simp
    moreover have length ws < length (v# ws) by simp
    ultimately show ?case by iprover
next
    case (L1 ws v)
    then obtain i where emb:emb (fi)w and i<length ws
        by simp iprover
    then have i< length ( v#ws) by simp
    with emb show ?case by iprover
qed
theorem good-idx:
    assumes good: good ws
    shows is-prefix ws f\Longrightarrow\existsij. emb (fi) (fj)\wedgei<j
    using good
```

```
proof induct
    case (good0 w ws)
    then have w}=f\mathrm{ (length ws) and is-prefix ws f by simp-all
    with good0 show ?case by (iprover dest: L-idx)
next
    case (good1 ws w)
    then show ?case by simp
qed
theorem bar-idx:
    assumes bar: bar ws
    shows is-prefix ws f\Longrightarrow\existsij. emb (fi) (fj)\wedgei<j
    using bar
proof induct
    case (bar1 ws)
    then show ?case by (rule good-idx)
next
    case (bar2 ws)
    then have is-prefix (f (length ws) # ws) f by simp
    then show?case by (rule bar2)
qed
```

Strong version: yields indices of words that can be embedded into each other.

```
theorem higman-idx: \exists(i::nat) j. emb (f i) (f j)^i<j
proof (rule bar-idx)
    show bar [] by (rule higman)
    show is-prefix [] f by simp
qed
```

Weak version: only yield sequence containing words that can be embedded into each other.

```
theorem good-prefix-lemma:
    assumes bar: bar ws
    shows is-prefix ws f\Longrightarrow\existsvs.is-prefix vs f}\wedge\mathrm{ good vs
    using bar
proof induct
    case bar1
    then show ?case by iprover
next
    case (bar2 ws)
    from bar2.prems have is-prefix (f (length ws) # ws) f by simp
    then show ?case by (iprover intro: bar2)
qed
theorem good-prefix: \existsvs.is-prefix vs f ^ good vs
    using higman
    by (rule good-prefix-lemma) simp+
end
```


5.1 Extracting the program

theory Higman-Extraction
imports Higman HOL-Library.Realizers HOL-Library.Open-State-Syntax begin
declare R.induct [ind-realizer]
declare T.induct [ind-realizer]
declare L.induct [ind-realizer]
declare good.induct [ind-realizer]
declare bar.induct [ind-realizer]
extract higman-idx
Program extracted from the proof of higman-idx:
higman-idx $\equiv \lambda x$. bar-idx x higman
Corresponding correctness theorem:
$\operatorname{emb}(f(f s t($ higman-idx $f)))(f($ snd $($ higman-idx $f))) \wedge$
fst (higman-idx f) < snd (higman-idx f)
Program extracted from the proof of higman:
higman \equiv
bar2 [] (rec-list (prop1 []) (λ a w H. prop3 a $[$ a \# w] $H(R 1$ [] [] w RO) $)$)
Program extracted from the proof of prop 1:
prop1 \equiv
$\lambda x \cdot \operatorname{bar2}([] \# x)(\lambda w \cdot \operatorname{bar1}(w \#[] \# x)(\operatorname{good0} w([] \# x)(L 0[] x)))$

Program extracted from the proof of prop2:

```
prop2 =
\lambdax xa xb xc H.
    compat-barT.rec-split-barT
    (\lambdaws xa xb xba H Ha Haa. bar1 xba (lemma3 x Ha xa))
    (\lambdaws xb r xba xbb H.
        compat-barT.rec-split-barT (\lambdaws x xb H Ha.bar1 xb (lemma3 xa Ha x))
            (\lambdawsa xb ra xc H Ha.
                bar2 xc
                    (\lambdaw. case w of [] # prop1 xc
                    | a # list }
                                    case letter-eq-dec a x of
                                    Left =
                                    r list wsa ((x # list) # xc) (bar2 wsa xb)
                            (T1 ws xc list H) (T2 x wsa xc list Ha)
                            | Right =
```

```
                                    ra list ((xa # list) # xc) (T2 xa ws xc list H)
                                    (T1 wsa xc list Ha)))
        H xbb)
H xb xc
```

Program extracted from the proof of prop3:

```
prop3 \(\equiv\)
\(\lambda x\) xa \(H\).
    compat-barT.rec-split-barT ( \(\lambda\) ws xa xb H. bar1 xb (lemma2 x H xa))
    ( \(\lambda\) ws xa r xb \(H\).
                bar2 \(x b\)
                (rec-list (prop1 \(x b\) )
                    ( \(\lambda a w\) Ha.
                                    case letter-eq-dec a x of
                                    Left \(\Rightarrow r w((x \# w) \# x b)(R 1\) ws \(x b w H)\)
                                    Right \(\Rightarrow\)
                                    prop2 a \(x\) ws (( \(a \neq w) \#\) xb) Ha (bar2 ws xa)
                                    (T0 x ws xb w H) (T2 a ws xb w (lemma4 \(x H))\) ))
    H xa
```


5.2 Some examples

instantiation $L T$ and $T T$:: default
begin
definition default $=$ LO[][]
definition default $=$ T0 A [] [] [] R0
instance ..
end
function $m k$-word-aux $::$ nat \Rightarrow Random.seed \Rightarrow letter list \times Random.seed where

```
    mk-word-aux \(k=\) exec \(\{\)
        \(i \leftarrow\) Random.range 10;
        (if \(i>7 \wedge k>2 \vee k>1000\) then Pair []
        else exec \{
            let \(l=(\) if \(i \bmod 2=0\) then \(A\) else \(B)\);
            \(l s \leftarrow m k\)-word-aux (Suc \(k\) );
            Pair ( \(l \# l s\) )
        \})\}
    by pat-completeness auto
termination
    by (relation measure ((-) 1001)) auto
definition mk-word \(::\) Random.seed \(\Rightarrow\) letter list \(\times\) Random.seed
```

```
    where \(m k\)-word \(=m k\)-word-aux 0
primrec \(m k\)-word-s \(::\) nat \(\Rightarrow\) Random.seed \(\Rightarrow\) letter list \(\times\) Random.seed
where
    mk-word-s \(0=m k\)-word
\(\mid m k\)-word-s \((\) Suc \(n)=\) exec \(\{\)
        \(-\leftarrow m k\)-word;
        \(m k\)-word-s \(n\)
    \}
definition \(g 1\) :: nat \(\Rightarrow\) letter list
    where g1 s =fst ( \(m k\)-word-s \(s(20000,1))\)
definition g2 :: nat \(\Rightarrow\) letter list
    where \(g 2 s=f s t(m k\)-word-s \(s(50000,1))\)
fun \(f 1\) :: nat \(\Rightarrow\) letter list
where
    f1 \(0=[A, A]\)
\(\mid f 1(\) Suc 0\()=[B]\)
\(\mid f 1(\) Suc (Suc 0) \()=[A, B]\)
| f1- = []
fun f2 :: nat \(\Rightarrow\) letter list
where
    f2 \(0=[A, A]\)
| f2 (Suc 0) \(=[B]\)
|f2 \((\) Suc \((\) Suc 0\())=[B, A]\)
| \(\mathrm{f2}\) - = []
ML-val 〈
    local
        val higman-idx \(=@\{\) code higman-idx \(\}\);
        val g1 \(=@\{\) code g1 \(\}\);
        val g2 \(=@\{\) code g2 \(\}\);
        val f1 \(=@\{\) code f1 \(\}\);
        val f2 \(=@\{\) code f2 \(\} ;\)
    in
        val \((i 1, j 1)=\) higman-idx g1;
        val \((v 1, w 1)=(g 1 i 1, g 1 j 1)\);
        val \((i 2, j 2)=\) higman-idx g2;
        val \((v 2, w 2)=(g 2 i 2, g 2 j 2)\);
        val \((i 3, j 3)=\) higman-idx f1;
        \(\operatorname{val}(v 3, w 3)=(f 1 i 3, f 1 j 3)\);
        \(\operatorname{val}(i 4, j 4)=\) higman-idx f2;
        val \(\left(v_{4}, w_{4}\right)=\left(f 2 i_{4}, f 2 j_{4}\right)\);
    end;
\(>\)
```

end

6 The pigeonhole principle

```
theory Pigeonhole
imports Util HOL-Library.Realizers HOL-Library.Code-Target-Numeral
begin
```

We formalize two proofs of the pigeonhole principle, which lead to extracted programs of quite different complexity. The original formalization of these proofs in Nuprl is due to Aleksey Nogin [3].
This proof yields a polynomial program.

```
theorem pigeonhole:
    \(\bigwedge f .(\bigwedge i . i \leq\) Suc \(n \Longrightarrow f i \leq n) \Longrightarrow \exists i j . i \leq\) Suc \(n \wedge j<i \wedge f i=f j\)
proof (induct \(n\) )
    case 0
    then have Suc \(0 \leq\) Suc \(0 \wedge 0<\) Suc \(0 \wedge f(\) Suc 0\()=f 0\) by simp
    then show ?case by iprover
next
    case (Suc n)
    have \(r\) :
        \(k \leq\) Suc (Suc n) \(\Longrightarrow\)
        \((\bigwedge i j\). Suc \(k \leq i \Longrightarrow i \leq \operatorname{Suc}(\) Suc \(n) \Longrightarrow j<i \Longrightarrow f i \neq f j) \Longrightarrow\)
        \((\exists i j . i \leq k \wedge j<i \wedge f i=f j)\) for \(k\)
    proof (induct \(k\) )
        case 0
        let ?f \(=\lambda i\). if \(f i=\) Suc \(n\) then \(f(\) Suc (Suc n)) else \(f i\)
        have \(\neg(\exists i j\). \(i \leq\) Suc \(n \wedge j<i \wedge\) ?f \(i=\) ?f \(j)\)
        proof
            assume \(\exists i j\). \(i \leq \operatorname{Suc} n \wedge j<i \wedge\) ?f \(i=\) ?f \(j\)
            then obtain \(i j\) where \(i: i \leq S u c n\) and \(j: j<i\) and \(f:\) ?f \(i=\) ?f \(j\)
                by iprover
                from \(j\) have \(i\)-nz: Suc \(0 \leq i\) by simp
                from \(i\) have \(i S S n\) : \(i \leq S u c\) (Suc n) by simp
                have S0SSn: Suc \(0 \leq S u c\) (Suc n) by simp
                show False
                proof cases
                assume \(f i\) : \(f i=\) Suc \(n\)
                show False
                proof cases
                    assume \(f j\) : \(f j=S u c n\)
                            from \(i-n z\) and \(i S S n\) and \(j\) have \(f i \neq f j\) by (rule 0 )
                    moreover from \(f i\) have \(f i=f j\)
                    by (simp add: fj [symmetric])
                    ultimately show ?thesis ..
                next
                    from \(i\) and \(j\) have \(j<S u c\) (Suc n) by simp
                    with S0SSn and le-refl have \(f(S u c(S u c ~ n)) \neq f j\)
```

```
                by (rule 0)
            moreover assume fj\not=Suc n
            with fi and f have f(Suc (Suc n)) =fj by simp
            ultimately show False ..
        qed
    next
        assume fi: fi\not=Suc n
        show False
        proof cases
            from i have i<Suc (Suc n) by simp
            with S0SSn and le-refl have f(Suc (Suc n)) \not=fi
                by (rule 0)
            moreover assume fj=Suc n
            with fi and f have f(Suc (Suc n)) =fi by simp
            ultimately show False ..
    next
            from i-nz and iSSn and j
            have fi\not=fj by (rule 0)
            moreover assume fj\not=Suc n
            with fi and f have fi=fj by simp
            ultimately show False ..
            qed
    qed
qed
moreover have ?f i\leqn if i\leqSuc n for i
proof -
    from that have i:i<Suc (Suc n) by simp
    have f(Suc (Suc n)) ffi
        by (rule 0) (simp-all add: i)
    moreover have f(Suc (Suc n))\leqSuc n
        by (rule Suc) simp
    moreover from i have i\leqSuc (Suc n) by simp
    then have fi\leqSuc n by (rule Suc)
    ultimately show ?thesis
        by simp
qed
then have }\existsij.i\leqSuc n\wedgej<i\wedge\mathrm{ ?f }i=\mathrm{ ?f }
    by (rule Suc)
ultimately show ?case ..
next
case (Suc k)
from search [OF nat-eq-dec] show ?case
proof
    assume }\existsj<Suc k.f(Suc k)=f
    then show ?case by (iprover intro: le-refl)
next
    assume nex: \neg (\existsj<Suc k.f (Suc k)=fj)
    have \existsij.i\leqk^j<i\wedgefi=fj
    proof (rule Suc)
```

```
            from Suc show k\leqSuc (Suc n) by simp
            fix ij assume k:Suc k\leqi and i:i\leqSuc (Suc n)
            and j: j<i
            show fi\not=fj
            proof cases
            assume eq: i=Suc k
            show ?thesis
            proof
                    assume fi=fj
                    then have f(Suc k)=fj by (simp add: eq)
                    with nex and j and eq show False by iprover
                    qed
            next
                    assume i\not=Suc k
                        with k have Suc (Suc k)\leqi by simp
                then show ?thesis using i and j by (rule Suc)
            qed
        qed
        then show ?thesis by (iprover intro: le-SucI)
        qed
    qed
    show ?case by (rule r) simp-all
qed
```

The following proof, although quite elegant from a mathematical point of view, leads to an exponential program:
theorem pigeonhole-slow:
$\bigwedge f .(\bigwedge i . i \leq \operatorname{Suc} n \Longrightarrow f i \leq n) \Longrightarrow \exists i j . i \leq \operatorname{Suc} n \wedge j<i \wedge f i=f j$
proof (induct n)
case 0
have Suc $0 \leq$ Suc 0 ..
moreover have $0<S u c 0$..
moreover from 0 have $f(S u c 0)=f 0$ by simp
ultimately show? case by iprover
next
case (Suc n)
from search [OF nat-eq-dec] show ?case
proof
assume $\exists j<\operatorname{Suc}($ Suc $n) . f($ Suc (Suc n) $)=f j$
then show? case by (iprover intro: le-refl)
next
assume $\neg(\exists j<\operatorname{Suc}(S u c n) . f($ Suc $($ Suc $n))=f j)$
then have nex: $\forall j<\operatorname{Suc}(S u c n) . f(S u c(S u c n)) \neq f j$ by iprover
let ? $f=\lambda$ i. if $f i=$ Suc n then $f($ Suc $(S u c n))$ else $f i$
have $\wedge i . i \leq S u c n \Longrightarrow$?f $i \leq n$
proof -
fix i assume i : $i \leq S u c n$
show ?thesis i
proof (cases fi=Suc n)

```
            case True
            from i and nex have f(Suc (Suc n)) \not=fi by simp
            with True have f(Suc (Suc n))\not=Suc n by simp
            moreover from Suc have f (Suc (Suc n)) \leqSuc n by simp
            ultimately have f(Suc (Suc n)) \leqn by simp
            with True show ?thesis by simp
        next
            case False
            from Suc and i have fi\leqSuc n by simp
            with False show ?thesis by simp
        qed
    qed
    then have }\existsij.i\leqSuc n\wedgej<i\wedge ?f i=?fj by (rule Suc
    then obtain ij where i:i\leqSuc n and ji:j<i and f: ?f i=?f j
        by iprover
    have fi=fj
    proof (cases fi=Suc n)
        case True
        show ?thesis
        proof (cases fj=Suc n)
            assume fj=Suc n
            with True show ?thesis by simp
        next
            assume fj\not=Suc n
            moreover from i ji nex have f(Suc (Suc n)) \not=fj by simp
            ultimately show ?thesis using True f by simp
        qed
    next
        case False
        show ?thesis
        proof (cases fj=Suc n)
            assume fj = Suc n
            moreover from i nex have f(Suc (Suc n)) \not=fi by simp
            ultimately show ?thesis using False f by simp
        next
            assume fj\not=Suc n
            with False f show ?thesis by simp
        qed
    qed
    moreover from i have i\leqSuc (Suc n) by simp
    ultimately show ?thesis using ji by iprover
    qed
qed
extract pigeonhole pigeonhole-slow
```

The programs extracted from the above proofs look as follows:
pigeonhole \equiv
λx. nat-induct- $P x(\lambda x$. Suc 0, 0) $)$

(λx H2 $x a$

```
nat-induct-P (Suc (Suc x)) default
(\lambdax H2.
case search (Suc x) (\lambdaxb. nat-eq-dec (xa (Suc x)) (xa xb)) of
None }=>\mathrm{ let (x,y)=H2 in (x,y)| Some p }=>(\mathrm{ Suc x, p)))
```

pigeonhole-slow \equiv
λx. nat-induct-P $x(\lambda x$. Suc 0, 0) $)$
(λx H2 $x a$.
case search (Suc (Suc x))
$(\lambda x b$. nat-eq-dec (xa (Suc (Suc x))) (xa xb)) of
None \Rightarrow let $(x, y)=$

H2 (λ i. if $x a i=$ Suc x then $x a($ Suc $($ Suc $x))$ else xa $i)$
in (x, y)
\mid Some $p \Rightarrow($ Suc $($ Suc $x), p))$

The program for searching for an element in an array is

search \equiv

$\lambda x H$. nat-induct-P x None
($\lambda y \mathrm{Ha}$.
case Ha of None \Rightarrow case H y of Left \Rightarrow Some $y \mid$ Right \Rightarrow None
| Some $p \Rightarrow$ Some p)
The correctness statement for pigeonhole is

```
\((\bigwedge i . i \leq S u c n \Longrightarrow f i \leq n) \Longrightarrow\)
fst \((\) pigeonhole \(n f) \leq\) Suc \(n \wedge\)
snd (pigeonhole \(n f\) ) \(<\) fst (pigeonhole \(n f\) ) \(\wedge\)
\(f(\) fst \((\) pigeonhole \(n f))=f(\) snd \((\) pigeonhole \(n f))\)
```

In order to analyze the speed of the above programs, we generate ML code from them.
instantiation nat :: default
begin
definition default $=(0:: n a t)$
instance ..
end
instantiation prod $::$ (default, default) default
begin
definition default $=($ default, default $)$
instance ..
end
definition test $n u=$ pigeonhole (nat-of-integer n) ($\lambda m . m-1$)
definition test' $n u=$ pigeonhole-slow (nat-of-integer $n)(\lambda m . m-1)$
definition test " $u=$ pigeonhole 8 (List.nth $[0,1,2,3,4,5,6,3,7,8])$
ML-val timeit (@\{code test $\}$ 10)
ML-val timeit (@\{code test'\} 10)
ML-val timeit (@\{code test \} 20)
ML-val timeit (@\{code test'\} 20)
ML-val timeit (@\{code test $\}$ 25)
ML-val timeit (@\{code test'\} 25)
ML-val timeit (@\{code test\} 500)
ML-val timeit @\{code test $\left.{ }^{\prime \prime}\right\}$
end

7 Euclid's theorem

theory Euclid
imports
HOL-Computational-Algebra.Primes
Util
HOL-Library.Code-Target-Numeral
HOL-Library.Realizers

begin
A constructive version of the proof of Euclid's theorem by Markus Wenzel and Freek Wiedijk [4].
lemma factor-greater-one1: $n=m * k \Longrightarrow m<n \Longrightarrow k<n \Longrightarrow$ Suc $0<m$ by (induct m) auto
lemma factor-greater-one2: $n=m * k \Longrightarrow m<n \Longrightarrow k<n \Longrightarrow$ Suc $0<k$ by (induct k) auto
lemma prod-mn-less-k: $0<n \Longrightarrow 0<k \Longrightarrow$ Suc $0<m \Longrightarrow m * n=k \Longrightarrow n$ $<k$
by (induct m) auto
lemma prime-eq: prime $(p:: n a t) \longleftrightarrow 1<p \wedge(\forall m . m$ dvd $p \longrightarrow 1<m \longrightarrow m$ $=p$)
apply (simp add: prime-nat-iff)
apply (rule iffI)
apply blast
apply (erule conjE)
apply (rule conjI)
apply assumption
apply (rule allI impI)+

```
apply (erule allE)
apply (erule impE)
apply assumption
apply (case-tac m=0)
apply simp
apply (case-tac m = Suc 0)
apply simp
apply simp
done
```

lemma prime-eq': prime $(p:: n a t) \longleftrightarrow 1<p \wedge(\forall m k . p=m * k \longrightarrow 1<m \longrightarrow$
$m=p$)
by (simp add: prime-eq dvd-def HOL.all-simps [symmetric] del: HOL.all-simps)
lemma not-prime-ex-mk:
assumes n: Suc $0<n$
shows $(\exists m k$. Suc $0<m \wedge$ Suc $0<k \wedge m<n \wedge k<n \wedge n=m * k) \vee$ prime
n
proof -
from nat-eq-dec have $(\exists m<n . n=m * k) \vee \neg(\exists m<n . n=m * k)$ for k
by (rule search)
then have $(\exists k<n . \exists m<n . n=m * k) \vee \neg(\exists k<n . \exists m<n . n=m * k)$
by (rule search)
then show ?thesis
proof
assume $\exists k<n . \exists m<n . n=m * k$
then obtain $k m$ where $k: k<n$ and $m: m<n$ and $n m k: n=m * k$
by iprover
from $n m k m k$ have Suc $0<m$ by (rule factor-greater-one1)
moreover from $n m k m k$ have Suc $0<k$ by (rule factor-greater-one2)
ultimately show ?thesis using $k m n m k$ by iprover
next
assume $\neg(\exists k<n . \exists m<n . n=m * k)$
then have $A: \forall k<n . \forall m<n . n \neq m * k$ by iprover
have $\forall m k . n=m * k \longrightarrow S u c 0<m \longrightarrow m=n$
proof (intro allI impI)
fix $m k$
assume $n m k: n=m * k$
assume m : Suc $0<m$
from $n m n m k$ have $k: 0<k$
by (cases k) auto
moreover from n have n : $0<n$ by simp
moreover note m
moreover from $n m k$ have $m * k=n$ by simp
ultimately have $k n$: $k<n$ by (rule prod-mn-less- k)
show $m=n$
proof (cases $k=$ Suc 0)
case True
with $n m k$ show ?thesis by (simp only: mult-Suc-right)

```
    next
            case False
            from m have 0<m by simp
            moreover note n
            moreover from False n nmk k have Suc 0 < k by auto
            moreover from nmk have k*m=n by (simp only:ac-simps)
            ultimately have mn: m<n by (rule prod-mn-less-k)
            with kn A nmk show ?thesis by iprover
        qed
    qed
    with n have prime n
        by (simp only: prime-eq' One-nat-def simp-thms)
    then show ?thesis ..
    qed
qed
lemma dvd-factorial: 0<m\Longrightarrowm\leqn\Longrightarrowm dvd fact n
proof (induct n rule: nat-induct)
    case 0
    then show ?case by simp
next
    case (Suc n)
    from <m}\leq\mathrm{ Suc n〉 show ?case
    proof (rule le-SucE)
        assume m\leqn
        with \0<m〉 have m dvd fact n by (rule Suc)
        then have m dvd (fact n * Suc n) by (rule dvd-mult2)
        then show ?thesis by (simp add: mult.commute)
    next
        assume m=Suc n
        then have m dvd (fact n * Suc n)
            by (auto intro: dvdI simp: ac-simps)
        then show ?thesis by (simp add: mult.commute)
    qed
qed
lemma dvd-prod [iff]: n dvd (\m::nat \in# mset (n # ns). m)
    by (simp add: prod-mset-Un)
definition all-prime :: nat list }=>\mathrm{ bool
    where all-prime ps \longleftrightarrow(}\forallp\in\mathrm{ set ps. prime p)
lemma all-prime-simps:
    all-prime []
    all-prime (p#ps)\longleftrightarrow prime p}\wedge\mathrm{ all-prime ps
    by (simp-all add: all-prime-def)
lemma all-prime-append: all-prime (ps @ qs) \longleftrightarrow all-prime ps ^ all-prime qs
    by (simp add: all-prime-def ball-Un)
```

```
lemma split-all-prime:
    assumes all-prime ms and all-prime ns
    shows \exists qs. all-prime qs ^
    (\prodm::nat \in# mset qs. m)=(\prodm::nat \in# mset ms. m)* (\prod m::nat \in# mset
ns.m)
    (is \existsqs.?P qs ^ ?Q qs)
proof -
    from assms have all-prime (ms @ ns)
        by (simp add: all-prime-append)
    moreover
    have (\prodm::nat \in# mset (ms @ ns).m)=(\prodm::nat \in# mset ms.m)*
(\prodm::nat \in# mset ns.m)
    using assms by (simp add: prod-mset-Un)
    ultimately have ?P (ms@ ns)^?Q (ms @ ns)..
    then show ?thesis ..
qed
lemma all-prime-nempty-g-one:
    assumes all-prime ps and ps \not= []
    shows Suc 0 < (\prodm::nat \in# mset ps.m)
    using <ps \not= []〉<all-prime ps>
    unfolding One-nat-def [symmetric]
    by (induct ps rule: list-nonempty-induct)
            (simp-all add: all-prime-simps prod-mset-Un prime-gt-1-nat less-1-mult del:
One-nat-def)
lemma factor-exists: Suc 0<n\Longrightarrow(\exists ps.all-prime ps \wedge(\prod m::nat \in# mset ps.
m) = n)
proof (induct n rule: nat-wf-ind)
    case (1 n)
    from <Suc 0 < n`
    have (\existsmk.Suc 0<m^Suc 0<k\wedgem<n\wedgek<n\wedgen=m*k)\vee prime
n
    by (rule not-prime-ex-mk)
    then show ?case
    proof
    assume \existsmk.Suc 0<m^Suc 0<k^m<n\wedgek<n^n=m*k
    then obtain mk where m:Suc 0<m and k:Suc 0<k and mn:m<n
            and kn:k<n and nmk: n=m*k
            by iprover
            from mn and m have \existsps.all-prime ps ^(\prodm::nat \in# mset ps. m)=m
            by (rule 1)
            then obtain ps1 where all-prime ps1 and prod-ps1-m:(\prod m::nat \in# mset
ps1.m)=m
            by iprover
            from kn and k have \existsps.all-prime ps ^(\prodm::nat \in# mset ps. m)=k
                by (rule 1)
            then obtain ps2 where all-prime ps2 and prod-ps2-k: (\prod m::nat \in# mset
```

```
ps2. m) =k
            by iprover
    from <all-prime ps1〉〈all-prime ps2>
    have \existsps. all-prime ps ^(П m::nat \in# mset ps.m)=
                (Пm::nat \in# mset ps1.m)* (\prodm::nat \in# mset ps2. m)
                by (rule split-all-prime)
    with prod-ps1-m prod-ps2-k nmk show ?thesis by simp
    next
    assume prime n then have all-prime [n] by (simp add: all-prime-simps)
    moreover have (\prodm::nat \in# mset [n]. m)=n by (simp)
    ultimately have all-prime [n]^(\prodm::nat \in# mset [n].m)=n..
    then show ?thesis ..
    qed
qed
lemma prime-factor-exists:
    assumes N:(1::nat) < n
    shows \exists
proof -
    from N obtain ps where all-prime ps and prod-ps: n = (\prodm::nat \in# mset
ps.m)
    using factor-exists by simp iprover
    with N have ps \not= []
    by (auto simp add: all-prime-nempty-g-one)
    then obtain pqs where ps: ps=p#qs
        by (cases ps) simp
    with <all-prime ps` have prime p
        by (simp add: all-prime-simps)
    moreover from <all-prime ps` ps prod-ps have p dvd n
        by (simp only: dvd-prod)
    ultimately show ?thesis by iprover
qed
```

Euclid＇s theorem：there are infinitely many primes．
lemma Euclid：\exists p：：nat．prime $p \wedge n<p$
proof -
let $? k=$ fact $n+(1::$ nat $)$
have $1<$? k by simp
then obtain p where prime: prime p and $d v d: p d v d ? k$
using prime-factor-exists by iprover
have $n<p$
proof -
have $\neg p \leq n$
proof
assume $p n: p \leq n$
from 〈prime $p\rangle$ have $0<p$ by (rule prime-gt-0-nat)
then have p dvd fact n using $p n$ by (rule dvd-factorial)
with dvd have $p d v d ? k$ - fact n by (rule dvd-diff-nat)
then have $p d v d 1$ by simp
with prime show False by auto
qed
then show? ?thesis by simp
qed
with prime show ?thesis by iprover
qed
extract Euclid
The program extracted from the proof of Euclid's theorem looks as follows.
Euclid $\equiv \lambda$ x. prime-factor-exists $($ fact $x+1)$
The program corresponding to the proof of the factorization theorem is

```
factor-exists \equiv
\lambdax. nat-wf-ind-P x
    (\lambdax H2.
            case not-prime-ex-mk x of None }=>[x
            | Some p let (x,y)=p in split-all-prime (H2 x) (H2 y))
instantiation nat :: default
begin
definition default =(0::nat)
instance ..
end
instantiation list :: (type) default
begin
definition default = []
instance ..
end
primrec iterate :: nat }=>('a=>\mp@subsup{}{}{\prime}a)=>\mp@subsup{'}{}{\prime}a=>'a lis
where
    iterate 0 f x = []
| iterate (Suc n) fx=(let y=fx in y # iterate nfy)
lemma factor-exists 1007 = [53, 19] by eval
lemma factor-exists 567 = [7, 3, 3, 3, 3] by eval
lemma factor-exists 345 = [23,5, 3] by eval
lemma factor-exists 999 = [37, 3, 3, 3] by eval
lemma factor-exists 876 =[73, 3, 2, 2] by eval
```

lemma iterate 4 Euclid $0=[2,3,7,71]$ by eval
end

References

[1] U. Berger, H. Schwichtenberg, and M. Seisenberger. The Warshall algorithm and Dickson's lemma: Two examples of realistic program extraction. Journal of Automated Reasoning, 26:205-221, 2001.
[2] T. Coquand and D. Fridlender. A proof of Higman's lemma by structural induction. Technical report, Chalmers University, November 1993.
[3] A. Nogin. Writing constructive proofs yielding efficient extracted programs. In D. Galmiche, editor, Proceedings of the Workshop on TypeTheoretic Languages: Proof Search and Semantics, volume 37 of Electronic Notes in Theoretical Computer Science. Elsevier Science Publishers, 2000.
[4] M. Wenzel and F. Wiedijk. A comparison of the mathematical proof languages Mizar and Isar. Journal of Automated Reasoning, 29(3-4):389-411, 2002.

