Miscellaneous Isabelle/Isar examples

Makarius Wenzel
With contributions by Gertrud Bauer and Tobias Nipkow

September 11, 2023

Abstract

Isar offers a high-level proof (and theory) language for Isabelle. We give various examples of Isabelle/Isar proof developments, ranging from simple demonstrations of certain language features to a bit more advanced applications. The "real" applications of Isabelle/Isar are found elsewhere.

Contents

1 Structured statements within Isar proofs 2
1.1 Introduction steps 3
1.2 If-and-only-if 3
1.3 Elimination and cases 4
1.4 Induction 5
1.5 Suffices-to-show 5
2 Basic logical reasoning 6
2.1 Pure backward reasoning 6
2.2 Variations of backward vs. forward reasoning 8
2.3 A few examples from "Introduction to Isabelle" 10
2.3.1 A propositional proof 10
2.3.2 A quantifier proof 11
2.3.3 Deriving rules in Isabelle 12
3 Correctness of a simple expression compiler 13
3.1 Binary operations 13
3.2 Expressions 13
3.3 Machine 13
3.4 Compiler 14
4 Fib and Gcd commute 17
4.1 Fibonacci numbers 17
4.2 Fib and gcd commute 17
5 Basic group theory 20
5.1 Groups and calculational reasoning 20
5.2 Groups as monoids 22
5.3 More theorems of group theory 23
6 Some algebraic identities derived from group axioms - the- ory context version 24
7 Some algebraic identities derived from group axioms - proof notepad version 26
8 Hoare Logic 28
8.1 Abstract syntax and semantics 28
8.2 Primitive Hoare rules 29
8.3 Concrete syntax for assertions 31
8.4 Rules for single-step proof 33
8.5 Verification conditions 34
9 Using Hoare Logic 36
9.1 State spaces 36
9.2 Basic examples 36
9.3 Multiplication by addition 38
9.4 Summing natural numbers 39
9.5 Time 40
10 The Mutilated Checker Board Problem 41
10.1 Tilings 42
10.2 Basic properties of "below" 42
10.3 Basic properties of "evnodd" 43
10.4 Dominoes 43
10.5 Tilings of dominoes 45
10.6 Main theorem 46
11 An old chestnut 47
12 Summing natural numbers 48
12.1 Summation laws 49
1 Structured statements within Isar proofstheory Structured-Statements

```
    imports Main
begin
```


1.1 Introduction steps

notepad
begin
fix $A B$:: bool
fix $P:: ' a \Rightarrow$ bool
have $A \longrightarrow B$
proof
show B if A using that $\langle p r o o f\rangle$
qed
have $\neg A$
proof
show False if A using that $\langle p r o o f\rangle$
qed
have $\forall x . P x$
proof
show $P x$ for $x\langle p r o o f\rangle$
qed
end

1.2 If-and-only-if

```
notepad
begin
    fix \(A B\) :: bool
    have \(A \longleftrightarrow B\)
    proof
    show \(B\) if \(A\langle p r o o f\rangle\)
    show \(A\) if \(B\langle p r o o f\rangle\)
    qed
next
    fix \(A B\) :: bool
    have iff-comm: \((A \wedge B) \longleftrightarrow(B \wedge A)\)
    proof
    show \(B \wedge A\) if \(A \wedge B\)
    proof
        show \(B\) using that ..
        show \(A\) using that ..
    qed
    show \(A \wedge B\) if \(B \wedge A\)
    proof
        show \(A\) using that ..
```

```
        show B using that ..
    qed
qed
```

Alternative proof，avoiding redundant copy of symmetric argument．

```
    have iff-comm: \((A \wedge B) \longleftrightarrow(B \wedge A)\)
    proof
        show \(B \wedge A\) if \(A \wedge B\) for \(A B\)
        proof
            show \(B\) using that ..
            show \(A\) using that ..
    qed
    then show \(A \wedge B\) if \(B \wedge A\)
        by this (rule that)
    qed
end
```


1．3 Elimination and cases

notepad
begin
fix $A B C D$ ：：bool
assume $*: A \vee B \vee C \vee D$
consider（a）$A|(b) B|(c) C \mid(d) D$ using $*$ by blast
then have something
proof cases
case a thm $\langle A\rangle$
then show ？thesis $\langle p r o o f\rangle$
next
case b thm 〈 $B\rangle$
then show ？thesis \langle proof \rangle
next
case c thm $\langle C\rangle$
then show ？thesis $\langle p r o o f\rangle$
next
case d thm 〈D〉
then show ？thesis 〈proof〉
qed
next
fix $A:: ' a \Rightarrow b o o l$
fix $B:: ' b \Rightarrow{ }^{\prime} c \Rightarrow$ bool
assume $*:(\exists x . A x) \vee(\exists y z . B y z)$
consider（a）x where $A x \mid(b) y z$ where $B y z$
using＊by blast
then have something
proof cases

```
        case a thm <A x\rangle
        then show ?thesis \langleproof\rangle
    next
        case b thm <B y z>
        then show ?thesis \langleproof\rangle
    qed
end
```


1.4 Induction

notepad

begin

fix P :: nat \Rightarrow bool
fix $n::$ nat
have $P n$
proof (induct n) show P $0\langle$ proof \rangle
show $P(S u c n)$ if $P n$ for n thm $\langle P n\rangle$
using that $\langle p r o o f\rangle$
qed
end

1.5 Suffices-to-show

```
notepad
begin
    fix \(A B C\)
    assume \(r: A \Longrightarrow B \Longrightarrow C\)
    have \(C\)
    proof -
        show ?thesis when \(A(\) is ? \(A\) ) and \(B(\) is ? \(B)\)
            using that by (rule \(r\) )
        show ?A \(\langle p r o o f\rangle\)
        show ?B \(\langle\) proof \(\rangle\)
    qed
next
    fix \(a::^{\prime} a\)
    fix \(A:: ' a \Rightarrow b o o l\)
    fix \(C\)
    have \(C\)
    proof -
        show ?thesis when \(A x\) (is ?A) for \(x::^{\prime} a-\operatorname{abstract} x\)
            using that \(\langle p r o o f\rangle\)
        show ?A \(a\) - concrete \(a\)
            \(\langle p r o o f\rangle\)
    qed
end
```

end

2 Basic logical reasoning

```
theory Basic-Logic
    imports Main
begin
```


2.1 Pure backward reasoning

In order to get a first idea of how Isabelle/Isar proof documents may look like, we consider the propositions I, K, and S. The following (rather explicit) proofs should require little extra explanations.

```
lemma \(I: A \longrightarrow A\)
proof
    assume \(A\)
    show \(A\) by fact
qed
lemma \(K: A \longrightarrow B \longrightarrow A\)
proof
    assume \(A\)
    show \(B \longrightarrow A\)
    proof
        show \(A\) by fact
    qed
qed
lemma \(S:(A \longrightarrow B \longrightarrow C) \longrightarrow(A \longrightarrow B) \longrightarrow A \longrightarrow C\)
proof
    assume \(A \longrightarrow B \longrightarrow C\)
    show \((A \longrightarrow B) \longrightarrow A \longrightarrow C\)
    proof
        assume \(A \longrightarrow B\)
        show \(A \longrightarrow C\)
        proof
            assume \(A\)
            show \(C\)
            proof (rule \(m p\) )
            show \(B \longrightarrow C\) by (rule \(m p\) ) fact +
            show \(B\) by (rule \(m p\) ) fact +
            qed
        qed
    qed
qed
```

Isar provides several ways to fine-tune the reasoning, avoiding excessive de-
tail. Several abbreviated language elements are available, enabling the writer to express proofs in a more concise way, even without referring to any automated proof tools yet.
Concluding any (sub-)proof already involves solving any remaining goals by assumption ${ }^{1}$. Thus we may skip the rather vacuous body of the above proof.

```
lemma }A\longrightarrow
proof
qed
```

Note that the proof command refers to the rule method (without arguments) by default. Thus it implicitly applies a single rule, as determined from the syntactic form of the statements involved. The by command abbreviates any proof with empty body, so the proof may be further pruned.

```
lemma }A\longrightarrow
    by rule
```

Proof by a single rule may be abbreviated as double-dot.
lemma $A \longrightarrow A$..
Thus we have arrived at an adequate representation of the proof of a tautology that holds by a single standard rule. ${ }^{2}$

Let us also reconsider K. Its statement is composed of iterated connectives. Basic decomposition is by a single rule at a time, which is why our first version above was by nesting two proofs.
The intro proof method repeatedly decomposes a goal's conclusion. ${ }^{3}$

```
lemma \(A \longrightarrow B \longrightarrow A\)
proof (intro impI)
    assume \(A\)
    show \(A\) by fact
qed
```

Again, the body may be collapsed.
lemma $A \longrightarrow B \longrightarrow A$
by (intro impI)
Just like rule, the intro and elim proof methods pick standard structural rules, in case no explicit arguments are given. While implicit rules are usually just fine for single rule application, this may go too far with iteration. Thus in practice, intro and elim would be typically restricted to certain structures by giving a few rules only, e.g. proof (intro impI allI) to strip implications and universal quantifiers.

[^0]Such well-tuned iterated decomposition of certain structures is the prime application of intro and elim. In contrast, terminal steps that solve a goal completely are usually performed by actual automated proof methods (such as by blast.

2.2 Variations of backward vs. forward reasoning

Certainly, any proof may be performed in backward-style only. On the other hand, small steps of reasoning are often more naturally expressed in forward-style. Isar supports both backward and forward reasoning as a firstclass concept. In order to demonstrate the difference, we consider several proofs of $A \wedge B \longrightarrow B \wedge A$.
The first version is purely backward.

```
lemma \(A \wedge B \longrightarrow B \wedge A\)
proof
    assume \(A \wedge B\)
    show \(B \wedge A\)
    proof
        show \(B\) by (rule conjunct2) fact
        show \(A\) by (rule conjunct1) fact
    qed
qed
```

Above, the projection rules conjunct1 / conjunct2 had to be named explicitly, since the goals B and A did not provide any structural clue. This may be avoided using from to focus on the $A \wedge B$ assumption as the current facts, enabling the use of double-dot proofs. Note that from already does forward-chaining, involving the conjE rule here.

```
lemma \(A \wedge B \longrightarrow B \wedge A\)
proof
    assume \(A \wedge B\)
    show \(B \wedge A\)
    proof
        from \(\langle A \wedge B\rangle\) show \(B\)..
        from \(\langle A \wedge B\rangle\) show \(A\)..
    qed
qed
```

In the next version, we move the forward step one level upwards. Forwardchaining from the most recent facts is indicated by the then command. Thus the proof of $B \wedge A$ from $A \wedge B$ actually becomes an elimination, rather than an introduction. The resulting proof structure directly corresponds to that of the conjE rule, including the repeated goal proposition that is abbreviated as ?thesis below.
lemma $A \wedge B \longrightarrow B \wedge A$

```
proof
    assume }A\wedge
    then show }B\wedge
    proof - rule conjE of }A\wedge
        assume B A
        then show ?thesis .. - rule conjI of B}\wedge
    qed
qed
```

In the subsequent version we flatten the structure of the main body by doing forward reasoning all the time. Only the outermost decomposition step is left as backward.

```
lemma \(A \wedge B \longrightarrow B \wedge A\)
proof
    assume \(A \wedge B\)
    from \(\langle A \wedge B\rangle\) have \(A\)..
    from \(\langle A \wedge B\rangle\) have \(B\)..
    from \(\langle B\rangle\langle A\rangle\) show \(B \wedge A\).
qed
```

We can still push forward-reasoning a bit further, even at the risk of getting ridiculous. Note that we force the initial proof step to do nothing here, by referring to the - proof method.

```
lemma \(A \wedge B \longrightarrow B \wedge A\)
proof -
    \{
        assume \(A \wedge B\)
        from \(\langle A \wedge B\rangle\) have \(A\)..
        from \(\langle A \wedge B\rangle\) have \(B\)..
        from \(\langle B\rangle\langle A\rangle\) have \(B \wedge A\)..
    \}
    then show ?thesis .. - rule impI
qed
```

With these examples we have shifted through a whole range from purely backward to purely forward reasoning. Apparently, in the extreme ends we get slightly ill-structured proofs, which also require much explicit naming of either rules (backward) or local facts (forward).
The general lesson learned here is that good proof style would achieve just the right balance of top-down backward decomposition, and bottom-up forward composition. In general, there is no single best way to arrange some pieces of formal reasoning, of course. Depending on the actual applications, the intended audience etc., rules (and methods) on the one hand vs. facts on the other hand have to be emphasized in an appropriate way. This requires the proof writer to develop good taste, and some practice, of course.

For our example the most appropriate way of reasoning is probably the
middle one, with conjunction introduction done after elimination.

```
lemma }A\wedgeB\longrightarrowB\wedge
proof
    assume }A\wedge
    then show }B\wedge
    proof
        assume B A
        then show ?thesis ..
    qed
qed
```


2.3 A few examples from "Introduction to Isabelle"

We rephrase some of the basic reasoning examples of [4], using HOL rather than FOL.

2.3.1 A propositional proof

We consider the proposition $P \vee P \longrightarrow P$. The proof below involves forwardchaining from $P \vee P$, followed by an explicit case-analysis on the two $i d e n$ tical cases.

```
lemma \(P \vee P \longrightarrow P\)
proof \(\quad[A] \quad[B]\)
    assume \(P \vee P\)
    then show \(P\)
    proof - rule disjE:
        assume \(P\) show \(P\) by fact
    next
        assume \(P\) show \(P\) by fact
    qed
qed
```

Case splits are not hardwired into the Isar language as a special feature. The next command used to separate the cases above is just a short form of managing block structure.

In general, applying proof methods may split up a goal into separate "cases", i.e. new subgoals with individual local assumptions. The corresponding proof text typically mimics this by establishing results in appropriate contexts, separated by blocks.
In order to avoid too much explicit parentheses, the Isar system implicitly opens an additional block for any new goal, the next statement then closes one block level, opening a new one. The resulting behaviour is what one would expect from separating cases, only that it is more flexible. E.g. an induction base case (which does not introduce local assumptions) would not require next to separate the subsequent step case.

In our example the situation is even simpler, since the two cases actually coincide. Consequently the proof may be rephrased as follows.

```
lemma \(P \vee P \longrightarrow P\)
proof
    assume \(P \vee P\)
    then show \(P\)
    proof
        assume \(P\)
        show \(P\) by fact
        show \(P\) by fact
    qed
qed
```

Again, the rather vacuous body of the proof may be collapsed. Thus the case analysis degenerates into two assumption steps, which are implicitly performed when concluding the single rule step of the double-dot proof as follows.

```
lemma \(P \vee P \longrightarrow P\)
proof
    assume \(P \vee P\)
    then show \(P\)..
qed
```


2.3.2 A quantifier proof

To illustrate quantifier reasoning, let us prove $(\exists x . P(f x)) \longrightarrow(\exists y . P y)$. Informally, this holds because any a with $P(f a)$ may be taken as a witness for the second existential statement.
The first proof is rather verbose, exhibiting quite a lot of (redundant) detail. It gives explicit rules, even with some instantiation. Furthermore, we encounter two new language elements: the fix command augments the context by some new "arbitrary, but fixed" element; the is annotation binds term abbreviations by higher-order pattern matching.

```
lemma \((\exists x . P(f x)) \longrightarrow(\exists y . P y)\)
proof
    assume \(\exists x . P(f x)\)
    then show \(\exists y\). \(P\) y
    proof (rule exE)
        - rule exE: \(\frac{\exists x . A(x) \quad \vdots}{B}\)
        fix \(a\)
        assume \(P(f a)\) (is \(P\) ?witness)
        then show ? ?thesis by (rule exI [of \(P\) ? witness])
    qed
qed
```

While explicit rule instantiation may occasionally improve readability of certain aspects of reasoning, it is usually quite redundant. Above, the basic
proof outline gives already enough structural clues for the system to infer both the rules and their instances (by higher-order unification). Thus we may as well prune the text as follows.

```
lemma }(\existsx.P(fx))\longrightarrow(\existsy.Py
proof
    assume }\existsx.P(fx
    then show }\existsy.P
    proof
        fix a
        assume P(fa)
        then show ?thesis ..
    qed
qed
```

Explicit \exists-elimination as seen above can become quite cumbersome in practice. The derived Isar language element "obtain" provides a more handsome way to do generalized existence reasoning.

```
lemma }(\existsx.P(fx))\longrightarrow(\existsy.Py
proof
    assume }\existsx.P(fx
    then obtain a where P (fa) ..
    then show }\existsy.Py\mathrm{ ..
qed
```

Technically, obtain is similar to fix and assume together with a soundness proof of the elimination involved. Thus it behaves similar to any other forward proof element. Also note that due to the nature of general existence reasoning involved here, any result exported from the context of an obtain statement may not refer to the parameters introduced there.

2.3.3 Deriving rules in Isabelle

We derive the conjunction elimination rule from the corresponding projections. The proof is quite straight-forward, since Isabelle/Isar supports nonatomic goals and assumptions fully transparently.
theorem conjE: $A \wedge B \Longrightarrow(A \Longrightarrow B \Longrightarrow C) \Longrightarrow C$
proof -
assume $A \wedge B$
assume $r: A \Longrightarrow B \Longrightarrow C$
show C
proof (rule r)
show A by (rule conjunct1) fact
show B by (rule conjunct2) fact
qed
qed
end

3 Correctness of a simple expression compiler

theory Expr-Compiler
imports Main
begin

This is a (rather trivial) example of program verification. We model a compiler for translating expressions to stack machine instructions, and prove its correctness wrt. some evaluation semantics.

3.1 Binary operations

Binary operations are just functions over some type of values. This is both for abstract syntax and semantics, i.e. we use a "shallow embedding" here. type-synonym 'val binop $=$ 'val \Rightarrow 'val \Rightarrow 'val

3.2 Expressions

The language of expressions is defined as an inductive type, consisting of variables, constants, and binary operations on expressions.

```
datatype (dead 'adr, dead 'val) expr =
    Variable 'adr
    | Constant 'val
    Binop 'val binop ('adr, 'val) expr ('adr, 'val) expr
```

Evaluation (wrt. some environment of variable assignments) is defined by primitive recursion over the structure of expressions.

```
primrec eval :: ('adr, 'val) expr \(\Rightarrow\left({ }^{\prime} a d r \Rightarrow{ }^{\prime}\right.\) val) \(\Rightarrow{ }^{\prime}\) val
    where
        eval (Variable \(x\) ) env \(=e n v x\)
    \(\mid\) eval (Constant \(c)\) env \(=c\)
    | eval (Binop fe1 e2) env \(=f(\) eval e1 env) (eval e2 env)
```


3.3 Machine

Next we model a simple stack machine, with three instructions.

```
datatype (dead 'adr, dead 'val) instr =
    Const 'val
    | Load 'adr
    | Apply 'val binop
```

Execution of a list of stack machine instructions is easily defined as follows.
primrec exec :: (('adr, 'val) instr) list $\Rightarrow{ }^{\prime}$ val list $\Rightarrow\left({ }^{\prime} a d r \Rightarrow{ }^{\prime} v a l\right) \Rightarrow{ }^{\prime}$ val list where
exec [] stack env = stack
| exec (instr \# instrs) stack env =

```
(case instr of
    Const c=> exec instrs (c # stack) env
| Load x m exec instrs (env x # stack) env
| Apply f = exec instrs (f (hd stack) (hd (tl stack)) # (tl (tl stack))) env)
```

definition execute :: (('adr, 'val) instr) list $\Rightarrow\left({ }^{\prime} a d r \Rightarrow{ }^{\prime} v a l\right) \Rightarrow{ }^{\prime} v a l$
where execute instrs env $=h d$ (exec instrs [] env)

3.4 Compiler

We are ready to define the compilation function of expressions to lists of stack machine instructions.

```
primrec compile :: ('adr, 'val) expr \(\Rightarrow\) (('adr, 'val) instr) list
    where
    compile \((\) Variable \(x)=[\) Load \(x]\)
    \(\mid\) compile \((\) Constant \(c)=[\) Const \(c]\)
    |compile (Binop fe1 e2) = compile e2 @ compile e1 @ [Apply f]
```

The main result of this development is the correctness theorem for compile. We first establish a lemma about exec and list append.

```
lemma exec-append:
    exec (xs @ ys) stack env =
        exec ys (exec xs stack env) env
proof (induct xs arbitrary: stack)
    case Nil
    show? case by simp
next
    case (Cons \(x\) xs)
    show ?case
    proof (induct \(x\) )
        case Const
        from Cons show ?case by simp
    next
        case Load
        from Cons show ?case by simp
    next
        case Apply
        from Cons show ?case by simp
    qed
qed
theorem correctness: execute (compile e) env \(=\) eval e env
proof -
    have \(\bigwedge\) stack. exec (compile e) stack env \(=\) eval e env \# stack
    proof (induct e)
        case Variable
        show ?case by simp
    next
```

```
        case Constant
        show ?case by simp
    next
        case Binop
        then show ?case by (simp add: exec-append)
    qed
    then show ?thesis by (simp add: execute-def)
qed
```

In the proofs above, the simp method does quite a lot of work behind the scenes (mostly "functional program execution"). Subsequently, the same reasoning is elaborated in detail - at most one recursive function definition is used at a time. Thus we get a better idea of what is actually going on.

```
lemma exec-append':
    exec (xs @ ys) stack env = exec ys (exec xs stack env) env
proof (induct xs arbitrary: stack)
    case (Nil s)
    have exec ([] @ ys) senv = exec ys s env
        by simp
    also have \(\ldots=\) exec \(y s(\) exec [] s env) env
        by \(\operatorname{simp}\)
    finally show ?case .
next
    case (Cons \(x\) xs s)
    show ? case
    proof (induct \(x\) )
        case (Const val)
        have exec ((Const val \# xs) @ ys) s env=exec (Const val \# xs @ ys) senv
            by \(\operatorname{simp}\)
        also have \(\ldots=\operatorname{exec}(x s @ y s)(v a l \# s) e n v\)
            by simp
        also from Cons have \(\ldots=\) exec ys (exec xs (val \# s) env) env.
        also have \(\ldots=\) exec ys (exec (Const val \# xs) s env) env
            by \(\operatorname{simp}\)
        finally show? case .
    next
        case (Load adr)
        from Cons show ?case
            by \(\operatorname{simp}\) - same as above
    next
        case (Apply fn)
        have exec ((Apply fn \# xs) @ ys) s env =
                exec (Apply fn \# xs @ ys) s env by simp
    also have ... =
                exec (xs @ ys) (fn (hd s) (hd (tl s)) \# (tl (tl s))) env
            by \(\operatorname{simp}\)
    also from Cons have ... =
                exec ys (exec xs (fn (hd s) (hd \((t l s)) \# t l(t l s)) e n v) e n v\).
```

```
    also have ... = exec ys (exec (Apply fn # xs) s env) env
        by simp
    finally show ?case .
    qed
qed
theorem correctness': execute (compile e) env = eval e env
proof -
    have exec-compile: \stack. exec (compile e) stack env = eval e env # stack
    proof (induct e)
    case (Variable adr s)
    have exec (compile (Variable adr)) s env = exec [Load adr] s env
        by simp
    also have ... = env adr #s
        by simp
    also have env adr = eval (Variable adr) env
        by simp
    finally show ?case .
next
    case (Constant val s)
    show ?case by simp - same as above
next
    case (Binop fn e1 e2 s)
    have exec (compile (Binop fn e1 e2)) s env =
                exec (compile e2 @ compile e1 @ [Apply fn]) s env
        by simp
    also have ... = exec [Apply fn]
                (exec (compile e1) (exec (compile e2) s env) env) env
        by (simp only: exec-append)
    also have exec (compile e2) s env = eval e2 env #s
        by fact
    also have exec (compile e1) ... env = eval e1 env # ...
        by fact
    also have exec [Apply fn] \ldots env =
        fn (hd ...)(hd (tl ...)) # (tl (tl ...))
        by simp
    also have ... = fn (eval e1 env) (eval e2 env) #s
        by simp
    also have fn (eval e1 env) (eval e2 env)=
        eval (Binop fn e1 e2) env
        by simp
    finally show ?case .
qed
have execute (compile e) env = hd (exec (compile e) [] env)
    by (simp add: execute-def)
also from exec-compile have exec (compile e) [] env = [eval e env].
also have hd ... = eval e env
    by simp
```

finally show ?thesis .
qed
end

4 Fib and Gcd commute

theory Fibonacci
imports $H O L-C o m p u t a t i o n a l-A l g e b r a . P r i m e s ~$
begin ${ }^{4}$

4.1 Fibonacci numbers

fun $f i b:: n a t \Rightarrow n a t$ where fib $0=0$
fib (Suc 0) $=1$
$\mid f i b($ Suc $($ Suc $x))=f i b x+f i b($ Suc $x)$
lemma [simp]: fib $($ Suc $n)>0$
by (induct n rule: fib.induct) simp-all
Alternative induction rule.
theorem fib-induct: $P 0 \Longrightarrow P 1 \Longrightarrow(\bigwedge n . P(n+1) \Longrightarrow P n \Longrightarrow P(n+2))$
$\Longrightarrow P n$
for $n::$ nat
by (induct rule: fib.induct) simp-all

4.2 Fib and gcd commute

A few laws taken from [1].
lemma fib-add: $f i b(n+k+1)=f i b(k+1) * f i b(n+1)+f i b k * f i b n$ (is ? P n) - see [1, page 280]
proof (induct n rule: fib-induct)
show ?P 0 by simp
show ?P 1 by simp
fix n
have $f i b(n+2+k+1)$
$=f i b(n+k+1)+f i b(n+1+k+1)$ by simp
also assume $f i b(n+k+1)=f i b(k+1) * f i b(n+1)+f i b k * f i b n$ (is = ?R1)
also assume $f i b(n+1+k+1)=f i b(k+1) * f i b(n+1+1)+f i b k * f i b$ $(n+1)$
(is - = ? R2)

[^1]```
 also have ? R1 + ? R2 \(=f i b(k+1) * f i b(n+2+1)+f i b k * f i b(n+2)\)
 by (simp add: add-mult-distrib2)
 finally show ? \(P(n+2)\).
qed
lemma coprime-fib-Suc: coprime \((f i b n)(f b(n+1))\)
 (is ? P \(n\))
proof (induct \(n\) rule: \(f i b\)-induct)
 show ? P 0 by simp
 show ? P 1 by simp
 fix \(n\)
 assume \(P\) : coprime \((f i b(n+1))(f i b(n+1+1))\)
 have \(f i b(n+2+1)=f i b(n+1)+f i b(n+2)\)
 by \(\operatorname{simp}\)
 also have \(\ldots=f i b(n+2)+f i b(n+1)\)
 by \(\operatorname{simp}\)
 also have \(g c d(f i b(n+2)) \ldots=\operatorname{gcd}(f i b(n+2))(f i b(n+1))\)
 by (rule gcd-add2)
 also have \(\ldots=\operatorname{gcd}(f i b(n+1))(f i b(n+1+1))\)
 by (simp add: gcd.commute)
 also have \(\ldots=1\)
 using \(P\) by simp
 finally show ? \(P(n+2)\)
 by (simp add: coprime-iff-gcd-eq-1)
qed
lemma gcd-mult-add: \((0:: n a t)<n \Longrightarrow g c d(n * k+m) n=g c d m n\)
proof -
 assume \(0<n\)
 then have \(g c d(n * k+m) n=\operatorname{gcd} n(m \bmod n)\)
 by (simp add: gcd-non-0-nat add.commute)
 also from \(\langle 0<n\rangle\) have \(\ldots=\operatorname{gcd} m n\)
 by (simp add: gcd-non-0-nat)
 finally show ?thesis .
qed
lemma gcd-fib-add: gcd (fib m) \((f i b(n+m))=g c d(f i b m)(f i b n)\)
proof (cases m)
 case 0
 then show ?thesis by simp
next
 case (Suc k)
 then have \(g c d(f i b m)(f i b(n+m))=g c d(f b(n+k+1))(f i b(k+1))\)
 by (simp add: gcd.commute)
 also have \(f i b(n+k+1)=f i b(k+1) * f i b(n+1)+f i b k * f i b n\)
 by (rule fib-add)
 also have \(g c d \ldots(f i b(k+1))=g c d(f i b k * f i b n)(f i b(k+1))\)
 by (simp add: gcd-mult-add)
also have \(\ldots=\operatorname{gcd}(f i b n)(f i b(k+1))\)
```

using coprime-fib-Suc [of k] gcd-mult-left-right-cancel $[o f f i b(k+1)$ fib $k f i b n]$ by (simp add: ac-simps)
also have $\ldots=\operatorname{gcd}(f i b m)(f i b n)$
using Suc by (simp add: gcd.commute)
finally show? ?thesis.
qed
lemma gcd-fib-diff: $\operatorname{gcd}(f i b m)(f i b(n-m))=\operatorname{gcd}(f i b m)(f i b n)$ if $m \leq n$
proof -
have $g c d(f i b m)(f i b(n-m))=g c d(f i b m)(f i b(n-m+m))$
by (simp add: gcd-fib-add)
also from $\langle m \leq n\rangle$ have $n-m+m=n$
by $\operatorname{simp}$
finally show ?thesis.
qed
lemma $g c d-f i b-m o d: \operatorname{gcd}(f i b m)(f i b(n \bmod m))=g c d(f i b m)(f i b n)$ if $0<m$
proof (induct $n$ rule: nat-less-induct)
case hyp: (1 n)
show ?case
proof -
have $n \bmod m=($ if $n<m$ then $n$ else $(n-m) \bmod m)$
by (rule mod-if)
also have $g c d(f i b m)(f i b \ldots)=g c d(f i b m)(f i b n)$
proof (cases $n<m$ )
case True
then show ?thesis by simp
next
case False
then have $m \leq n$ by simp
from $\langle 0<m\rangle$ and False have $n-m<n$
by $\operatorname{simp}$
with hyp have $g c d(f i b m)(f i b((n-m) \bmod m))$ $=g c d(f i b m)(f i b(n-m))$ by $\operatorname{simp}$
also have $\ldots=\operatorname{gcd}(f i b m)(f i b n)$
using $\langle m \leq n\rangle$ by (rule gcd-fib-diff)
finally have $g c d(f i b m)(f i b((n-m) \bmod m))=$ gcd $(f i b m)(f i b n)$.
with False show ?thesis by simp
qed
finally show? ?thesis .
qed
qed
theorem $f i b-g c d: f i b(g c d m n)=g c d(f i b m)(f i b n)$
(is ? P $m n$ )
proof (induct $m$ rule: gcd-nat-induct)
fix $m n$ :: nat
show $f i b(g c d m 0)=g c d(f i b m)\left(\begin{array}{ll}f i b & 0\end{array}\right)$

```
 by simp
 assume n: 0<n
 then have gcd mn=gcd n (m\operatorname{mod}n)
 by (simp add: gcd-non-0-nat)
 also assume hyp: fib ... = gcd (fib n) (fib (m\operatorname{mod}n))
 also from n have ... =gcd (fib n) (fib m)
 by (rule gcd-fib-mod)
 also have ... = gcd (fib m) (fib n)
 by (rule gcd.commute)
 finally show fib (gcd m n) = gcd (fib m) (fib n).
qed
end
```


## 5 Basic group theory

theory Group
imports Main
begin

### 5.1 Groups and calculational reasoning

Groups over signature ( $*:: \alpha \Rightarrow \alpha \Rightarrow \alpha, 1:: \alpha$, inverse :: $\alpha \Rightarrow \alpha$ ) are defined as an axiomatic type class as follows. Note that the parent classes times, one, inverse is provided by the basic HOL theory.

```
class group = times + one + inverse +
 assumes group-assoc: }(x*y)*z=x*(y*z
 and group-left-one: 1*x=x
 and group-left-inverse: inverse x * x = 1
```

The group axioms only state the properties of left one and inverse, the right versions may be derived as follows.

```
theorem (in group) group-right-inverse: \(x *\) inverse \(x=1\)
proof -
 have \(x *\) inverse \(x=1 *(x *\) inverse \(x)\)
 by (simp only: group-left-one)
 also have \(\ldots=1 * x *\) inverse \(x\)
 by (simp only: group-assoc)
 also have \(\ldots=\) inverse (inverse \(x\)) * inverse \(x * x *\) inverse \(x\)
 by (simp only: group-left-inverse)
 also have \(\ldots=\) inverse (inverse \(x) *(\) inverse \(x * x) *\) inverse \(x\)
 by (simp only: group-assoc)
 also have \(\ldots=\) inverse (inverse \(x\)) * \(1 *\) inverse \(x\)
 by (simp only: group-left-inverse)
 also have \(\ldots=\) inverse (inverse \(x) *(1 *\) inverse \(x)\)
 by (simp only: group-assoc)
 also have \(\ldots=\) inverse (inverse \(x\)) * inverse \(x\)
 by (simp only: group-left-one)
```

```
 also have \(\ldots=1\)
 by (simp only: group-left-inverse)
 finally show ?thesis .
qed
```

With group-right-inverse already available, group-right-one is now established much easier.

```
theorem (in group) group-right-one: \(x * 1=x\)
proof -
 have \(x * 1=x *(\) inverse \(x * x)\)
 by (simp only: group-left-inverse)
 also have \(\ldots=x *\) inverse \(x * x\)
 by (simp only: group-assoc)
 also have \(\ldots=1 * x\)
 by (simp only: group-right-inverse)
 also have \(\ldots=x\)
 by (simp only: group-left-one)
 finally show ?thesis .
qed
```

The calculational proof style above follows typical presentations given in any introductory course on algebra. The basic technique is to form a transitive chain of equations, which in turn are established by simplifying with appropriate rules. The low-level logical details of equational reasoning are left implicit.
Note that "..." is just a special term variable that is bound automatically to the argument ${ }^{5}$ of the last fact achieved by any local assumption or proven statement. In contrast to ?thesis, the "..." variable is bound after the proof is finished.
There are only two separate Isar language elements for calculational proofs: "also" for initial or intermediate calculational steps, and "finally" for exhibiting the result of a calculation. These constructs are not hardwired into Isabelle/Isar, but defined on top of the basic Isar/VM interpreter. Expanding the also and finally derived language elements, calculations may be simulated by hand as demonstrated below.

```
theorem (in group) \(x * 1=x\)
proof -
 have \(x * 1=x *(\) inverse \(x * x)\)
 by (simp only: group-left-inverse)
 note calculation \(=\) this
 - first calculational step: init calculation register
 have \(\ldots=x *\) inverse \(x * x\)
```

[^2]```
    by (simp only: group-assoc)
note calculation = trans [OF calculation this]
    - general calculational step: compose with transitivity rule
have ... = 1 * x
    by (simp only: group-right-inverse)
note calculation = trans [OF calculation this]
    - general calculational step: compose with transitivity rule
have ... = x
    by (simp only: group-left-one)
note calculation = trans [OF calculation this]
    - final calculational step: compose with transitivity rule ...
from calculation
    - ... and pick up the final result
    show ?thesis.
qed
```

Note that this scheme of calculations is not restricted to plain transitivity. Rules like anti-symmetry, or even forward and backward substitution work as well. For the actual implementation of also and finally, Isabelle/Isar maintains separate context information of "transitivity" rules. Rule selection takes place automatically by higher-order unification.

5.2 Groups as monoids

Monoids over signature $(*:: \alpha \Rightarrow \alpha \Rightarrow \alpha, 1:: \alpha)$ are defined like this.
class monoid $=$ times + one +
assumes monoid-assoc: $(x * y) * z=x *(y * z)$
and monoid-left-one: $1 * x=x$
and monoid-right-one: $x * 1=x$
Groups are not yet monoids directly from the definition. For monoids, right-one had to be included as an axiom, but for groups both right-one and right-inverse are derivable from the other axioms. With group-right-one derived as a theorem of group theory (see ? $x *\left(1:: ?^{\prime} a\right)=? x$), we may still instantiate group \subseteq monoid properly as follows.

```
instance group \subseteqmonoid
    by intro-classes
        (rule group-assoc,
            rule group-left-one,
            rule group-right-one)
```

The instance command actually is a version of theorem, setting up a goal that reflects the intended class relation (or type constructor arity). Thus any Isar proof language element may be involved to establish this statement. When concluding the proof, the result is transformed into the intended type signature extension behind the scenes.

5.3 More theorems of group theory

The one element is already uniquely determined by preserving an arbitrary group element.

```
theorem (in group) group-one-equality:
    assumes eq: e*x=x
    shows 1 = e
proof -
    have 1=x* inverse }
        by (simp only: group-right-inverse)
    also have ... =(e*x)* inverse x
        by (simp only: eq)
    also have \ldots= e * (x* inverse x)
        by (simp only: group-assoc)
    also have ...=e*1
        by (simp only: group-right-inverse)
    also have ... = e
        by (simp only: group-right-one)
    finally show ?thesis.
qed
```

Likewise, the inverse is already determined by the cancel property.

```
theorem (in group) group-inverse-equality:
    assumes eq: \(x^{\prime} * x=1\)
    shows inverse \(x=x^{\prime}\)
proof -
    have inverse \(x=1 *\) inverse \(x\)
        by (simp only: group-left-one)
    also have \(\ldots=\left(x^{\prime} * x\right) *\) inverse \(x\)
        by (simp only: eq)
    also have \(\ldots=x^{\prime} *(x *\) inverse \(x)\)
        by (simp only: group-assoc)
    also have \(\ldots=x^{\prime} * 1\)
        by (simp only: group-right-inverse)
    also have \(\ldots=x^{\prime}\)
        by (simp only: group-right-one)
    finally show ?thesis .
qed
```

The inverse operation has some further characteristic properties.
theorem (in group) group-inverse-times: inverse $(x * y)=$ inverse $y *$ inverse x

```
proof (rule group-inverse-equality)
    show (inverse y* inverse x)*(x*y)=1
    proof -
        have (inverse y* inverse x)*(x*y)=
            (inverse y*(inverse x*x))*y
            by (simp only: group-assoc)
    also have }\ldots=(\mathrm{ inverse }y*1)*
            by (simp only: group-left-inverse)
        also have ... = inverse y* y
            by (simp only: group-right-one)
    also have ... = 1
            by (simp only: group-left-inverse)
        finally show ?thesis.
    qed
qed
theorem (in group) inverse-inverse: inverse (inverse x) =x
proof (rule group-inverse-equality)
    show }x*\mathrm{ inverse }x=\mathrm{ one
    by (simp only: group-right-inverse)
qed
theorem (in group) inverse-inject:
    assumes eq: inverse x = inverse y
    shows }x=
proof -
    have x=x*1
        by (simp only: group-right-one)
    also have }\ldots=x*(\mathrm{ inverse }y*y
        by (simp only: group-left-inverse)
    also have \ldots=x*(inverse }x*y
        by (simp only: eq)
    also have ... = (x* inverse x)*y
        by (simp only: group-assoc)
    also have ... = 1*y
    by (simp only: group-right-inverse)
    also have ... = y
        by (simp only: group-left-one)
    finally show ?thesis.
qed
end
```


6 Some algebraic identities derived from group axioms - theory context version

theory Group-Context
imports Main

begin

hypothetical group axiomatization

```
context
    fixes prod :: ' }a=>\mp@subsup{}{}{\prime}a=>\mp@subsup{}{}{\prime}a(\mathrm{ (infixl © 70)
        and one :: 'a
        and inverse :: 'a > ' }
    assumes assoc: (x\odoty)\odotz=x\odot(y\odotz)
        and left-one: one \odot x = x
    and left-inverse: inverse x \odot x = one
begin
some consequences
lemma right-inverse: x \odot inverse x = one
proof -
    have }x\odot\mathrm{ inverse }x=\mathrm{ one }\odot(x\odot inverse x
        by (simp only: left-one)
    also have ... = one \odot x \odot inverse x
        by (simp only:assoc)
    also have ...= inverse (inverse x) \odot inverse x \odot x \odot inverse x
        by (simp only: left-inverse)
    also have ... = inverse (inverse x)\odot (inverse x \odot x) \odot inverse x
        by (simp only: assoc)
    also have ... = inverse (inverse x) \odot one \odot inverse x
        by (simp only: left-inverse)
    also have ... = inverse (inverse x) \odot (one \odot inverse x)
        by (simp only: assoc)
    also have ... = inverse (inverse x) \odot inverse x
        by (simp only: left-one)
    also have ... = one
        by (simp only: left-inverse)
    finally show ?thesis.
qed
lemma right-one: x \odot one =x
proof -
    have x \odot one =x\odot(inverse x \odot x)
        by (simp only:left-inverse)
    also have ...=x \odot inverse x \odot x
        by (simp only: assoc)
    also have ... = one \odot x
        by (simp only: right-inverse)
    also have ... = x
        by (simp only: left-one)
    finally show ?thesis.
qed
lemma one-equality:
    assumes eq: e\odotx=x
```

```
    shows one = e
proof -
    have one =x\odot inverse x
    by (simp only: right-inverse)
    also have \ldots=(e\odotx)\odot inverse x
    by (simp only: eq)
    also have ... =e\odot(x\odot inverse x 
    by (simp only: assoc)
    also have ... =e \odot one
    by (simp only: right-inverse)
    also have ... = e
    by (simp only: right-one)
    finally show ?thesis.
qed
lemma inverse-equality:
    assumes eq: x'\odot }\odot=\mathrm{ one
    shows inverse x = 足
proof -
    have inverse x = one \odot inverse x
        by (simp only: left-one)
    also have \ldots= (x'\odot x)\odot inverse x
        by (simp only: eq)
    also have ...= 和\odot (x\odot inverse }x
    by (simp only: assoc)
    also have ... = 和\odot one
        by (simp only: right-inverse)
    also have ... = 程
        by (simp only: right-one)
    finally show ?thesis.
qed
end
end
```


7 Some algebraic identities derived from group ax－ ioms－proof notepad version

```
theory Group－Notepad
imports Main
begin
notepad
begin
hypothetical group axiomatization
fix prod \(::{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a \quad(\) infixl \(\odot 70)\)
```

```
    and one :: 'a
    and inverse :: ' }a>>'\mp@code{'a
assume assoc: (x\odoty)\odotz=x\odot(y\odotz)
    and left-one: one \odot 
    and left-inverse: inverse x \odotx= one
    for x y z
```

some consequences
have right-inverse: $x \odot$ inverse $x=$ one for x
proof -
have $x \odot$ inverse $x=$ one $\odot(x \odot$ inverse $x)$
by (simp only: left-one)
also have $\ldots=$ one $\odot x \odot$ inverse x
by (simp only: assoc)
also have $\ldots=$ inverse $($ inverse $x) \odot$ inverse $x \odot x \odot$ inverse x
by (simp only: left-inverse)
also have $\ldots=$ inverse $($ inverse $x) \odot($ inverse $x \odot x) \odot$ inverse x
by (simp only: assoc)
also have $\ldots=$ inverse $($ inverse $x) \odot$ one \odot inverse x
by (simp only: left-inverse)
also have $\ldots=$ inverse $($ inverse $x) \odot($ one \odot inverse $x)$
by (simp only: assoc)
also have $\ldots=$ inverse $($ inverse $x) \odot$ inverse x
by (simp only: left-one)
also have $\ldots=$ one
by (simp only: left-inverse)
finally show ?thesis .
qed
have right-one: $x \odot$ one $=x$ for x
proof -
have $x \odot$ one $=x \odot($ inverse $x \odot x)$
by (simp only: left-inverse)
also have $\ldots=x \odot$ inverse $x \odot x$
by (simp only: assoc)
also have $\ldots=$ one $\odot x$
by (simp only: right-inverse)
also have $\ldots=x$
by (simp only: left-one)
finally show? ?thesis.
qed
have one-equality: one $=e$ if $e q: e \odot x=x$ for $e x$
proof -
have one $=x \odot$ inverse x
by (simp only: right-inverse)
also have $\ldots=(e \odot x) \odot$ inverse x
by (simp only: eq)
also have $\ldots=e \odot(x \odot$ inverse $x)$

```
        by (simp only: assoc)
    also have ... = e\odot one
    by (simp only: right-inverse)
    also have ... = e
    by (simp only: right-one)
    finally show ?thesis .
qed
have inverse-equality: inverse }x=\mp@subsup{x}{}{\prime}\mathrm{ if eq: x' }\odotx=one for x x'
proof -
    have inverse x = one \odot inverse x
        by (simp only: left-one)
    also have \ldots=( 
        by (simp only: eq)
    also have \ldots= 和\odot (x\odot inverse }x
        by (simp only: assoc)
    also have ... = 和\odot one
        by (simp only: right-inverse)
    also have ... = = '
        by (simp only: right-one)
    finally show ?thesis .
qed
end
end
```


8 Hoare Logic

theory Hoare
imports HOL-Hoare.Hoare-Tac
begin

8.1 Abstract syntax and semantics

The following abstract syntax and semantics of Hoare Logic over WHILE programs closely follows the existing tradition in Isabelle/HOL of formalizing the presentation given in $[8, \S 6]$. See also $\sim \sim / s r c / H O L / H o a r e ~ a n d ~[3]$.

```
type-synonym 'a bexp \(=\) ' \(a\) set
type-synonym 'a assn \(=\) 'a set
type-synonym 'a var \(=\) ' \(a \Rightarrow\) nat
datatype ' \(a\) com \(=\)
    Basic ' \(a \Rightarrow\) ' \(a\)
    |Seq 'a com 'a com ((-;/-)[60,61]60)
    | Cond 'a bexp 'a com 'a com
    | While 'a bexp 'a assn 'a var 'a com
```

```
abbreviation Skip (SKIP)
    where SKIP \equiv Basic id
type-synonym 'a sem = ' a = 'a b bool
primrec iter :: nat }=>\mp@subsup{)}{}{\prime}a\mathrm{ bexp }=>\mp@subsup{'}{}{\prime}\mathrm{ 'a sem }=>\mp@subsup{|}{}{\prime}a\mathrm{ sem
    where
        iter 0bSses
    | iter (Suc n)bSs s
primrec Sem :: 'a com = 'a sem
    where
    Sem(Basic f) s s'}\longleftrightarrow\longleftrightarrow\mp@subsup{s}{}{\prime}=f
    | Sem (c1;c2) s s'\longleftrightarrow \longleftrightarrow (\exists\mp@subsup{s}{}{\prime\prime}.Sem c1s s'\prime^Sem c2 s'" s')
    Sem (Cond b c1 c2) s s'\longleftrightarrow \longleftrightarrow(if s\inb then Sem c1 s s' else Sem c2 s s')
    | Sem(While b x y c) s s'\longleftrightarrow \longleftrightarrow(\existsn. iter n b (Sem c) s s')
definition Valid :: 'a bexp = ' a com }=>\mathrm{ ' 'a bexp }=>\mathrm{ bool ((3ト -/ (2-)/ -) [100, 55,
100] 50)
    where}\vdashPcQ\longleftrightarrow(\foralls\mp@subsup{s}{}{\prime}.Sem cs s'\longrightarrows\inP\longrightarrow\mp@subsup{s}{}{\prime}\inQ
lemma ValidI [intro?]: (\s s'. Sem cs s'\Longrightarrows\inP\Longrightarrow 盾价) \Longrightarrow\vdashPcQ
    by (simp add: Valid-def)
lemma ValidD [dest?]: }\vdashP\mathrm{ c Q \Sem cs s' }\Longrightarrows\inP\Longrightarrow\mp@subsup{s}{}{\prime}\in
    by (simp add:Valid-def)
```


8．2 Primitive Hoare rules

From the semantics defined above，we derive the standard set of primitive Hoare rules；e．g．see［8，§6］．Usually，variant forms of these rules are applied in actual proof，see also $\S 8.4$ and $\S 8.5$ ．

The basic rule represents any kind of atomic access to the state space．This subsumes the common rules of skip and assign，as formulated in §8．4．

```
theorem basic: }\vdash{s.fs\inP}(\mathrm{ Basic f) P
proof
    fix s s'
    assume s:s\in{s.fs\inP}
    assume Sem(Basic f) s s'
    then have }\mp@subsup{s}{}{\prime}=fs\mathrm{ by simp
    with s show }\mp@subsup{s}{}{\prime}\inP\mathrm{ by simp
qed
```

The rules for sequential commands and semantic consequences are estab－ lished in a straight forward manner as follows．
theorem seq：$\vdash P c 1 Q \Longrightarrow \vdash Q c 2 R \Longrightarrow \vdash P(c 1 ; c 2) R$ proof

```
    assume cmd1:\vdashPc1 Q and cmd2: \vdash Q c2 R
    fix s s'
    assume s: s\inP
    assume Sem (c1;c2) s s'
    then obtain s" where sem1:Sem c1 s s"' and sem2: Sem c2 s" s'
    by auto
    from cmd1 sem1 s have s"t}\inQ.
    with cmd2 sem2 show }\mp@subsup{s}{}{\prime}\inR.
qed
```

theorem conseq: $P^{\prime} \subseteq P \Longrightarrow \vdash P$ с $Q \Longrightarrow Q \subseteq Q^{\prime} \Longrightarrow \vdash P^{\prime}$ с Q^{\prime}
proof
assume $P^{\prime} P: P^{\prime} \subseteq P$ and $Q Q^{\prime}: Q \subseteq Q^{\prime}$
assume $c m d: \vdash P$ c Q
fix $s s^{\prime}::{ }^{\prime} a$
assume sem: Sem cs s
assume $s \in P^{\prime}$ with $P^{\prime} P$ have $s \in P$..
with cmd sem have $s^{\prime} \in Q$..
with $Q Q^{\prime}$ show $s^{\prime} \in Q^{\prime} .$.
qed

The rule for conditional commands is directly reflected by the corresponding semantics; in the proof we just have to look closely which cases apply.

```
theorem cond:
    assumes case-b: \(\vdash(P \cap b) c 1 Q\)
        and case-nb: \(\vdash(P \cap-b) c \mathcal{Z} Q\)
    shows \(\vdash P(\) Cond \(b c 1 c 2) Q\)
proof
    fix \(s s^{\prime}\)
    assume \(s: s \in P\)
    assume sem: Sem (Cond bc1 c2) s \(s^{\prime}\)
    show \(s^{\prime} \in Q\)
    proof cases
        assume \(b: s \in b\)
        from case-b show ?thesis
        proof
            from sem \(b\) show Sem \(c 1 s s^{\prime}\) by simp
            from \(s b\) show \(s \in P \cap b\) by simp
        qed
    next
        assume \(n b: s \notin b\)
        from case-nb show ?thesis
        proof
            from sem \(n b\) show Sem c2 \(s s^{\prime}\) by simp
            from \(s n b\) show \(s \in P \cap-b\) by simp
        qed
    qed
qed
```

The while rule is slightly less trivial - it is the only one based on recursion, which is expressed in the semantics by a Kleene-style least fixed-point construction. The auxiliary statement below, which is by induction on the number of iterations is the main point to be proven; the rest is by routine application of the semantics of WHILE.

```
theorem while:
    assumes body: \(\vdash(P \cap b)\) c \(P\)
    shows \(\vdash P(\) While \(b X Y c)(P \cap-b)\)
proof
    fix \(s s^{\prime}\) assume \(s: s \in P\)
    assume Sem (While b X Y c) s s
    then obtain \(n\) where iter \(n b(S e m c) s s^{\prime}\) by auto
    from this and \(s\) show \(s^{\prime} \in P \cap-b\)
    proof (induct \(n\) arbitrary: \(s\) )
        case 0
        then show? case by auto
    next
        case (Suc n)
        then obtain \(s^{\prime \prime}\) where \(b: s \in b\) and sem: Sem \(c s s^{\prime \prime}\)
            and iter: iter \(n b(S e m c) s^{\prime \prime} s^{\prime}\) by auto
        from \(S u c\) and \(b\) have \(s \in P \cap b\) by simp
        with body sem have \(s^{\prime \prime} \in P\)..
        with iter show ?case by (rule Suc)
    qed
qed
```


8.3 Concrete syntax for assertions

We now introduce concrete syntax for describing commands (with embedded expressions) and assertions. The basic technique is that of semantic "quote-antiquote". A quotation is a syntactic entity delimited by an implicit abstraction, say over the state space. An antiquotation is a marked expression within a quotation that refers the implicit argument; a typical antiquotation would select (or even update) components from the state.
We will see some examples later in the concrete rules and applications.
The following specification of syntax and translations is for Isabelle experts only; feel free to ignore it.
While the first part is still a somewhat intelligible specification of the concrete syntactic representation of our Hoare language, the actual "ML drivers" is quite involved. Just note that the we re-use the basic quote/antiquote translations as already defined in Isabelle/Pure (see Syntax_Trans.quote_tr, and Syntax_Trans.quote_tr',).
syntax

$$
\begin{aligned}
& \text {-quote }:: ' b \Rightarrow\left({ }^{\prime} a \Rightarrow^{\prime} b\right) \\
& \text {-antiquote }::\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow{ }^{\prime} b \quad\left({ }^{\prime}-[1000] 1000\right)
\end{aligned}
$$

```
-Subst :: 'a bexp \(\Rightarrow\) ' \(b \Rightarrow i d t \Rightarrow{ }^{\prime} a\) bexp \(\quad\left(-\left[-1 /{ }^{\prime}-\right][1000] ~ 999\right)\)
-Assert :: 'a \(\boldsymbol{l}^{\prime}\) 'a set ((\{-\}) [0] 1000)
-Assign :: idt \(\Rightarrow{ }^{\prime} b \Rightarrow{ }^{\prime} a \operatorname{com}\left(\left({ }^{\prime}-:=/-\right)[70,65] 61\right)\)
-Cond \(::\) 'a bexp \(\Rightarrow\) 'a com \(\Rightarrow\) 'a com \(\Rightarrow\) 'a com
    ((OIF -/ THEN -/ ELSE -/ FI) [0, 0, 0] 61)
-While-inv :: 'a bexp \(\Rightarrow\) 'a assn \(\Rightarrow\) 'a com \(\Rightarrow\) 'a com
    ((0WHILE -/ INV - //DO - /OD) [0, 0, 0] 61)
-While :: 'a bexp \(\Rightarrow\) 'a com \(\Rightarrow\) 'a com ((0WHILE - //DO-/OD) [0, 0] 61)
```


translations

```
    \(\{b\} \rightharpoonup\) CONST Collect (-quote b)
    \(B\left[a /^{\prime} x\right] \rightharpoonup\left\{\right.\) ' \(\left.^{\prime}(-u p d a t e-n a m e ~ x(\lambda-. a)) \in B\right\}\)
    ' \(x:=a \rightharpoonup\) CONST Basic (-quote ('(-update-name \(x(\lambda-. a))\) ))
    IF b THEN c1 ELSE c2 FI \(\rightarrow\) CONST Cond \(\{b\}\) c1 c2
    WHILE b INV i DO c OD \(\rightharpoonup\) CONST While \(\{b\} i(\lambda-.0) c\)
    WHILE b DO c OD \(\rightleftharpoons\) WHILE b INV CONST undefined DO c OD
```

>

```
```

parse-translation

```
parse-translation 
    let
    let
        fun quote-tr [t] = Syntax-Trans.quote-tr syntax-const <-antiquote> t
        fun quote-tr [t] = Syntax-Trans.quote-tr syntax-const <-antiquote> t
            | quote-tr ts = raise TERM (quote-tr, ts);
            | quote-tr ts = raise TERM (quote-tr, ts);
    in [(syntax-const<-quote>, K quote-tr)] end
```

 in [(syntax-const<-quote>, K quote-tr)] end
    ```

As usual in Isabelle syntax translations, the part for printing is more complicated - we cannot express parts as macro rules as above. Don't look here, unless you have to do similar things for yourself.
```

print-translation<
let
fun quote-tr' f (t :: ts)=
Term.list-comb (f \$ Syntax-Trans.quote-tr' syntax-const<-antiquote〉 t,
ts)
| quote-tr' - = raise Match;
val assert-tr' = quote-tr' (Syntax.const syntax-const }\langle\mathrm{ -Assert }\rangle)
fun bexp-tr' name ((Const (const-syntax <Collect\rangle, -) \$ t) :: ts) =
quote-tr'(Syntax.const name) (t :: ts)
| bexp-tr' - - = raise Match;
fun assign-tr' (Abs(x,-,fk Bound 0) :: ts)=
quote-tr' (Syntax.const syntax-const <-Assign> \$ Syntax-Trans.update-name-tr'
f)
(Abs (x, dummyT, Syntax-Trans.const-abs-tr' k) :: ts)
| assign-tr' - = raise Match;
in
[(const-syntax <Collect\rangle,K assert-tr}\)
(const-syntax <Basic>,K assign-tr'),
(const-syntax <Cond>,K (bexp-tr' syntax-const <-Cond〉)),

```
```

 (const-syntax <While〉,K (bexp-tr' syntax-const <-While-inv〉))]
 end
 ,

```

\subsection*{8.4 Rules for single-step proof}

We are now ready to introduce a set of Hoare rules to be used in single-step structured proofs in Isabelle/Isar. We refer to the concrete syntax introduce above.

Assertions of Hoare Logic may be manipulated in calculational proofs, with the inclusion expressed in terms of sets or predicates. Reversed order is supported as well.
```

lemma [trans]: $\vdash P$ с $Q \Longrightarrow P^{\prime} \subseteq P \Longrightarrow \vdash P^{\prime}$ с Q
by (unfold Valid-def) blast
lemma [trans] : $P^{\prime} \subseteq P \Longrightarrow \vdash P$ c $Q \Longrightarrow \vdash P^{\prime}$ c Q
by (unfold Valid-def) blast

```
lemma [trans]: \(Q \subseteq Q^{\prime} \Longrightarrow \vdash P\) c \(Q \Longrightarrow \vdash P c Q^{\prime}\)
    by (unfold Valid-def) blast
lemma [trans]: \(\vdash P\) с \(Q \Longrightarrow Q \subseteq Q^{\prime} \Longrightarrow \vdash P\) с \(Q^{\prime}\)
    by (unfold Valid-def) blast
lemma [trans]:
        \(\vdash\left\{{ }^{\prime} P\right\}\) c \(Q \Longrightarrow\left(\bigwedge s . P^{\prime} s \longrightarrow P s\right) \Longrightarrow \vdash\left\{{ }^{\prime} P^{\prime}\right\} \subset Q\)
    by (simp add: Valid-def)
lemma [trans]:
        \(\left(\bigwedge s . P^{\prime} s \longrightarrow P s\right) \Longrightarrow \vdash\left\}^{\prime} P\right\} c Q \Longrightarrow \vdash\left\{\left.\right|^{\prime} P^{\prime}\right\} c Q\)
    by (simp add: Valid-def)
lemma [trans]:
    \(\vdash P c\left\{\prime^{\prime} Q\right\} \Longrightarrow\left(\bigwedge s . Q s \longrightarrow Q^{\prime} s\right) \Longrightarrow \vdash P c\left\{\left\{^{\prime} Q^{\prime}\right\}\right.\)
    by (simp add: Valid-def)
lemma [trans]:
        \(\left(\bigwedge s . Q s \longrightarrow Q^{\prime} s\right) \Longrightarrow \vdash P c\left\{\|^{\prime} Q\right\} \Longrightarrow \vdash P c\left\{\left\{^{\prime} Q^{\prime}\right\}\right.\)
    by (simp add: Valid-def)
Identity and basic assignments. \({ }^{6}\)
lemma skip [intro?]: \(\vdash P\) SKIP P
proof -
    have \(\vdash\{s\). id \(s \in P\}\) SKIP \(P\) by (rule basic)
    then show? ?thesis by simp
qed
lemma assign \(: \vdash P\left[{ }^{\prime} a /{ }^{\prime} x::^{\prime} a\right]\) ' \(x:=\) ' \(a P\)
    by (rule basic)

\footnotetext{
\({ }^{6}\) The hoare method introduced in \(\S 8.5\) is able to provide proper instances for any number of basic assignments, without producing additional verification conditions.
}

Note that above formulation of assignment corresponds to our preferred way to model state spaces, using (extensible) record types in HOL [2]. For any record field \(x\), Isabelle/HOL provides a functions \(x\) (selector) and \(x\)-update (update). Above, there is only a place-holder appearing for the latter kind of function: due to concrete syntax \({ }^{\prime} x:={ }^{\prime} a\) also contains \(x\)-update. \({ }^{7}\)

Sequential composition - normalizing with associativity achieves proper of chunks of code verified separately.
lemmas [trans, intro?] \(=\) seq
lemma seq-assoc [simp]: \(\vdash P\) c1; \((c 2 ; c 3) ~ Q \longleftrightarrow \vdash P(c 1 ; c 2) ; c 3 Q\) by (auto simp add: Valid-def)

Conditional statements.
```

lemmas $[$ trans, intro?] $=$ cond
lemma [trans, intro?]:
$\vdash\left\}^{\prime} P \wedge{ }^{\prime} b\right\} c 1 Q$
$\Longrightarrow \vdash\left\{{ }^{\prime} P \wedge \neg^{\prime} b\right\} c 2 Q$
$\Longrightarrow \vdash\left\{'^{\prime} P\right\}$ IF 'b THEN c1 ELSE c2 FI Q
by (rule cond) (simp-all add: Valid-def)

```

While statements - with optional invariant.
```

lemma [intro?]: $\vdash(P \cap b)$ c $P \Longrightarrow \vdash P($ While $b P V c)(P \cap-b)$
by (rule while)
lemma [intro?]: $\vdash(P \cap b)$ с $P \Longrightarrow \vdash P($ While b undefined $V c)(P \cap-b)$
by (rule while)
lemma [intro?]:
$\vdash\left\{\mathcal{S}^{\prime} P \wedge{ }^{\prime} b\right\} c\left\{\mathbf{\prime}^{\prime} P\right\}$
$\Longrightarrow \vdash\left\{\mathcal{'}^{\prime} P\right\}$ WHILE 'b INV \{'P\} DO c OD \{' $\left.P \wedge \neg^{\prime} b\right\}$
by (simp add: while Collect-conj-eq Collect-neg-eq)
lemma [intro?]:
$\vdash\left\{\left.\right|^{\prime} P \wedge \wedge^{\prime} b\right\} c\left\{\mathcal{A}^{\prime} P\right\}$
$\Longrightarrow \vdash\left\{{ }^{\prime} P\right\}$ WHILE 'b DO c $O D\left\{'^{\prime} P \wedge \neg^{\prime} b\right\}$
by (simp add: while Collect-conj-eq Collect-neg-eq)

```

\subsection*{8.5 Verification conditions}

We now load the original ML file for proof scripts and tactic definition for the Hoare Verification Condition Generator (see ~~/src/HOL/Hoare). As

\footnotetext{
\({ }^{7}\) Note that due to the external nature of HOL record fields, we could not even state a general theorem relating selector and update functions (if this were required here); this would only work for any particular instance of record fields introduced so far.
}
far as we are concerned here, the result is a proof method hoare, which may be applied to a Hoare Logic assertion to extract purely logical verification conditions. It is important to note that the method requires WHILE loops to be fully annotated with invariants beforehand. Furthermore, only concrete pieces of code are handled - the underlying tactic fails ungracefully if supplied with meta-variables or parameters, for example.
lemma SkipRule: \(p \subseteq q \Longrightarrow\) Valid \(p\) (Basic id) \(q\)
by (auto simp add: Valid-def)
lemma BasicRule: \(p \subseteq\{s . f s \in q\} \Longrightarrow\) Valid \(p(\) Basic f) \(q\)
by (auto simp: Valid-def)
lemma SeqRule: Valid \(P\) c1 \(Q \Longrightarrow\) Valid \(Q\) c2 \(R \Longrightarrow \operatorname{Valid} P(c 1 ; c 2) R\)
by (auto simp: Valid-def)
lemma CondRule:
```

p\subseteq{s. (s\inb\longrightarrows\inw)\wedge(s\not\inb\longrightarrows\in\mp@subsup{w}{}{\prime})}
\Longrightarrow Valid w c1 q \ Valid w' c2 q C Valid p(Cond b c1 c2) q
by (auto simp: Valid-def)
lemma iter-aux:
\foralls s'. Sem cs s'\longrightarrows\inI^s\inb\longrightarrow\mp@subsup{s}{}{\prime}\inI\Longrightarrow
(\bigwedges s'.s\inI\Longrightarrow iter nb(Sem c) s s'\Longrightarrow " s'\inI^ s'\not\inb)
by (induct n) auto
lemma WhileRule:
p\subseteqi\LongrightarrowValid (i\capb)ci\Longrightarrowi\cap(-b)\subseteqq\LongrightarrowValid p(While b ivc)q
apply (clarsimp simp: Valid-def)
apply (drule iter-aux)
prefer 2
apply assumption
apply blast
apply blast
done

```
declare BasicRule [Hoare-Tac.BasicRule]
    and SkipRule [Hoare-Tac.SkipRule]
    and SeqRule [Hoare-Tac.SeqRule]
    and CondRule [Hoare-Tac.CondRule]
    and WhileRule [Hoare-Tac.WhileRule]
method-setup hoare \(=\)
    〈Scan.succeed (fn ctxt \(=>\)
        (SIMPLE-METHOD'
            (Hoare-Tac.hoare-tac ctxt
            (simp-tac (put-simpset HOL-basic-ss ctxt addsimps [@\{thm Record.K-record-comp\}]
))) )) >
    verification condition generator for Hoare logic
end

\section*{9 Using Hoare Logic}
theory Hoare-Ex
imports Hoare
begin

\subsection*{9.1 State spaces}

First of all we provide a store of program variables that occur in any of the programs considered later. Slightly unexpected things may happen when attempting to work with undeclared variables.
record vars \(=\)
I :: nat
\(M\) :: nat
\(N\) :: nat
\(S\) :: nat
While all of our variables happen to have the same type, nothing would prevent us from working with many-sorted programs as well, or even polymorphic ones. Also note that Isabelle/HOL's extensible record types even provides simple means to extend the state space later.

\subsection*{9.2 Basic examples}

We look at few trivialities involving assignment and sequential composition, in order to get an idea of how to work with our formulation of Hoare Logic.

Using the basic assign rule directly is a bit cumbersome.
```

lemma $\vdash\left\{\mathcal{\prime}^{\prime}\left(N\right.\right.$-update $\left.\left.\left.\left(\lambda-.\left(2 *^{\prime} N\right)\right)\right) \in\left\{\left.\right|^{\prime} N=10\right\}\right\}\right\}^{\prime} N:=2 *^{\prime} N\left\{^{\prime} N=10\right\}$
by (rule assign)

```

Certainly we want the state modification already done, e.g. by simplification. The hoare method performs the basic state update for us; we may apply the Simplifier afterwards to achieve "obvious" consequences as well.
```

lemma $\vdash\left\{T\right.$ True \} ' $N:=10\left\{\right.$ ' $\left.^{\prime} N=10\right\}$
by hoare
lemma $\left.\vdash\left\{2 *^{\prime} N=10\right\}\right\}^{\prime} N:=2 *^{\prime} N\left\{'^{\prime} N=10\right\}$
by hoare
lemma $\left.\vdash\left\}^{\prime} N=5\right\}\right\}^{\prime} N:=2 *^{\prime} N\left\{\left\{^{\prime} N=10\right\}\right.$
by hoare simp

```
```

lemma $\vdash\left\{\prime^{\prime} N+1=a+1\right\}{ }^{\prime} N:==^{\prime} N+1\left\{\left\{^{\prime} N=a+1\right\}\right.$
by hoare
lemma $\left.\vdash\left\{\left.\right|^{\prime} N=a\right\}\right\}^{\prime} N:==^{\prime} N+1\left\{\right.$ ' $\left.^{\prime} N=a+1\right\}$
by hoare simp
lemma $\vdash\{a=a \wedge b=b\}\}^{\prime} M:=a ;^{\prime} N:=b\left\{\prime^{\prime} M=a \wedge^{\prime} N=b\right\}$
by hoare
lemma $\vdash\{\operatorname{True}\}{ }^{\prime} M:=a ;^{\prime} N:=b\left\{{ }^{\prime} M=a \wedge{ }^{\prime} N=b\right\}$
by hoare

```

\section*{lemma}
```

$\vdash\left\{\prime^{\prime} M=a \wedge^{\prime} N=b\right\}$ ' $I:={ }^{\prime} M ;{ }^{\prime} M:={ }^{\prime} N ;{ }^{\prime} N:={ }^{\prime} I$ $\left\{\prime^{\prime} M=b \wedge^{\prime} N=a\right\}$
by hoare simp

```

It is important to note that statements like the following one can only be proven for each individual program variable. Due to the extra-logical nature of record fields, we cannot formulate a theorem relating record selectors and updates schematically.
```

lemma }\vdash{\mp@subsup{{}{}{\prime}N=a}\mp@subsup{}}{}{\prime}N:=\mp@subsup{'}{}{\prime}N{\mp@subsup{\}{}{\prime}N=a

```
by hoare
```

lemma $\vdash\left\{\left.\right|^{\prime} x=a\right\}{ }^{\prime} x:={ }^{\prime} x\left\{\left.\right|^{\prime} x=a\right\}$
oops

```

\section*{lemma}

Valid \(\{s . x s=a\}(\) Basic \((\lambda s . x\)-update \((x s) s))\{s . x s=n\}\) - same statement without concrete syntax
oops
In the following assignments we make use of the consequence rule in order to achieve the intended precondition. Certainly, the hoare method is able to handle this case, too.
```

lemma $\left.\vdash\left\{\prime^{\prime} M={ }^{\prime} N\right\}\right\}^{\prime} M:={ }^{\prime} M+1\left\{\left.\right|^{\prime} M \neq{ }^{\prime} N\right\}$
proof -
have $\left\{\left.\right|^{\prime} M={ }^{\prime} N\right\} \subseteq\left\{\mathcal{'}^{\prime} M+1 \neq{ }^{\prime} N\right\}$
by auto
also have $\vdash \ldots{ }^{\prime} M:={ }^{\prime} M+1\left\{\left\{^{\prime} M \neq{ }^{\prime} N\right\}\right.$
by hoare
finally show ?thesis .
qed
lemma $\vdash\left\{\left.\right|^{\prime} M={ }^{\prime} N\right\}{ }^{\prime} M:==^{\prime} M+1\left\{\left\{^{\prime} M \neq{ }^{\prime} N\right\}\right.$
proof -
have $m=n \longrightarrow m+1 \neq n$ for $m n::$ nat

```
— inclusion of assertions expressed in "pure" logic,
- without mentioning the state space
by \(\operatorname{simp}\)
also have \(\left.\vdash\left\{\prime^{\prime} M+1 \neq{ }^{\prime} N\right\}\right\}^{\prime} M:={ }^{\prime} M+1\left\{\left.\right|^{\prime} M \neq{ }^{\prime} N\right\}\)
by hoare
finally show ?thesis.
qed
lemma \(\vdash\left\{\left\{^{\prime} M={ }^{\prime} N\right\}{ }^{\prime} M:==^{\prime} M+1\left\{\left\{^{\prime} M \neq{ }^{\prime} N\right\}\right.\right.\)
by hoare simp

\subsection*{9.3 Multiplication by addition}

We now do some basic examples of actual WHILE programs. This one is a loop for calculating the product of two natural numbers, by iterated addition. We first give detailed structured proof based on single-step Hoare rules.
```

lemma
$\vdash\left\{\prime^{\prime} M=0 \wedge^{\prime} S=0\right\}$
WHILE ' $M \neq a$
$D O^{\prime} S:={ }^{\prime} S+b ;{ }^{\prime} M:={ }^{\prime} M+1 O D$
$\left\{\left.\right|^{\prime} S=a * b\right\}$
proof -
let \vdash - ?while $-=$?thesis
let $\left\{\right.$ ' $^{\prime}$?inv $\}=\left\{{ }^{\prime} S={ }^{\prime} M * b\right\}$
have $\left\{\right.$ ' $^{\prime} M=0 \wedge$ ' $\left.S=0\right\} \subseteq\left\{\right.$ ' $\left.^{\text {? inv }}\right\}$ by auto
also have $\vdash \ldots$? while $\left\{\right.$ ' $^{\prime}$?inv $\left.\wedge \neg\left({ }^{\prime} M \neq a\right)\right\}$
proof
let ${ }^{2} c={ }^{\prime} S:={ }^{\prime} S+b ;{ }^{\prime} M:={ }^{\prime} M+1$
have $\left\{\prime^{\prime} ? \operatorname{inv} \wedge{ }^{\prime} M \neq a\right\} \subseteq\left\{{ }^{\prime} S+b=\left({ }^{\prime} M+1\right) * b\right\}$
by auto
also have $\vdash \ldots$? ? $\left\{{ }^{\prime}\right.$? ?inv\} by hoare
finally show $\vdash\left\{\right.$ ' $^{\prime}$?inv $\left.\wedge \wedge^{\prime} M \neq a\right\}$? $c\left\{\left\{^{\prime} ? i n v\right\}\right.$.
qed
also have $\ldots \subseteq\left\{\left.\right|^{\prime} S=a * b\right\}$ by auto
finally show ?thesis.
qed

```

The subsequent version of the proof applies the hoare method to reduce the Hoare statement to a purely logical problem that can be solved fully automatically. Note that we have to specify the WHILE loop invariant in the original statement.
```

lemma
$\vdash\left\{^{\prime} M=0 \wedge{ }^{\prime} S=0\right\}$
WHILE ' $M \neq a$
INV \{'S $=$ ' $M * b\}$
$D O^{\prime} S:=' S+b ;{ }^{\prime} M:={ }^{\prime} M+1 O D$
\{' $S=a * b\}$

```
by hoare auto

\subsection*{9.4 Summing natural numbers}

We verify an imperative program to sum natural numbers up to a given limit. First some functional definition for proper specification of the problem.

The following proof is quite explicit in the individual steps taken, with the hoare method only applied locally to take care of assignment and sequential composition. Note that we express intermediate proof obligation in pure logic, without referring to the state space.
```

theorem
$\vdash\{$ True $\}$
' $S:=0 ;{ }^{\prime} I:=1 ;$
WHILE ' $I \neq n$
DO
' $S:={ }^{\prime} S+{ }^{\prime} I ;$
' $I:={ }^{\prime} I+1$
OD
$\left\{{ }^{\prime} S=\left(\sum j<n . j\right)\right\}$
(is $\vdash-(-;$?while) -)
proof -
let ?sum $=\lambda k:$:nat. $\sum j<k . j$
let ? inv $=\lambda s i:: n a t . s=$?sum i
have $\vdash\left\{\right.$ True \} 'S $:=0 ;$ ' $^{\prime} I:=1\left\{\right.$? inv ' $\left.S{ }^{\prime} I\right\}$
proof -
have True $\longrightarrow 0=$? sum 1
by simp
also have $\vdash\{\ldots\}\}^{\prime} S:=0 ;^{\prime} I:=1\left\{?\right.$ inv ' $\left.S{ }^{\prime} I\right\}$
by hoare
finally show ?thesis .
qed
also have $\vdash \ldots$? while $\left\{\right.$? inv ${ }^{\prime} S{ }^{\prime} I \wedge \neg$ ' $\left.I \neq n\right\}$
proof
let ?body $=$ ' $S:={ }^{\prime} S+{ }^{\prime} I ;{ }^{\prime} I:={ }^{\prime} I+1$
have ? inv s $i \wedge i \neq n \longrightarrow$? inv $(s+i)(i+1)$ for $s i$
by simp
also have $\vdash\left\{{ }^{\prime} S+{ }^{\prime} I=\right.$?sum $\left(\left(^{\prime} I+1\right)\right\}$?body $\left\{\right.$? inv ' $\left.S{ }^{\prime} I\right\}$
by hoare
finally show $\vdash\left\{\right.$? inv ${ }^{\prime} S \wedge^{\prime} I \wedge$ ' $\left.I \neq n\right\}$?body $\left\{\right.$? inv $\left.{ }^{\prime} S^{\prime} I\right\}$.
qed
also have $s=$? sum $i \wedge \neg i \neq n \longrightarrow s=$? sum n for $s i$
by simp
finally show? ?thesis.
qed

```

The next version uses the hoare method, while still explaining the resulting proof obligations in an abstract, structured manner.
```

theorem
\vdash {True}
'S:= 0;'I := 1;
WHILE ' I \# n
INV {'S = (\sumj<'I.j)}
DO
'S:='}S+\mp@subsup{}{}{\prime}I
'I:='I + 1
OD
{'S=(\sumj<n.j)}
proof -
let ?sum = \lambdak::nat. \sumj<k.j
let ?inv = \lambdas i::nat. s=?sum i
show ?thesis
proof hoare
show ?inv 0 1 by simp
show ?inv (s+i)(i+1) if ?inv s i}\wedgei\not=n\mathrm{ for s i
using that by simp
show s=? sum n if ?inv s i}^\negi\not=n\mathrm{ for si
using that by simp
qed
qed

```

Certainly, this proof may be done fully automatic as well, provided that the invariant is given beforehand.
```

theorem
\vdash {True}
'S:=0;'I I:= 1;
WHILE 'I\not=n
INV {'S = (\sumj<'I.j)}
DO
'S:= 'S +' 'I;
'I :='I + 1
OD
{'S=(\sumj<n.j)}
by hoare auto

```

\subsection*{9.5 Time}

A simple embedding of time in Hoare logic: function timeit inserts an extra variable to keep track of the elapsed time.
```

record tstate $=$ time $::$ nat
type-synonym 'a time $=($ time $::$ nat, $\ldots::$ 'al)
primrec timeit :: 'a time com \Rightarrow 'a time com
where
timeit $($ Basic $f)=($ Basic f; Basic $(\lambda s . s($ time $:=$ Suc (time s) $)))$

```
```

 timeit (c1; c2) = (timeit c1; timeit c2)
 | timeit (Cond b c1 c2) = Cond b (timeit c1) (timeit c2)
 | timeit (While b iv v c)=While b iv v (timeit c)
 record tvars = tstate +
I :: nat
J :: nat
lemma lem:(0::nat)<n\Longrightarrown+n\leqSuc (n*n)
by (induct n) simp-all
lemma
\vdash{i='I\wedge'time = 0}
(timeit
(WHILE 'I = 0
INV {2*' time + 'I *'I + 5*'I= i*i+5*i}
DO
'J := 'I;
WHILE' 'J\not=0
INV{0<'I^2*'time +'I*'I + 3*'I + 2*'J-2 = i*i+5

* i}
DO 'J := 'J - 1 OD;
'I := 'I - 1
OD))
{2*'time = i*i+5*i}
apply simp
apply hoare
apply simp
apply clarsimp
apply clarsimp
apply arith
prefer 2
apply clarsimp
apply (clarsimp simp: nat-distrib)
apply (frule lem)
apply arith
done
end

```

\section*{10 The Mutilated Checker Board Problem}
```

theory Mutilated-Checkerboard
imports Main
begin

```

The Mutilated Checker Board Problem, formalized inductively. See [5] for the original tactic script version.

\subsection*{10.1 Tilings}
inductive-set tiling \(::\) ' \(a\) set set \(\Rightarrow{ }^{\prime} a\) set set for \(A\) :: ' \(a\) set set where
```

empty:{} \in tiling A

```
Un: \(a \cup t \in\) tiling \(A\) if \(a \in A\) and \(t \in\) tiling \(A\) and \(a \subseteq-t\)

The union of two disjoint tilings is a tiling.
lemma tiling-Un:
assumes \(t \in\) tiling \(A\)
and \(u \in\) tiling \(A\)
and \(t \cap u=\{ \}\)
shows \(t \cup u \in\) tiling \(A\)
proof -
let \(? T=\) tiling \(A\)
from \(\langle t \in ? T\rangle\) and \(\langle t \cap u=\{ \}\rangle\)
show \(t \cup u \in ? T\)
proof (induct \(t\) )
case empty
with \(\langle u \in\) ? \(T\rangle\) show \(\} \cup u \in\) ? \(T\) by \(\operatorname{simp}\)
next
case (Un at)
show \((a \cup t) \cup u \in ? T\)
proof -
have \(a \cup(t \cup u) \in\) ? \(T\)
using \(\langle a \in A\rangle\)
proof (rule tiling.Un)
from \(\langle(a \cup t) \cap u=\{ \}\), have \(t \cap u=\{ \}\) by blast
then show \(t \cup u \in\) ? \(T\) by (rule \(U n\) )
from \(\langle a \subseteq-t\rangle\) and \(\langle(a \cup t) \cap u=\{ \}\rangle\)
show \(a \subseteq-(t \cup u)\) by blast
qed
also have \(a \cup(t \cup u)=(a \cup t) \cup u\)
by (simp only: Un-assoc)
finally show ?thesis .
qed
qed
qed

\subsection*{10.2 Basic properties of "below"}
definition below :: nat \(\Rightarrow\) nat set
where below \(n=\{i . i<n\}\)
lemma below-less-iff [iff]: \(i \in\) below \(k \longleftrightarrow i<k\)
by (simp add: below-def)
lemma below- 0 : below \(0=\{ \}\)
by (simp add: below-def)
```

lemma Sigma-Suc1: $m=n+1 \Longrightarrow$ below $m \times B=(\{n\} \times B) \cup($ below $n \times B)$

```
    by (simp add: below-def less-Suc-eq) blast

\section*{lemma Sigma-Suc2:}
```

$m=n+2 \Longrightarrow$
$A \times$ below $m=(A \times\{n\}) \cup(A \times\{n+1\}) \cup(A \times$ below $n)$

```
by (auto simp add: below-def)
lemmas Sigma-Suc \(=\) Sigma-Suc1 Sigma-Suc2

\subsection*{10.3 Basic properties of "evnodd"}
definition evnodd \(::(\) nat \(\times\) nat \()\) set \(\Rightarrow\) nat \(\Rightarrow(\) nat \(\times\) nat \()\) set where evnodd \(A b=A \cap\{(i, j) .(i+j) \bmod 2=b\}\)
lemma evnodd-iff: \((i, j) \in\) evnodd \(A b \longleftrightarrow(i, j) \in A \wedge(i+j) \bmod 2=b\) by (simp add: evnodd-def)
lemma evnodd-subset: evnodd \(A b \subseteq A\)
unfolding evnodd-def by (rule Int-lower1)
lemma evnoddD: \(x \in\) evnodd \(A b \Longrightarrow x \in A\)
by (rule subsetD) (rule evnodd-subset)
lemma evnodd-finite: finite \(A \Longrightarrow\) finite (evnodd \(A\) b)
by (rule finite-subset) (rule evnodd-subset)
lemma evnodd-Un: evnodd \((A \cup B) b=\) evnodd \(A b \cup\) evnodd \(B b\)
unfolding evnodd-def by blast
lemma evnodd-Diff: evnodd \((A-B) b=\) evnodd \(A b-e v n o d d ~ B b\)
unfolding evnodd-def by blast
lemma evnodd-empty: evnodd \(\} b=\{ \}\)
by (simp add: evnodd-def)
lemma evnodd-insert: evnodd (insert \((i, j) C) b=\)
(if \((i+j) \bmod 2=b\) then insert \((i, j)\) (evnodd \(C\) ) else evnodd \(C b\) )
by (simp add: evnodd-def)

\subsection*{10.4 Dominoes}
inductive-set domino :: (nat \(\times\) nat) set set where
horiz: \(\{(i, j),(i, j+1)\} \in\) domino
\(\mid\) vertl: \(\{(i, j),(i+1, j)\} \in\) domino
lemma dominoes-tile-row:
\(\{i\} \times\) below \((2 * n) \in\) tiling domino
```

 (is ?B n \in?T)
 proof (induct n)
case 0
show ?case by (simp add: below-0 tiling.empty)
next
case (Suc n)
let ?a={i}\times{2*n+1}\cup{i}\times{2*n}
have ?B (Suc n)=?a\cup?B n
by (auto simp add: Sigma-Suc Un-assoc)
also have ...\in?T
proof (rule tiling.Un)
have}{(i,2*n),(i,2*n+1)}\indomino
by (rule domino.horiz)
also have {(i,2 * n), (i,2 * n + 1)}=?a by blast
finally show ...\in domino .
show ?B n \in ?T by (rule Suc)
show ?a \subseteq- ?B n by blast
qed
finally show ?case .
qed
lemma dominoes-tile-matrix:
below m\times below (2*n)\in tiling domino
(is ?B m}\in\mathrm{ ?T)
proof (induct m)
case 0
show ?case by (simp add: below-0 tiling.empty)
next
case (Suc m)
let ?t ={m} 人 below (2*n)
have ?B (Suc m) = ?t \cup?B m by (simp add:Sigma-Suc)
also have .. \in ?T
proof (rule tiling-Un)
show ?t \in?T by (rule dominoes-tile-row)
show ?B m ? ?T by (rule Suc)
show ?t \cap ?B m={} by blast
qed
finally show ?case .
qed
lemma domino-singleton:
assumes d\in domino
and b<2
shows \existsij. evnodd d b={(i,j)} (is ?P d)
using assms
proof induct
from }\langleb<2\rangle\mathrm{ have b-cases: b=0 \ b = 1 by arith
fix ij
note [simp] = evnodd-empty evnodd-insert mod-Suc

```
```

 from b-cases show ?P {(i,j), (i,j+1)} by rule auto
 from b-cases show ?P {(i,j),(i+1,j)} by rule auto
 qed
lemma domino-finite:
assumes d\in domino
shows finite d
using assms
proof induct
fix ij :: nat
show finite {(i,j),(i,j+1)} by (intro finite.intros)
show finite {(i,j),(i+1,j)} by (intro finite.intros)
qed

```

\subsection*{10.5 Tilings of dominoes}
```

lemma tiling-domino-finite:
assumes t:t\in tiling domino (is t\in?T)
shows finite t (is ?F t)
using t
proof induct
show ?F {} by (rule finite.emptyI)
fix at assume ?F t
assume a\indomino
then have ?F a by (rule domino-finite)
from this and «?F t\rangle show ?F (}a\cupt)\mathrm{ by (rule finite-UnI)
qed
lemma tiling-domino-01:
assumes t:t\in tiling domino (is t\in?T)
shows card (evnodd t 0) = card (evnodd t 1)
using t
proof induct
case empty
show ?case by (simp add: evnodd-def)
next
case (Un a t)
let ?e = evnodd
note hyp = <card (?e t 0) = card (?e t 1)>
and at = <a\subseteq-t\rangle
have card-suc: card (?e (a\cupt)b)=Suc (card (?e tb)) if b<2 for b :: nat
proof -
have ?e (a\cupt) b=? e a b\cup? ? t b by (rule evnodd-Un)
also obtain ij where e: ?e a b={(i,j)}
proof -
from <a domino> and < b < 2>
have }\existsij\mathrm{ . ?e a b={(i,j)} by (rule domino-singleton)
then show ?thesis by (blast intro: that)
qed

```
```

 also have \ldots.\cup? ? t b = insert (i,j) (? e t b) by simp
 also have card \ldots=Suc (card (?e t b))
 proof (rule card-insert-disjoint)
 from }\langlet\in\mathrm{ tiling domino〉 have finite }
 by (rule tiling-domino-finite)
 then show finite (?e t b)
 by (rule evnodd-finite)
 from e have (i,j) \in? e a b by simp
 with at show (i,j)\not\in?e t b by (blast dest: evnoddD)
 qed
 finally show ?thesis .
 qed
then have card (?e (a\cupt)0)=Suc (card (?e t 0)) by simp
also from hyp have card (?e t 0) = card (?e t 1).
also from card-suc have Suc ... = card (?e (a\cupt) 1)
by simp
finally show ?case .
qed

```

\subsection*{10.6 Main theorem}
```

definition mutilated-board $::$ nat \Rightarrow nat \Rightarrow (nat \times nat $)$ set
where mutilated-board $m n=$
below $(2 *(m+1)) \times$ below $(2 *(n+1))-\{(0,0)\}-\{(2 * m+1,2 * n$
$+1)\}$

```
theorem mutil-not-tiling: mutilated-board \(m n \notin\) tiling domino
proof (unfold mutilated-board-def)
    let ? \(T=\) tiling domino
    let ? \(t=\) below \((2 *(m+1)) \times\) below \((2 *(n+1))\)
    let \(? t^{\prime}=? t-\{(0,0)\}\)
    let \(? t^{\prime \prime}=? t^{\prime}-\{(2 * m+1,2 * n+1)\}\)
    show? \(t^{\prime \prime} \notin ? T\)
proof
    have \(t: ? t \in\) ? \(T\) by (rule dominoes-tile-matrix)
    assume \(t^{\prime \prime}: ? t^{\prime \prime} \in ? T\)
    let \(? e=\) evnodd
    have fin: finite (?e ?t 0)
            by (rule evnodd-finite, rule tiling-domino-finite, rule \(t\) )
    note \([\) simp \(]=\) evnodd-iff evnodd-empty evnodd-insert evnodd-Diff
    have card \(\left(? e ? t^{\prime \prime} 0\right)<\operatorname{card}\left(? e ? t^{\prime} 0\right)\)
    proof -
    have card (?e ? t' \(0-\{(2 * m+1,2 * n+1)\})\)
                \(<\operatorname{card}(\) ?e e ?t' 0)
    proof (rule card-Diff1-less)
            from - fin show finite (?e?t' 0)
```

 by (rule finite-subset) auto
 show (2*m+1,2*n+1)\in?e ?t' 0 by simp
 qed
 then show?thesis by simp
 qed
 also have ... < card (?e ?t 0)
 proof -
 have (0,0) & ?e ?t 0 by simp
 with fin have card (?e ?t 0 - {(0,0)}) < card (?e ?t 0)
 by (rule card-Diff1-less)
 then show?thesis by simp
 qed
 also from t have ... = card (?e ?t 1)
 by (rule tiling-domino-01)
 also have ?e ?t 1 = ?e ?t' 1 by simp
 also from t" have card \ldots= card (?e ?t' 0)
 by (rule tiling-domino-01 [symmetric])
 finally have . . < . . . then show False ..
 qed
qed
end

```

\section*{11 An old chestnut}
```

theory Puzzle
imports Main
begin}\mp@subsup{}{}{8

```

Problem. Given some function \(f: \mathbb{N} \rightarrow \mathbb{N}\) such that \(f(f n)<f(S u c n)\) for all \(n\). Demonstrate that \(f\) is the identity.
```

theorem
assumes f-ax: $\bigwedge n . f(f n)<f($ Suc $n)$
shows $f n=n$
proof (rule order-antisym)
show $g e$: $n \leq f n$ for n
proof (induct f a arbitrary: n rule: less-induct)
case less
show $n \leq f n$
proof (cases n)
case (Suc m)
from f-ax have $f(f m)<f n$ by (simp only: Suc)
with less have $f m \leq f(f m)$.
also from f-ax have $\ldots<f n$ by (simp only: Suc)
finally have $f m<f n$.
with less have $m \leq f m$.

```

\footnotetext{
\({ }^{8}\) A question from "Bundeswettbewerb Mathematik". Original pen-and-paper proof due to Herbert Ehler; Isabelle tactic script by Tobias Nipkow.
}
```

 also note <...<fn`
 finally have m<fn.
 then have }n\leqfn\mathrm{ by (simp only: Suc)
 then show ?thesis.
 next
 case 0
 then show ?thesis by simp
 qed
 qed
have mono: m\leqn\Longrightarrowfm\leqfn for m n :: nat
proof (induct n)
case 0
then have m=0 by simp
then show?case by simp
next
case (Suc n)
from Suc.prems show fm\leqf(Suc n)
proof (rule le-SucE)
assume m}\leq
with Suc.hyps have fm\leqfn.
also from ge f-ax have ···<f(Suc n)
by (rule le-less-trans)
finally show ?thesis by simp
next
assume m}=\mathrm{ Suc n
then show ?thesis by simp
qed
qed
show f n\leqn
proof -
have }\negn<f
proof
assume n<fn
then have Suc n\leqfn by simp
then have f(Suc n) \leqf(fn) by (rule mono)
also have ...<f(Suc n) by (rule f-ax)
finally have ...< .. . then show False ..
qed
then show ?thesis by simp
qed
qed
end

```

\section*{12 Summing natural numbers}
theory Summation

\section*{imports Main \\ begin}

Subsequently, we prove some summation laws of natural numbers (including odds, squares, and cubes). These examples demonstrate how plain natural deduction (including induction) may be combined with calculational proof.

\subsection*{12.1 Summation laws}

The sum of natural numbers \(0+\cdots+n\) equals \(n \times(n+1) / 2\). Avoiding formal reasoning about division we prove this equation multiplied by 2.
```

theorem sum-of-naturals:
$2 *\left(\sum i:: n a t=0 . . n . i\right)=n *(n+1)$
(is ? $P n$ is ? $S n=-$)
proof (induct n)
show ?P 0 by simp
next
fix n have ? $S(n+1)=? S n+2 *(n+1)$
by simp
also assume ? $S n=n *(n+1)$
also have $\ldots+2 *(n+1)=(n+1) *(n+2)$
by simp
finally show ?P (Suc n)
by simp
qed

```

The above proof is a typical instance of mathematical induction. The main statement is viewed as some ? P \(n\) that is split by the induction method into base case ? P 0 , and step case ? P \(n \Longrightarrow\) ? \(P(\) Suc \(n)\) for arbitrary \(n\).
The step case is established by a short calculation in forward manner. Starting from the left-hand side ? \(S(n+1)\) of the thesis, the final result is achieved by transformations involving basic arithmetic reasoning (using the Simplifier). The main point is where the induction hypothesis ? \(S n=n\) \(\times(n+1)\) is introduced in order to replace a certain subterm. So the "transitivity" rule involved here is actual substitution. Also note how the occurrence of "..." in the subsequent step documents the position where the right-hand side of the hypothesis got filled in.

A further notable point here is integration of calculations with plain natural deduction. This works so well in Isar for two reasons.
1. Facts involved in also / finally calculational chains may be just anything. There is nothing special about have, so the natural deduction element assume works just as well.
2. There are two separate primitives for building natural deduction contexts: fix \(x\) and assume \(A\). Thus it is possible to start reasoning with
some new "arbitrary, but fixed" elements before bringing in the actual assumption. In contrast, natural deduction is occasionally formalized with basic context elements of the form \(x: A\) instead.

We derive further summation laws for odds, squares, and cubes as follows. The basic technique of induction plus calculation is the same as before.
```

theorem sum-of-odds:
$\left(\sum i:: n a t=0 . .<n .2 * i+1\right)=n$ Suc $($ Suc 0$)$
(is?P n is ? $S n=-$)
proof (induct n)
show ?P 0 by simp
next
fix n
have ? $S(n+1)=? S n+2 * n+1$
by simp
also assume ?S $n=n \uparrow$ Suc (Suc 0)
also have $\ldots+2 * n+1=(n+1) \uparrow$ Suc (Suc 0)
by simp
finally show ?P (Suc n)
by simp
qed

```

Subsequently we require some additional tweaking of Isabelle built-in arithmetic simplifications, such as bringing in distributivity by hand.
lemmas distrib \(=\) add-mult-distrib add-mult-distrib2
theorem sum-of-squares:
\(6 *\left(\sum i:: n a t=0 . . n . i \wedge \operatorname{Suc}(\operatorname{Suc} 0)\right)=n *(n+1) *(2 * n+1)\)
(is? ? \(n\) is ? \(S n=-\) )
proof (induct \(n\) ) show ?P 0 by simp
next
fix \(n\)
have ? \(S(n+1)=? S n+6 *(n+1)\) 个Suc (Suc 0) by (simp add: distrib)
also assume ? \(S n=n *(n+1) *(2 * n+1)\)
also have \(\ldots+6 *(n+1) \wedge\) Suc (Suc 0) \(=\) \((n+1) *(n+2) *(2 *(n+1)+1)\)
by (simp add: distrib)
finally show? ? (Suc \(n\) ) by \(\operatorname{simp}\)
qed
theorem sum-of-cubes:
\(4 *\left(\sum i:: n a t=0 . . n . i \wedge 3\right)=(n *(n+1))\)-Suc \((\) Suc 0\()\)
(is ? \(P n\) is ? \(S n=-\) )
proof (induct \(n\) )
show ?P 0 by (simp add: power-eq-if)
```

next
fix n
have ?S (n+1)=?S n+4*(n+1)^3
by (simp add: power-eq-if distrib)
also assume ?S n = (n* (n+1))^Suc (Suc 0)
also have ···+ 4*(n+1)^3=((n+1)*((n+1)+1))^Suc (Suc 0)
by (simp add: power-eq-if distrib)
finally show ?P (Suc n)
by simp
qed

```

Note that in contrast to older traditions of tactical proof scripts, the structured proof applies induction on the original, unsimplified statement. This allows to state the induction cases robustly and conveniently. Simplification (or other automated) methods are then applied in terminal position to solve certain sub-problems completely.
As a general rule of good proof style, automatic methods such as simp or auto should normally be never used as initial proof methods with a nested subproof to address the automatically produced situation, but only as terminal ones to solve sub-problems.
end

\section*{References}
[1] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. Addison-Wesley, 1989.
[2] W. Naraschewski and M. Wenzel. Object-oriented verification based on record subtyping in Higher-Order Logic. In J. Grundy and M. Newey, editors, Theorem Proving in Higher Order Logics: TPHOLs '98, volume 1479 of LNCS, 1998.
[3] T. Nipkow. Winskel is (almost) right: Towards a mechanized semantics textbook. Formal Aspects of Computing, 10:171-186, 1998.
[4] L. C. Paulson. Introduction to Isabelle.
[5] L. C. Paulson. A simple formalization and proof for the mutilated chess board. Technical Report 394, Comp. Lab., Univ. Camb., 1996. http: //www.cl.cam.ac.uk/users/lcp/papers/Reports/mutil.pdf.
[6] M. Wenzel. The Isabelle/Isar Reference Manual.
[7] M. Wenzel. Isar - a generic interpretative approach to readable formal proof documents. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L. Thery, editors, Theorem Proving in Higher Order Logics: TPHOLs '99, LNCS 1690, 1999.
[8] G. Winskel. The Formal Semantics of Programming Languages. MIT Press, 1993.```


[^0]:    ${ }^{1}$ This is not a completely trivial operation, as proof by assumption may involve full higher-order unification.
    ${ }^{2}$ Apparently, the rule here is implication introduction.
    ${ }^{3}$ The dual method is elim, acting on a goal's premises.

[^1]:    ${ }^{4}$ Isar version by Gertrud Bauer. Original tactic script by Larry Paulson. A few proofs of laws taken from [1].

[^2]:    ${ }^{5}$ The argument of a curried infix expression happens to be its right-hand side.

