The Hahn-Banach Theorem
 for Real Vector Spaces

Gertrud Bauer

September 11, 2023

Abstract

The Hahn-Banach Theorem is one of the most fundamental results in functional analysis. We present a fully formal proof of two versions of the theorem, one for general linear spaces and another for normed spaces. This development is based on simply-typed classical set-theory, as provided by Isabelle/HOL.

Contents
1 Preface 3
I Basic Notions 5
2 Bounds 5
3 Vector spaces 6
3.1 Signature 6
3.2 Vector space laws 6
4 Subspaces 12
4.1 Definition 13
4.2 Linear closure 15
4.3 Sum of two vectorspaces 16
4.4 Direct sums 18
5 Normed vector spaces 21
5.1 Quasinorms 21
5.2 Norms 22
5.3 Normed vector spaces 22
6 Linearforms 23
7 An order on functions 24
7.1 The graph of a function 24
7.2 Functions ordered by domain extension 24
7.3 Domain and function of a graph 25
7.4 Norm-preserving extensions of a function 25
8 The norm of a function 26
8.1 Continuous linear forms 26
8.2 The norm of a linear form 27
9 Zorn's Lemma 31
II Lemmas for the Proof 33
10 The supremum wrt. the function order 33
11 Extending non-maximal functions 40
III The Main Proof 46
12 The Hahn-Banach Theorem 46
12.1 The Hahn-Banach Theorem for vector spaces 46
12.2 Alternative formulation 51
12.3 The Hahn-Banach Theorem for normed spaces 51

1 Preface

This is a fully formal proof of the Hahn-Banach Theorem. It closely follows the informal presentation given in Heuser's textbook [1, § 36]. Another formal proof of the same theorem has been done in Mizar [3]. A general overview of the relevance and history of the Hahn-Banach Theorem is given by Narici and Beckenstein [2].

The document is structured as follows. The first part contains definitions of basic notions of linear algebra: vector spaces, subspaces, normed spaces, continuous linear-forms, norm of functions and an order on functions by domain extension. The second part contains some lemmas about the supremum (w.r.t. the function order) and extension of non-maximal functions. With these preliminaries, the main proof of the theorem (in its two versions) is conducted in the third part. The dependencies of individual theories are as follows.

Part I

Basic Notions

2 Bounds

```
theory Bounds
imports Main HOL-Analysis.Continuum-Not-Denumerable
begin
locale lub =
    fixes }A\mathrm{ and }
    assumes least [intro?]: (\a. a\inA\Longrightarrowa\leqb)\Longrightarrowx\leqb
        and upper [intro?]: }a\inA\Longrightarrowa\leq
lemmas [elim?] = lub.least lub.upper
definition the-lub :: 'a::order set => 'a(\-[90] 90)
    where the-lub A = The (lub A)
lemma the-lub-equality [elim?]:
    assumes lub A x
    shows \bigsqcupA= (x::'a::order)
proof -
    interpret lub A x by fact
    show ?thesis
    proof (unfold the-lub-def)
        from <lub A x` show The (lub A) =x
        proof
            fix }\mp@subsup{x}{}{\prime}\mathrm{ assume lub': lub A x '
            show }\mp@subsup{x}{}{\prime}=
            proof (rule order-antisym)
            from lub' show }\mp@subsup{x}{}{\prime}\leq
            proof
                        fix a assume }a\in
                    then show a}\leqx\mathrm{ ..
                qed
                show }x\leq\mp@subsup{x}{}{\prime
                proof
                    fix a assume a\inA
                    with lub' show }a\leq\mp@subsup{x}{}{\prime}.
                qed
                qed
        qed
    qed
qed
lemma the-lubI-ex
    assumes ex: \existsx. lub A x
    shows lub A (\bigsqcupA)
proof -
    from ex obtain x where x: lub A x ..
    also from x have [symmetric]: }\A=x.
```


finally show ?thesis .
 qed

lemma real-complete: \exists a::real. $a \in A \Longrightarrow \exists y . \forall a \in A . a \leq y \Longrightarrow \exists x$. lub $A x$ by (intro exI[of - Sup A]) (auto intro!: cSup-upper cSup-least simp: lub-def)
end

3 Vector spaces

theory Vector-Space
imports Complex-Main Bounds
begin

3.1 Signature

For the definition of real vector spaces a type ' a of the sort $\{$ plus, minus, zero $\}$ is considered, on which a real scalar multiplication \cdot is declared.

consts

$$
\text { prod }:: \text { real } \Rightarrow{ }^{\prime} a::\{\text { plus,minus,zero }\} \Rightarrow{ }^{\prime} a \text { (infixr • 70) }
$$

3.2 Vector space laws

A vector space is a non-empty set V of elements from ' a with the following vector space laws: The set V is closed under addition and scalar multiplication, addition is associative and commutative; $-x$ is the inverse of x wrt. addition and 0 is the neutral element of addition. Addition and multiplication are distributive; scalar multiplication is associative and the real number 1 is the neutral element of scalar multiplication.

```
locale vectorspace \(=\)
    fixes \(V\)
    assumes non-empty [iff, intro?]: \(V \neq\{ \}\)
        and add-closed [iff]: \(x \in V \Longrightarrow y \in V \Longrightarrow x+y \in V\)
        and mult-closed [iff]: \(x \in V \Longrightarrow a \cdot x \in V\)
    and add-assoc: \(x \in V \Longrightarrow y \in V \Longrightarrow z \in V \Longrightarrow(x+y)+z=x+(y+z)\)
    and add-commute: \(x \in V \Longrightarrow y \in V \Longrightarrow x+y=y+x\)
    and diff-self \([\) simp \(]: x \in V \Longrightarrow x-x=0\)
    and add-zero-left [simp]: \(x \in V \Longrightarrow 0+x=x\)
    and add-mult-distrib1: \(x \in V \Longrightarrow y \in V \Longrightarrow a \cdot(x+y)=a \cdot x+a \cdot y\)
    and add-mult-distrib2: \(x \in V \Longrightarrow(a+b) \cdot x=a \cdot x+b \cdot x\)
    and mult-assoc: \(x \in V \Longrightarrow(a * b) \cdot x=a \cdot(b \cdot x)\)
    and mult- 1 [simp]: \(x \in V \Longrightarrow 1 \cdot x=x\)
    and negate-eq1: \(x \in V \Longrightarrow-x=(-1) \cdot x\)
    and diff-eq1: \(x \in V \Longrightarrow y \in V \Longrightarrow x-y=x+-y\)
begin
lemma negate-eq2: \(x \in V \Longrightarrow(-1) \cdot x=-x\)
    by (rule negate-eq1 [symmetric])
lemma negate-eq2a: \(x \in V \Longrightarrow-1 \cdot x=-x\)
    by (simp add: negate-eq1)
```

```
lemma diff-eq2: \(x \in V \Longrightarrow y \in V \Longrightarrow x+-y=x-y\)
    by (rule diff-eq1 [symmetric])
lemma diff-closed [iff]: \(x \in V \Longrightarrow y \in V \Longrightarrow x-y \in V\)
    by (simp add: diff-eq1 negate-eq1)
lemma neg-closed [iff]: \(x \in V \Longrightarrow-x \in V\)
    by (simp add: negate-eq1)
lemma add-left-commute:
    \(x \in V \Longrightarrow y \in V \Longrightarrow z \in V \Longrightarrow x+(y+z)=y+(x+z)\)
proof -
    assume \(x y z: x \in V \quad y \in V \quad z \in V\)
    then have \(x+(y+z)=(x+y)+z\)
        by (simp only: add-assoc)
    also from \(x y z\) have \(\ldots=(y+x)+z\) by (simp only: add-commute)
    also from \(x y z\) have \(\ldots=y+(x+z)\) by (simp only: add-assoc)
    finally show? thesis .
qed
```

lemmas $a d d-a c=$ add-assoc add-commute add-left-commute
The existence of the zero element of a vector space follows from the nonemptiness of carrier set.
lemma zero [iff]: $0 \in V$
proof -
from non-empty obtain x where $x: x \in V$ by blast
then have $0=x-x$ by (rule diff-self [symmetric])
also from $x x$ have $\ldots \in V$ by (rule diff-closed)
finally show ?thesis.
qed
lemma add-zero-right [simp]: $x \in V \Longrightarrow x+0=x$
proof -
assume $x: x \in V$
from this and zero have $x+0=0+x$ by (rule add-commute)
also from x have $\ldots=x$ by (rule add-zero-left)
finally show? ?thesis.
qed
lemma mult-assoc2: $x \in V \Longrightarrow a \cdot b \cdot x=(a * b) \cdot x$
by (simp only: mult-assoc)
lemma diff-mult-distrib1: $x \in V \Longrightarrow y \in V \Longrightarrow a \cdot(x-y)=a \cdot x-a \cdot y$
by (simp add: diff-eq1 negate-eq1 add-mult-distrib1 mult-assoc2)
lemma diff-mult-distrib2: $x \in V \Longrightarrow(a-b) \cdot x=a \cdot x-(b \cdot x)$ proof -
assume $x: x \in V$
have $(a-b) \cdot x=(a+-b) \cdot x$
by simp
also from x have $\ldots=a \cdot x+(-b) \cdot x$
by (rule add-mult-distrib2)

```
    also from \(x\) have \(\ldots=a \cdot x+-(b \cdot x)\)
    by (simp add: negate-eq1 mult-assoc2)
    also from \(x\) have \(\ldots=a \cdot x-(b \cdot x)\)
    by (simp add: diff-eq1)
    finally show ?thesis.
qed
lemmas distrib \(=\)
    add-mult-distrib1 add-mult-distrib2
    diff-mult-distrib1 diff-mult-distrib2
```

Further derived laws:
lemma mult-zero-left [simp]: $x \in V \Longrightarrow 0 \cdot x=0$
proof -
assume $x: x \in V$
have $0 \cdot x=(1-1) \cdot x$ by simp
also have $\ldots=(1+-1) \cdot x$ by simp
also from x have $\ldots=1 \cdot x+(-1) \cdot x$
by (rule add-mult-distrib2)
also from x have $\ldots=x+(-1) \cdot x$ by simp
also from x have $\ldots=x+-x$ by (simp add: negate-eq2a)
also from x have $\ldots=x-x$ by (simp add: diff-eq2)
also from x have $\ldots=0$ by simp
finally show? thesis.
qed
lemma mult-zero-right $[$ simp $]: a \cdot 0=\left(0::^{\prime} a\right)$
proof -
have $a \cdot 0=a \cdot\left(0-\left(0::^{\prime} a\right)\right)$ by simp
also have $\ldots=a \cdot 0-a \cdot 0$
by (rule diff-mult-distrib1) simp-all
also have $\ldots=0$ by simp
finally show ?thesis.
qed
lemma minus-mult-cancel [simp]: $x \in V \Longrightarrow(-a) \cdot-x=a \cdot x$
by (simp add: negate-eq1 mult-assoc2)
lemma add-minus-left-eq-diff: $x \in V \Longrightarrow y \in V \Longrightarrow-x+y=y-x$
proof -
assume $x y: x \in V \quad y \in V$
then have $-x+y=y+-x$ by (simp add: add-commute)
also from $x y$ have $\ldots=y-x$ by (simp add: diff-eq1)
finally show ?thesis.
qed
lemma add-minus [simp]: $x \in V \Longrightarrow x+-x=0$
by (simp add: diff-eq2)
lemma add-minus-left [simp]: $x \in V \Longrightarrow-x+x=0$
by (simp add: diff-eq2 add-commute)
lemma minus-minus [simp]: $x \in V \Longrightarrow-(-x)=x$
by (simp add: negate-eq1 mult-assoc2)

```
lemma minus-zero [simp]: - (0::'a) \(=0\)
    by (simp add: negate-eq1)
    lemma minus-zero-iff [simp]:
    assumes \(x: x \in V\)
    shows \((-x=0)=(x=0)\)
proof
    from \(x\) have \(x=-(-x)\) by simp
    also assume \(-x=0\)
    also have \(-\ldots=0\) by (rule minus-zero)
    finally show \(x=0\).
next
    assume \(x=0\)
    then show \(-x=0\) by simp
qed
lemma add-minus-cancel [simp]: \(x \in V \Longrightarrow y \in V \Longrightarrow x+(-x+y)=y\)
    by (simp add: add-assoc [symmetric])
lemma minus-add-cancel [simp]: \(x \in V \Longrightarrow y \in V \Longrightarrow-x+(x+y)=y\)
    by (simp add: add-assoc [symmetric])
lemma minus-add-distrib [simp]: \(x \in V \Longrightarrow y \in V \Longrightarrow-(x+y)=-x+-y\)
    by (simp add: negate-eq1 add-mult-distrib1)
lemma diff-zero \([\) simp \(]: x \in V \Longrightarrow x-0=x\)
    by (simp add: diff-eq1)
lemma diff-zero-right [simp]: \(x \in V \Longrightarrow 0-x=-x\)
    by (simp add: diff-eq1)
lemma add-left-cancel:
    assumes \(x: x \in V\) and \(y: y \in V\) and \(z: z \in V\)
    shows \((x+y=x+z)=(y=z)\)
proof
    from \(y\) have \(y=0+y\) by \(\operatorname{simp}\)
    also from \(x y\) have \(\ldots=(-x+x)+y\) by simp
    also from \(x y\) have \(\ldots=-x+(x+y)\) by (simp add: add.assoc)
    also assume \(x+y=x+z\)
    also from \(x z\) have \(-x+(x+z)=-x+x+z\) by (simp add: add.assoc)
    also from \(x z\) have \(\ldots=z\) by \(\operatorname{simp}\)
    finally show \(y=z\).
next
    assume \(y=z\)
    then show \(x+y=x+z\) by (simp only:)
qed
lemma add-right-cancel:
    \(x \in V \Longrightarrow y \in V \Longrightarrow z \in V \Longrightarrow(y+x=z+x)=(y=z)\)
    by (simp only: add-commute add-left-cancel)
lemma add-assoc-cong:
    \(x \in V \Longrightarrow y \in V \Longrightarrow x^{\prime} \in V \Longrightarrow y^{\prime} \in V \Longrightarrow z \in V\)
```

```
    \(\Longrightarrow x+y=x^{\prime}+y^{\prime} \Longrightarrow x+(y+z)=x^{\prime}+\left(y^{\prime}+z\right)\)
    by (simp only: add-assoc [symmetric])
lemma mult-left-commute: \(x \in V \Longrightarrow a \cdot b \cdot x=b \cdot a \cdot x\)
    by (simp add: mult.commute mult-assoc2)
lemma mult-zero-uniq:
    assumes \(x: x \in V \quad x \neq 0\) and \(a x: a \cdot x=0\)
    shows \(a=0\)
proof (rule classical)
    assume \(a: a \neq 0\)
    from \(x a\) have \(x=(\) inverse \(a * a) \cdot x\) by simp
    also from \(\langle x \in V\rangle\) have \(\ldots=\) inverse \(a \cdot(a \cdot x)\) by (rule mult-assoc)
    also from \(a x\) have \(\ldots=\) inverse \(a \cdot 0\) by simp
    also have \(\ldots=0\) by \(\operatorname{simp}\)
    finally have \(x=0\).
    with \(\langle x \neq 0\rangle\) show \(a=0\) by contradiction
qed
lemma mult-left-cancel:
    assumes \(x: x \in V\) and \(y: y \in V\) and \(a: a \neq 0\)
    shows \((a \cdot x=a \cdot y)=(x=y)\)
proof
    from \(x\) have \(x=1 \cdot x\) by simp
    also from \(a\) have \(\ldots=(\) inverse \(a * a) \cdot x\) by simp
    also from \(x\) have \(\ldots=\) inverse \(a \cdot(a \cdot x)\)
        by (simp only: mult-assoc)
    also assume \(a \cdot x=a \cdot y\)
    also from \(a y\) have inverse \(a \cdot \ldots=y\)
        by (simp add: mult-assoc2)
    finally show \(x=y\).
next
    assume \(x=y\)
    then show \(a \cdot x=a \cdot y\) by (simp only:)
qed
lemma mult-right-cancel:
    assumes \(x: x \in V\) and neq: \(x \neq 0\)
    shows \((a \cdot x=b \cdot x)=(a=b)\)
proof
    from \(x\) have \((a-b) \cdot x=a \cdot x-b \cdot x\)
        by (simp add: diff-mult-distrib2)
    also assume \(a \cdot x=b \cdot x\)
    with \(x\) have \(a \cdot x-b \cdot x=0\) by simp
    finally have \((a-b) \cdot x=0\).
    with \(x\) neq have \(a-b=0\) by (rule mult-zero-uniq)
    then show \(a=b\) by simp
next
    assume \(a=b\)
    then show \(a \cdot x=b \cdot x\) by (simp only:)
qed
lemma eq-diff-eq:
    assumes \(x: x \in V\) and \(y: y \in V\) and \(z: z \in V\)
```

```
    shows \((x=z-y)=(x+y=z)\)
proof
    assume \(x=z-y\)
    then have \(x+y=z-y+y\) by simp
    also from \(y z\) have \(\ldots=z+-y+y\)
    by (simp add: diff-eq1)
    also have \(\ldots=z+(-y+y)\)
    by (rule add-assoc) (simp-all add: y z)
    also from \(y z\) have \(\ldots=z+0\)
    by (simp only: add-minus-left)
    also from \(z\) have \(\ldots=z\)
    by (simp only: add-zero-right)
    finally show \(x+y=z\).
next
    assume \(x+y=z\)
    then have \(z-y=(x+y)-y\) by simp
    also from \(x y\) have \(\ldots=x+y+-y\)
    by (simp add: diff-eq1)
    also have \(\ldots=x+(y+-y)\)
    by (rule add-assoc) (simp-all add: x y)
    also from \(x y\) have \(\ldots=x\) by simp
    finally show \(x=z-y\)..
qed
lemma add-minus-eq-minus:
    assumes \(x: x \in V\) and \(y: y \in V\) and \(x y: x+y=0\)
    shows \(x=-y\)
proof -
    from \(x y\) have \(x=(-y+y)+x\) by simp
    also from \(x y\) have \(\ldots=-y+(x+y)\) by (simp add: add-ac)
    also note \(x y\)
    also from \(y\) have \(-y+0=-y\) by simp
    finally show \(x=-y\).
qed
lemma add-minus-eq:
    assumes \(x: x \in V\) and \(y: y \in V\) and \(x y: x-y=0\)
    shows \(x=y\)
proof -
    from \(x\) y \(x y\) have eq: \(x+-y=0\) by (simp add: diff-eq1)
    with - have \(x=-(-y)\)
        by (rule add-minus-eq-minus) (simp-all add: x y)
    with \(x y\) show \(x=y\) by simp
qed
lemma add-diff-swap:
    assumes vs: \(a \in V \quad b \in V \quad c \in V \quad d \in V\)
    and eq: \(a+b=c+d\)
    shows \(a-c=d-b\)
proof -
    from assms have \(-c+(a+b)=-c+(c+d)\)
        by (simp add: add-left-cancel)
    also have \(\ldots=d\) using \(\langle c \in V\rangle\langle d \in V\rangle\) by (rule minus-add-cancel)
    finally have \(e q:-c+(a+b)=d\).
```

```
    from \(v s\) have \(a-c=(-c+(a+b))+-b\)
    by (simp add: add-ac diff-eq1)
    also from vs eq have \(\ldots=d+-b\)
    by (simp add: add-right-cancel)
    also from vs have \(\ldots=d-b\) by (simp add: diff-eq2)
    finally show \(a-c=d-b\).
qed
lemma vs-add-cancel-21:
    assumes vs: \(x \in V \quad y \in V \quad z \in V \quad u \in V\)
    shows \((x+(y+z)=y+u)=(x+z=u)\)
proof
    from \(v\) s have \(x+z=-y+y+(x+z)\) by \(\operatorname{simp}\)
    also have \(\ldots=-y+(y+(x+z))\)
        by (rule add-assoc) (simp-all add: vs)
    also from vs have \(y+(x+z)=x+(y+z)\)
    by (simp add: add-ac)
    also assume \(x+(y+z)=y+u\)
    also from \(v s\) have \(-y+(y+u)=u\) by simp
    finally show \(x+z=u\).
next
    assume \(x+z=u\)
    with \(v s\) show \(x+(y+z)=y+u\)
        by (simp only: add-left-commute [of \(x]\) )
qed
lemma add-cancel-end:
    assumes vs: \(x \in V \quad y \in V z \in V\)
    shows \((x+(y+z)=y)=(x=-z)\)
proof
    assume \(x+(y+z)=y\)
    with \(v\) s have \((x+z)+y=0+y\) by (simp add: add-ac)
    with vs have \(x+z=0\) by (simp only: add-right-cancel add-closed zero)
    with vs show \(x=-z\) by (simp add: add-minus-eq-minus)
next
    assume eq: \(x=-z\)
    then have \(x+(y+z)=-z+(y+z)\) by simp
    also have \(\ldots=y+(-z+z)\) by (rule add-left-commute) (simp-all add: vs)
    also from \(v s\) have \(\ldots=y\) by simp
    finally show \(x+(y+z)=y\).
qed
end
end
```


4 Subspaces

theory Subspace
imports Vector-Space HOL-Library.Set-Algebras
begin

4.1 Definition

A non-empty subset U of a vector space V is a subspace of V, iff U is closed under addition and scalar multiplication.

```
locale subspace \(=\)
    fixes \(U\) :: ' \(a::\{\) minus, plus, zero, uminus \(\}\) set and \(V\)
    assumes non-empty [iff, intro]: \(U \neq\{ \}\)
        and subset [iff]: \(U \subseteq V\)
        and add-closed [iff]: \(x \in U \Longrightarrow y \in U \Longrightarrow x+y \in U\)
        and mult-closed [iff]: \(x \in U \Longrightarrow a \cdot x \in U\)
notation (symbols)
    subspace ( \(\mathrm{infix} \unlhd 50\) )
declare vectorspace.intro [intro?] subspace.intro [intro?]
lemma subspace-subset [elim]: \(U \unlhd V \Longrightarrow U \subseteq V\)
    by (rule subspace.subset)
lemma (in subspace) subsetD [iff]: \(x \in U \Longrightarrow x \in V\)
    using subset by blast
lemma subspace \(D\) [elim]: \(U \unlhd V \Longrightarrow x \in U \Longrightarrow x \in V\)
    by (rule subspace.subsetD)
lemma rev-subspace \(D\) [elim?]: \(x \in U \Longrightarrow U \unlhd V \Longrightarrow x \in V\)
    by (rule subspace.subsetD)
lemma (in subspace) diff-closed [iff]:
    assumes vectorspace \(V\)
    assumes \(x: x \in U\) and \(y: y \in U\)
    shows \(x-y \in U\)
proof -
    interpret vectorspace \(V\) by fact
    from \(x y\) show ?thesis by (simp add: diff-eq1 negate-eq1)
qed
```

Similar as for linear spaces, the existence of the zero element in every subspace follows from the non-emptiness of the carrier set and by vector space laws.

```
lemma (in subspace) zero [intro]:
    assumes vectorspace \(V\)
    shows \(0 \in U\)
proof -
    interpret \(V\) : vectorspace \(V\) by fact
    have \(U \neq\{ \}\) by (rule non-empty)
    then obtain \(x\) where \(x: x \in U\) by blast
    then have \(x \in V\).. then have \(0=x-x\) by simp
    also from «vectorspace \(V\rangle x x\) have \(\ldots \in U\) by (rule diff-closed)
    finally show?thesis.
qed
lemma (in subspace) neg-closed [iff]:
    assumes vectorspace \(V\)
```

```
    assumes \(x: x \in U\)
    shows \(-x \in U\)
proof -
    interpret vectorspace \(V\) by fact
    from \(x\) show ?thesis by (simp add: negate-eq1)
qed
```

Further derived laws: every subspace is a vector space.

```
lemma (in subspace) vectorspace [iff]:
    assumes vectorspace \(V\)
    shows vectorspace \(U\)
proof -
    interpret vectorspace \(V\) by fact
    show ?thesis
    proof
        show \(U \neq\{ \}\)..
        fix \(x y z\) assume \(x: x \in U\) and \(y: y \in U\) and \(z: z \in U\)
        fix \(a b\) :: real
        from \(x y\) show \(x+y \in U\) by simp
        from \(x\) show \(a \cdot x \in U\) by simp
        from \(x y z\) show \((x+y)+z=x+(y+z)\) by (simp add: add-ac)
        from \(x y\) show \(x+y=y+x\) by (simp add: add-ac)
        from \(x\) show \(x-x=0\) by simp
        from \(x\) show \(0+x=x\) by \(\operatorname{simp}\)
        from \(x y\) show \(a \cdot(x+y)=a \cdot x+a \cdot y\) by (simp add: distrib)
        from \(x\) show \((a+b) \cdot x=a \cdot x+b \cdot x\) by (simp add: distrib)
        from \(x\) show \((a * b) \cdot x=a \cdot b \cdot x\) by (simp add: mult-assoc)
        from \(x\) show \(1 \cdot x=x\) by simp
        from \(x\) show \(-x=-1 \cdot x\) by (simp add: negate-eq1)
        from \(x y\) show \(x-y=x+-y\) by (simp add: diff-eq1)
    qed
qed
```

The subspace relation is reflexive.
lemma (in vectorspace) subspace-refl [intro]: $V \unlhd V$
proof
show $V \neq\{ \}$..
show $V \subseteq V$..
next
fix $x y$ assume $x: x \in V$ and $y: y \in V$
fix a :: real
from $x y$ show $x+y \in V$ by simp
from x show $a \cdot x \in V$ by simp
qed

The subspace relation is transitive.
lemma (in vectorspace) subspace-trans [trans]:
$U \unlhd V \Longrightarrow V \unlhd W \Longrightarrow U \unlhd W$
proof
assume $u v: ~ U \unlhd V$ and $v w: V \unlhd W$
from $u v$ show $U \neq\{ \}$ by (rule subspace.non-empty)
show $U \subseteq W$
proof -

```
    from \(u v\) have \(U \subseteq V\) by (rule subspace.subset)
    also from \(v w\) have \(V \subseteq W\) by (rule subspace.subset)
    finally show?thesis.
qed
fix \(x y\) assume \(x: x \in U\) and \(y: y \in U\)
from \(u v\) and \(x y\) show \(x+y \in U\) by (rule subspace.add-closed)
from \(u v\) and \(x\) show \(a \cdot x \in U\) for \(a\) by (rule subspace.mult-closed)
qed
```


4.2 Linear closure

The linear closure of a vector x is the set of all scalar multiples of x.
definition lin $::\left({ }^{\prime} a::\{\right.$ minus,plus,zero $\left.\}\right) \Rightarrow$ 'a set
where $\operatorname{lin} x=\{a \cdot x \mid a$. True $\}$
lemma linI [intro]: $y=a \cdot x \Longrightarrow y \in \operatorname{lin} x$ unfolding lin-def by blast
lemma linI $^{\prime}[$ iff $]: a \cdot x \in \operatorname{lin} x$ unfolding lin-def by blast
lemma linE [elim]:
assumes $x \in \operatorname{lin} v$
obtains a :: real where $x=a \cdot v$
using assms unfolding lin-def by blast
Every vector is contained in its linear closure.

```
lemma (in vectorspace) \(x\)-lin-x [iff]: \(x \in V \Longrightarrow x \in \operatorname{lin} x\)
proof -
    assume \(x \in V\)
    then have \(x=1 \cdot x\) by simp
    also have \(\ldots \in \operatorname{lin} x\)..
    finally show ?thesis.
qed
lemma (in vectorspace) 0-lin-x [iff]: \(x \in V \Longrightarrow 0 \in \operatorname{lin} x\)
proof
    assume \(x \in V\)
    then show \(0=0 \cdot x\) by simp
qed
```

Any linear closure is a subspace.
lemma (in vectorspace) lin-subspace [intro]:
assumes $x: x \in V$
shows $\operatorname{lin} x \unlhd V$
proof
from x show $\operatorname{lin} x \neq\{ \}$ by auto
next
show lin $x \subseteq V$
proof
fix x^{\prime} assume $x^{\prime} \in \operatorname{lin} x$
then obtain a where $x^{\prime}=a \cdot x$..
with x show $x^{\prime} \in V$ by simp
qed
next
fix $x^{\prime} x^{\prime \prime}$ assume $x^{\prime}: x^{\prime} \in \operatorname{lin} x$ and $x^{\prime \prime}: x^{\prime \prime} \in \operatorname{lin} x$
show $x^{\prime}+x^{\prime \prime} \in \operatorname{lin} x$
proof -
from x^{\prime} obtain a^{\prime} where $x^{\prime}=a^{\prime} \cdot x$..
moreover from $x^{\prime \prime}$ obtain $a^{\prime \prime}$ where $x^{\prime \prime}=a^{\prime \prime} \cdot x$..
ultimately have $x^{\prime}+x^{\prime \prime}=\left(a^{\prime}+a^{\prime \prime}\right) \cdot x$
using x by (simp add: distrib)
also have ... $\in \operatorname{lin} x$..
finally show?thesis.
qed
fix a :: real
show $a \cdot x^{\prime} \in \operatorname{lin} x$
proof -
from x^{\prime} obtain a^{\prime} where $x^{\prime}=a^{\prime} \cdot x$..
with x have $a \cdot x^{\prime}=\left(a * a^{\prime}\right) \cdot x$ by (simp add: mult-assoc)
also have ... $\in \operatorname{lin} x$..
finally show ?thesis .
qed
qed
Any linear closure is a vector space.

```
lemma (in vectorspace) lin-vectorspace [intro]:
    assumes \(x \in V\)
    shows vectorspace \((\operatorname{lin} x)\)
proof -
    from \(\langle x \in V\rangle\) have subspace \((\operatorname{lin} x) V\)
        by (rule lin-subspace)
    from this and vectorspace-axioms show?thesis
        by (rule subspace.vectorspace)
qed
```


4.3 Sum of two vectorspaces

The sum of two vectorspaces U and V is the set of all sums of elements from U and V.
lemma sum-def: $U+V=\{u+v \mid u v . u \in U \wedge v \in V\}$
unfolding set-plus-def by auto
lemma sumE [elim]:
$x \in U+V \Longrightarrow(\bigwedge u v . x=u+v \Longrightarrow u \in U \Longrightarrow v \in V \Longrightarrow C) \Longrightarrow C$
unfolding sum-def by blast
lemma sumI [intro]:

$$
u \in U \Longrightarrow v \in V \Longrightarrow x=u+v \Longrightarrow x \in U+V
$$

unfolding sum-def by blast
lemma sumI' ${ }^{\prime}$ intro]:
$u \in U \Longrightarrow v \in V \Longrightarrow u+v \in U+V$
unfolding sum-def by blast
U is a subspace of $U+V$.

```
lemma subspace-sum1 [iff]:
    assumes vectorspace \(U\) vectorspace \(V\)
    shows \(U \unlhd U+V\)
proof -
    interpret vectorspace \(U\) by fact
    interpret vectorspace \(V\) by fact
    show ?thesis
    proof
        show \(U \neq\{ \}\)..
        show \(U \subseteq U+V\)
        proof
            fix \(x\) assume \(x: x \in U\)
            moreover have \(0 \in V\)..
            ultimately have \(x+0 \in U+V\)..
            with \(x\) show \(x \in U+V\) by \(\operatorname{simp}\)
        qed
        fix \(x y\) assume \(x: x \in U\) and \(y \in U\)
        then show \(x+y \in U\) by simp
        from \(x\) show \(a \cdot x \in U\) for \(a\) by simp
    qed
qed
```

The sum of two subspaces is again a subspace.

```
lemma sum-subspace [intro?]:
    assumes subspace \(U\) E vectorspace \(E\) subspace \(V E\)
    shows \(U+V \unlhd E\)
proof -
    interpret subspace \(U E\) by fact
    interpret vectorspace \(E\) by fact
    interpret subspace \(V E\) by fact
    show ? thesis
    proof
        have \(0 \in U+V\)
        proof
            show \(0 \in U\) using «vectorspace \(E\) 〉..
            show \(0 \in V\) using «vectorspace \(E\) 〉..
            show \(\left(0::^{\prime} a\right)=0+0\) by simp
    qed
    then show \(U+V \neq\{ \}\) by blast
    show \(U+V \subseteq E\)
    proof
        fix \(x\) assume \(x \in U+V\)
        then obtain \(u v\) where \(x=u+v\) and
            \(u \in U\) and \(v \in V\)..
        then show \(x \in E\) by simp
    qed
next
fix \(x y\) assume \(x: x \in U+V\) and \(y: y \in U+V\)
show \(x+y \in U+V\)
proof -
    from \(x\) obtain \(u x v x\) where \(x=u x+v x\) and \(u x \in U\) and \(v x \in V\)..
    moreover
    from \(y\) obtain \(u y v y\) where \(y=u y+v y\) and \(u y \in U\) and \(v y \in V .\).
    ultimately
```

```
        have }ux+uy\in
            and}vx+vy\in
            and}x+y=(ux+uy)+(vx+vy
            using }xy\mathrm{ by (simp-all add: add-ac)
        then show ?thesis ..
    qed
    fix a show }a\cdotx\inU+
    proof -
    from x obtain }uv\mathrm{ where }x=u+v\mathrm{ and }u\inU\mathrm{ and }v\inV ..
    then have a}u,u\inU\mathrm{ and }a\cdotv\in
        and a}\cdotx=(a\cdotu)+(a\cdotv) by (simp-all add: distrib
        then show ?thesis ..
    qed
qed
qed
```

The sum of two subspaces is a vectorspace．
lemma sum－vs［intro？］：
$U \unlhd E \Longrightarrow V \unlhd E \Longrightarrow$ vectorspace $E \Longrightarrow$ vectorspace $(U+V)$
by（rule subspace．vectorspace）（rule sum－subspace）

4．4 Direct sums

The sum of U and V is called direct，iff the zero element is the only common element of U and V ．For every element x of the direct sum of U and V the decomposition in $x=u+v$ with $u \in U$ and $v \in V$ is unique．

```
lemma decomp:
    assumes vectorspace E subspace \(U\) E subspace \(V\) E
    assumes direct: \(U \cap V=\{0\}\)
        and \(u 1: u 1 \in U\) and \(u 2: u 2 \in U\)
        and \(v 1: v 1 \in V\) and \(v 2: v 2 \in V\)
        and sum: \(u 1+v 1=u 2+v 2\)
    shows \(u 1=u 2 \wedge v 1=v 2\)
proof -
    interpret vectorspace \(E\) by fact
    interpret subspace \(U E\) by fact
    interpret subspace \(V E\) by fact
    show ?thesis
    proof
    have \(U\) : vectorspace \(U\)
        using 〈subspace \(U E\rangle\langle\) vectorspace \(E\rangle\) by (rule subspace.vectorspace)
    have \(V\) : vectorspace \(V\)
            using 〈subspace \(V E\rangle\langle v e c t o r s p a c e ~ E 〉\) by (rule subspace.vectorspace)
    from \(u 1 u 2\) v1 v2 and sum have eq: \(u 1-u 2=v 2-v 1\)
            by (simp add: add-diff-swap)
    from u1 u2 have \(u: u 1-u 2 \in U\)
            by (rule vectorspace.diff-closed [OF U])
    with \(e q\) have \(v^{\prime}: v 2-v 1 \in U\) by (simp only:)
    from \(v 2 v 1\) have \(v: v 2-v 1 \in V\)
            by (rule vectorspace.diff-closed [OF V])
    with \(e q\) have \(u^{\prime}: u 1-u 2 \in V\) by (simp only:)
    show \(u 1=u 2\)
```

```
    proof (rule add-minus-eq)
        from u1 show u1 \inE ..
        from u2 show u2 \in E ..
        from u u' and direct show u1-u2 = 0 by blast
    qed
    show v1 = v2
    proof (rule add-minus-eq [symmetric])
        from v1 show v1 \inE ..
        from v2 show v2 \in E..
        from v v' and direct show v2 - v1 = 0 by blast
    qed
qed
qed
```

An application of the previous lemma will be used in the proof of the HahnBanach Theorem (see page 42): for any element $y+a \cdot x_{0}$ of the direct sum of a vectorspace H and the linear closure of x_{0} the components $y \in H$ and a are uniquely determined.

```
lemma decomp- \(H^{\prime}\) :
    assumes vectorspace \(E\) subspace \(H E\)
    assumes \(y 1: y 1 \in H\) and \(y 2: y 2 \in H\)
        and \(x^{\prime}: x^{\prime} \notin H \quad x^{\prime} \in E \quad x^{\prime} \neq 0\)
        and eq: \(y 1+a 1 \cdot x^{\prime}=y 2+a 2 \cdot x^{\prime}\)
    shows \(y 1=y 2 \wedge a 1=a 2\)
proof -
    interpret vectorspace \(E\) by fact
    interpret subspace \(H E\) by fact
    show ?thesis
    proof
        have \(c: y 1=y 2 \wedge a 1 \cdot x^{\prime}=a 2 \cdot x^{\prime}\)
        proof (rule decomp)
        show \(a 1 \cdot x^{\prime} \in \operatorname{lin} x^{\prime} .\).
        show \(a 2 \cdot x^{\prime} \in \operatorname{lin} x^{\prime} .\).
        show \(H \cap \operatorname{lin} x^{\prime}=\{0\}\)
        proof
            show \(H \cap \operatorname{lin} x^{\prime} \subseteq\{0\}\)
            proof
            fix \(x\) assume \(x: x \in H \cap \operatorname{lin} x^{\prime}\)
            then obtain \(a\) where \(x x^{\prime}: x=a \cdot x^{\prime}\)
                by blast
                have \(x=0\)
                    proof cases
                            assume \(a=0\)
                            with \(x x^{\prime}\) and \(x^{\prime}\) show ?thesis by simp
                next
                    assume \(a\) : \(a \neq 0\)
                    from \(x\) have \(x \in H\)..
                    with \(x x^{\prime}\) have inverse \(a \cdot a \cdot x^{\prime} \in H\) by simp
                    with \(a\) and \(x^{\prime}\) have \(x^{\prime} \in H\) by (simp add: mult-assoc2)
                    with \(\left\langle x^{\prime} \notin H\right\rangle\) show ?thesis by contradiction
                    qed
                then show \(x \in\{0\}\)..
            qed
                show \(\{0\} \subseteq H \cap \operatorname{lin} x^{\prime}\)
```

```
            proof -
                        have 0 \inH using <vectorspace E` ..
                    moreover have 0 Elin x' using <x' \inE\rangle..
                    ultimately show ?thesis by blast
            qed
    qed
    show lin }\mp@subsup{x}{}{\prime}\unlhdE\mathrm{ using <x' }\inE\rangle.
    qed (rule \vectorspace E`, rule \subspace H E`, rule y1, rule y2, rule eq)
    then show y1 = y2 ..
    from c have a1 \cdot x' = a2 . x'..
    with }\mp@subsup{x}{}{\prime}\mathrm{ show a1 = a2 by (simp add: mult-right-cancel)
    qed
qed
```

Since for any element $y+a \cdot x^{\prime}$ of the direct sum of a vectorspace H and the linear closure of x^{\prime} the components $y \in H$ and a are unique, it follows from y $\in H$ that $a=0$.
lemma decomp- $H^{\prime}-H$:
assumes vectorspace E subspace H E
assumes $t: t \in H$
and $x^{\prime}: x^{\prime} \notin H \quad x^{\prime} \in E \quad x^{\prime} \neq 0$
shows $\left(\operatorname{SOME}(y, a) . t=y+a \cdot x^{\prime} \wedge y \in H\right)=(t, 0)$
proof -
interpret vectorspace E by fact
interpret subspace $H E$ by fact
show ?thesis
proof (rule, simp-all only: split-paired-all split-conv)
from $t x^{\prime}$ show $t=t+0 \cdot x^{\prime} \wedge t \in H$ by simp
fix y and a assume $y a: t=y+a \cdot x^{\prime} \wedge y \in H$
have $y=t \wedge a=0$
proof (rule decomp- H^{\prime})
from $y a x^{\prime}$ show $y+a \cdot x^{\prime}=t+0 \cdot x^{\prime}$ by simp
from $y a$ show $y \in H$..
qed (rule 〈vectorspace $E\rangle$, rule 〈subspace $H E$, rule t, (rule $\left.x^{\prime}\right)+$)
with $t x^{\prime}$ show $(y, a)=\left(y+a \cdot x^{\prime}, 0\right)$ by simp
qed
qed
The components $y \in H$ and a in $y+a \cdot x^{\prime}$ are unique, so the function h^{\prime} defined by $h^{\prime}\left(y+a \cdot x^{\prime}\right)=h y+a \cdot \xi$ is definite.

```
lemma \(h^{\prime}\)-definite:
    fixes \(H\)
    assumes \(h^{\prime}\)-def:
        \(\bigwedge x . h^{\prime} x=\)
        \(\left(l e t(y, a)=\operatorname{SOME}(y, a) .\left(x=y+a \cdot x^{\prime} \wedge y \in H\right)\right.\)
            in \((h y)+a * x i)\)
        and \(x: x=y+a \cdot x^{\prime}\)
    assumes vectorspace E subspace H E
    assumes \(y: y \in H\)
        and \(x^{\prime}: x^{\prime} \notin H \quad x^{\prime} \in E \quad x^{\prime} \neq 0\)
    shows \(h^{\prime} x=h y+a * x i\)
proof -
    interpret vectorspace \(E\) by fact
```

```
interpret subspace \(H E\) by fact
from \(x y x^{\prime}\) have \(x \in H+\operatorname{lin} x^{\prime}\) by auto
have \(\exists!(y, a) . x=y+a \cdot x^{\prime} \wedge y \in H\) (is \(\exists!p\). ?P \(p\) )
proof (rule ex-ex1I)
    from \(x y\) show \(\exists p\). ?P \(p\) by blast
    fix \(p q\) assume \(p: ? P p\) and \(q: ? P q\)
    show \(p=q\)
    proof -
        from \(p\) have \(x p: x=\) fst \(p+\) snd \(p \cdot x^{\prime} \wedge\) fst \(p \in H\)
            by (cases \(p\) ) simp
        from \(q\) have \(x q: x=f_{s t} q+\) snd \(q \cdot x^{\prime} \wedge f s t q \in H\)
            by (cases q) simp
        have fst \(p=\) fst \(q \wedge\) snd \(p=\) snd \(q\)
        proof (rule decomp- \(H^{\prime}\) )
            from \(x p\) show fst \(p \in H\)..
            from \(x q\) show \(f_{s t} q \in H\)..
            from \(x p\) and \(x q\) show \(f s t p+\) snd \(p \cdot x^{\prime}=f s t q+s n d q \cdot x^{\prime}\)
                by \(\operatorname{simp}\)
        qed (rule \(\langle\) vectorspace \(E\rangle\), rule \(\langle\) subspace \(H E\rangle,\left(\right.\) rule \(\left.x^{\prime}\right)+\) )
        then show ?thesis by (cases \(p\), cases \(q\) ) simp
        qed
    qed
    then have eq: \(\left(\operatorname{SOME}(y, a) \cdot x=y+a \cdot x^{\prime} \wedge y \in H\right)=(y, a)\)
    by (rule some1-equality) (simp add: \(x\) y)
    with \(h^{\prime}\)-def show \(h^{\prime} x=h y+a * x i\) by (simp add: Let-def)
qed
end
```


5 Normed vector spaces

theory Normed-Space
imports Subspace
begin

5.1 Quasinorms

A seminorm $\|\cdot\|$ is a function on a real vector space into the reals that has the following properties: it is positive definite, absolute homogeneous and subadditive.

```
locale seminorm \(=\)
    fixes \(V\) :: 'a:: \{minus, plus, zero, uminus \(\}\) set
    fixes norm :: ' \(a \Rightarrow\) real \(\quad(\|-\|)\)
    assumes ge-zero [iff?]: \(x \in V \Longrightarrow 0 \leq\|x\|\)
        and abs-homogenous [iff?]: \(x \in V \Longrightarrow\|a \cdot x\|=|a| *\|x\|\)
        and subadditive [iff?]: \(x \in V \Longrightarrow y \in V \Longrightarrow\|x+y\| \leq\|x\|+\|y\|\)
declare seminorm.intro [intro?]
lemma (in seminorm) diff-subadditive:
    assumes vectorspace \(V\)
    shows \(x \in V \Longrightarrow y \in V \Longrightarrow\|x-y\| \leq\|x\|+\|y\|\)
proof -
```

```
    interpret vectorspace V by fact
    assume }x:x\inV\mathrm{ and y:y}\=
    then have }x-y=x+-1\cdot
    by (simp add: diff-eq2 negate-eq2a)
    also from x y have |...|\leq|x|+|-1 者 y|
    by (simp add: subadditive)
    also from y have |-1 | y|= |-1|*|y|
    by (rule abs-homogenous)
    also have ... =|y| by simp
    finally show ?thesis.
qed
lemma (in seminorm) minus:
    assumes vectorspace V
    shows }x\inV\Longrightarrow|-x|=|x
proof -
    interpret vectorspace V by fact
    assume x: x \in V
    then have - x = - 1.x by (simp only: negate-eq1)
    also from x have |...| = |-1|*|x| by (rule abs-homogenous)
    also have ... = |x| by simp
    finally show ?thesis .
qed
```


5.2 Norms

A norm $\|\cdot\|$ is a seminorm that maps only the 0 vector to 0 .

```
locale norm \(=\) seminorm +
    assumes zero-iff [iff]: \(x \in V \Longrightarrow(\|x\|=0)=(x=0)\)
```


5.3 Normed vector spaces

A vector space together with a norm is called a normed space.
locale normed-vectorspace $=$ vectorspace + norm
declare normed-vectorspace.intro [intro?]
lemma (in normed-vectorspace) gt-zero [intro?]:
assumes $x: x \in V$ and neq: $x \neq 0$
shows $0<\|x\|$
proof -
from x have $0 \leq\|x\|$.
also have $0 \neq\|x\|$
proof
assume $0=\|x\|$
with x have $x=0$ by simp
with neq show False by contradiction
qed
finally show ?thesis .
qed
Any subspace of a normed vector space is again a normed vectorspace.
lemma subspace-normed-vs [intro?]:

```
    fixes F E norm
    assumes subspace F E normed-vectorspace E norm
    shows normed-vectorspace F norm
proof -
    interpret subspace F E by fact
    interpret normed-vectorspace E norm by fact
    show ?thesis
    proof
        show vectorspace F by (rule vectorspace) unfold-locales
    next
        have Normed-Space.norm E norm ..
        with subset show Normed-Space.norm F norm
        by (simp add: norm-def seminorm-def norm-axioms-def)
    qed
qed
end
```


6 Linearforms

theory Linearform
imports Vector-Space
begin
A linear form is a function on a vector space into the reals that is additive and multiplicative.

```
locale linearform \(=\)
    fixes \(V\) :: ' \(a::\{\) minus, plus, zero, uminus \(\}\) set and \(f\)
    assumes add \([\) iff \(]: x \in V \Longrightarrow y \in V \Longrightarrow f(x+y)=f x+f y\)
        and mult \([i f f]: x \in V \Longrightarrow f(a \cdot x)=a * f x\)
declare linearform.intro [intro?]
lemma (in linearform) neg [iff]:
    assumes vectorspace \(V\)
    shows \(x \in V \Longrightarrow f(-x)=-f x\)
proof -
    interpret vectorspace \(V\) by fact
    assume \(x: x \in V\)
    then have \(f(-x)=f((-1) \cdot x)\) by (simp add: negate-eq1)
    also from \(x\) have \(\ldots=(-1) *(f x)\) by (rule mult)
    also from \(x\) have \(\ldots=-(f x)\) by simp
    finally show ?thesis.
qed
lemma (in linearform) diff [iff]:
    assumes vectorspace \(V\)
    shows \(x \in V \Longrightarrow y \in V \Longrightarrow f(x-y)=f x-f y\)
proof -
    interpret vectorspace \(V\) by fact
    assume \(x: x \in V\) and \(y: y \in V\)
    then have \(x-y=x+-y\) by (rule diff-eq1)
    also have \(f \ldots=f x+f(-y)\) by (rule add) \((\) simp-all add: \(x y)\)
```

also have $f(-y)=-f y$ using «vectorspace $V\rangle y$ by (rule neg)
finally show?thesis by simp
qed
Every linear form yields 0 for the 0 vector.

```
lemma (in linearform) zero [iff]:
    assumes vectorspace \(V\)
    shows \(f 0=0\)
proof -
    interpret vectorspace \(V\) by fact
    have \(f 0=f(0-0)\) by simp
    also have \(\ldots=f 0-f 0\) using \(\langle\) vectorspace \(V\rangle\) by (rule diff) simp-all
    also have \(\ldots=0\) by simp
    finally show?thesis.
qed
end
```


7 An order on functions

theory Function-Order
imports Subspace Linearform
begin

7.1 The graph of a function

We define the graph of a (real) function f with domain F as the set

$$
\{(x, f x) . x \in F\}
$$

So we are modeling partial functions by specifying the domain and the mapping function. We use the term "function" also for its graph.

```
type-synonym 'a graph \(=\left({ }^{\prime} a \times\right.\) real \()\) set
definition graph \(::\) 'a set \(\Rightarrow\left({ }^{\prime} a \Rightarrow\right.\) real \() \Rightarrow{ }^{\prime}\) 'a graph
    where graph \(F f=\{(x, f x) \mid x, x \in F\}\)
lemma graphI [intro]: \(x \in F \Longrightarrow(x, f x) \in\) graph \(F f\)
    unfolding graph-def by blast
lemma graphI2 [intro?]: \(x \in F \Longrightarrow \exists t \in\) graph \(F f . t=(x, f x)\)
    unfolding graph-def by blast
lemma graphE [elim?]:
    assumes \((x, y) \in\) graph \(F f\)
    obtains \(x \in F\) and \(y=f x\)
    using assms unfolding graph-def by blast
```


7.2 Functions ordered by domain extension

A function h^{\prime} is an extension of h, iff the graph of h is a subset of the graph of h^{\prime}.
lemma graph-extI:
$\left(\bigwedge x . x \in H \Longrightarrow h x=h^{\prime} x\right) \Longrightarrow H \subseteq H^{\prime}$
\Longrightarrow graph $H h \subseteq$ graph $H^{\prime} h^{\prime}$
unfolding graph-def by blast
lemma graph-extD1 [dest?]: graph $H h \subseteq$ graph $H^{\prime} h^{\prime} \Longrightarrow x \in H \Longrightarrow h x=h^{\prime} x$ unfolding graph-def by blast
lemma graph-extD2 [dest?]: graph $H h \subseteq$ graph $H^{\prime} h^{\prime} \Longrightarrow H \subseteq H^{\prime}$
unfolding graph-def by blast

7.3 Domain and function of a graph

The inverse functions to graph are domain and funct.

```
definition domain :: 'a graph \(\Rightarrow\) 'a set
    where domain \(g=\{x . \exists y .(x, y) \in g\}\)
definition funct :: 'a graph \(\Rightarrow\left({ }^{\prime} a \Rightarrow\right.\) real \()\)
    where funct \(g=(\lambda x .(\operatorname{SOME} y .(x, y) \in g))\)
```

The following lemma states that g is the graph of a function if the relation induced by g is unique.

```
lemma graph-domain-funct:
    assumes uniq: \(\bigwedge x y z .(x, y) \in g \Longrightarrow(x, z) \in g \Longrightarrow z=y\)
    shows graph (domain g) (funct g) \(=g\)
    unfolding domain-def funct-def graph-def
proof auto
    fix \(a b\) assume \(g:(a, b) \in g\)
    from \(g\) show \((a\), SOME \(y .(a, y) \in g) \in g\) by (rule someI2)
    from \(g\) show \(\exists y .(a, y) \in g\)..
    from \(g\) show \(b=(S O M E y .(a, y) \in g)\)
    proof (rule some-equality [symmetric])
        fix \(y\) assume \((a, y) \in g\)
        with \(g\) show \(y=b\) by (rule uniq)
    qed
qed
```


7.4 Norm-preserving extensions of a function

Given a linear form f on the space F and a seminorm p on E. The set of all linear extensions of f, to superspaces H of F, which are bounded by p, is defined as follows.

```
definition
    norm-pres-extensions ::
        \({ }^{\prime} a::\{\) plus,minus,uminus,zero \(\}\) set \(\Rightarrow\left({ }^{\prime} a \Rightarrow\right.\) real \() \Rightarrow{ }^{\prime} a\) set \(\Rightarrow\left({ }^{\prime} a \Rightarrow\right.\) real \()\)
            \(\Rightarrow\) 'a graph set
where
    norm-pres-extensions Ep Ff
    \(=\{g . \exists H h . g=\) graph \(H h\)
            \(\wedge\) linearform \(H h\)
            \(\wedge H \unlhd E\)
            \(\wedge F \unlhd H\)
```

\wedge graph $F f \subseteq$ graph $H h$
$\wedge(\forall x \in H . h x \leq p x)\}$

```
lemma norm-pres-extensionE [elim]:
    assumes \(g \in\) norm-pres-extensions E p Ff
    obtains \(H h\)
        where \(g=\) graph \(H h\)
        and linearform \(H h\)
        and \(H \unlhd E\)
        and \(F \unlhd H\)
        and graph \(F f \subseteq\) graph \(H h\)
        and \(\forall x \in H . h x \leq p x\)
    using assms unfolding norm-pres-extensions-def by blast
lemma norm-pres-extensionI2 [intro]:
    linearform \(H \Longrightarrow H \unlhd E \Longrightarrow F \unlhd H\)
        \(\Longrightarrow\) graph \(F f \subseteq\) graph \(H h \Longrightarrow \forall x \in H . h x \leq p x\)
        \(\Longrightarrow\) graph \(H h \in\) norm-pres-extensions EpFf
    unfolding norm-pres-extensions-def by blast
lemma norm-pres-extensionI:
    \(\exists H h . g=\) graph \(H h\)
        \(\wedge\) linearform \(H h\)
        \(\wedge H \unlhd E\)
        \(\wedge F \unlhd H\)
        \(\wedge\) graph \(F f \subseteq\) graph \(H h\)
        \(\wedge(\forall x \in H . h x \leq p x) \Longrightarrow g \in\) norm-pres-extensions EpFf
        unfolding norm-pres-extensions-def by blast
end
```


8 The norm of a function

theory Function-Norm
imports Normed-Space Function-Order
begin

8.1 Continuous linear forms

A linear form f on a normed vector space $(V,\|\cdot\|)$ is continuous, iff it is bounded, i.e.

$$
\exists c \in R . \forall x \in V .|f x| \leq c \cdot\|x\|
$$

In our application no other functions than linear forms are considered, so we can define continuous linear forms as bounded linear forms:

```
locale continuous \(=\) linearform +
    fixes norm :: - \(\Rightarrow\) real (||-||)
    assumes bounded: \(\exists c . \forall x \in V .|f x| \leq c *\|x\|\)
declare continuous.intro [intro?] continuous-axioms.intro [intro?]
lemma continuousI [intro]:
```

```
    fixes norm :: - \(\Rightarrow\) real ( \(\|-\|)\)
    assumes linearform \(V f\)
    assumes \(r: \bigwedge x . x \in V \Longrightarrow|f x| \leq c *\|x\|\)
    shows continuous \(V\) f norm
proof
    show linearform \(V f\) by fact
    from \(r\) have \(\exists c . \forall x \in V .|f x| \leq c *\|x\|\) by blast
    then show continuous-axioms \(V\) f norm ..
qed
```


8.2 The norm of a linear form

The least real number c for which holds

$$
\forall x \in V .|f x| \leq c \cdot\|x\|
$$

is called the norm of f.
For non-trivial vector spaces $V \neq\{0\}$ the norm can be defined as

$$
\|f\|=\sup x \neq 0 .|f x| /\|x\|
$$

For the case $V=\{0\}$ the supremum would be taken from an empty set. Since \mathbb{R} is unbounded, there would be no supremum. To avoid this situation it must be guaranteed that there is an element in this set. This element must be $\} \geq$ 0 so that fn-norm has the norm properties. Furthermore it does not have to change the norm in all other cases, so it must be 0 , as all other elements are $\}$ ≥ 0.
Thus we define the set B where the supremum is taken from as follows:

$$
\{0\} \cup\{|f x| /\|x\| . x \neq 0 \wedge x \in F\}
$$

fn-norm is equal to the supremum of B, if the supremum exists (otherwise it is undefined).

```
locale \(f\) n-norm \(=\)
    fixes norm \(::-\Rightarrow\) real \(\quad(\|-\|)\)
    fixes \(B\) defines \(B V f \equiv\{0\} \cup\{|f x| /\|x\| \mid x . x \neq 0 \wedge x \in V\}\)
    fixes fn-norm (||-||-- [0, 1000] 999)
    defines \(\|f\|-V \equiv \bigsqcup(B V f)\)
    locale normed-vectorspace-with-fn-norm \(=\) normed-vectorspace + fn-norm
    lemma (in fn-norm) B-not-empty [intro]: \(0 \in B V f\)
    by (simp add: B-def)
```

The following lemma states that every continuous linear form on a normed space ($V,\|\cdot\|$) has a function norm.
lemma (in normed-vectorspace-with-fn-norm) fn-norm-works:
assumes continuous V f norm
shows lub $(B V f)(\|f\|-V)$
proof -
interpret continuous V f norm by fact

The existence of the supremum is shown using the completeness of the reals. Completeness means, that every non-empty bounded set of reals has a supremum.

```
have \existsa.lub (BVf) a
proof (rule real-complete)
```

First we have to show that B is non-empty:

```
have \(0 \in B V f\)..
then show \(\exists x . x \in B V f\)..
```

Then we have to show that B is bounded:

```
show \(\exists c . \forall y \in B V f . y \leq c\)
proof -
```

We know that f is bounded by some value c.

```
from bounded obtain \(c\) where \(c: \forall x \in V .|f x| \leq c *\|x\|\)..
```

To prove the thesis, we have to show that there is some b, such that $y \leq b$ for all $y \in$ B. Due to the definition of B there are two cases.

```
define \(b\) where \(b=\max c 0\)
have \(\forall y \in B V f . y \leq b\)
proof
    fix \(y\) assume \(y: y \in B V f\)
    show \(y \leq b\)
    proof cases
        assume \(y=0\)
        then show ?thesis unfolding \(b\)-def by arith
    next
```

The second case is $y=|f x| /\|x\|$ for some $x \in V$ with $x \neq 0$.
assume $y \neq 0$
with y obtain x where y-rep: $y=|f x| *$ inverse $\|x\|$
and $x: x \in V$ and $n e q: x \neq 0$
by (auto simp add: B-def divide-inverse)
from x neq have $g t: 0<\|x\|$..

The thesis follows by a short calculation using the fact that f is bounded.

```
note y-rep
also have |fx|* inverse |x|}\leq(c*|x|)*\mathrm{ inverse |x|
proof (rule mult-right-mono)
    from cx show }|fx|\leqc*|x|.
    from gt have 0< inverse |x|
    by (rule positive-imp-inverse-positive)
    then show 0\leq inverse |x| by (rule order-less-imp-le)
qed
also have ... =c*(|x|* inverse |x|)
    by (rule Groups.mult.assoc)
also
from gt have |x|\not=0 by simp
then have |x|* inverse |x|=1 by simp
also have c*1\leqb by (simp add: b-def)
finally show y \leqb .
qed
```

```
        qed
        then show ?thesis ..
        qed
    qed
    then show ?thesis unfolding fn-norm-def by (rule the-lubI-ex)
qed
lemma (in normed-vectorspace-with-fn-norm) fn-norm-ub [iff?]:
    assumes continuous V f norm
    assumes b:b\inBVf
    shows b\leq|f|-V
proof -
    interpret continuous V f norm by fact
    have lub (B V f) (|f|-V)
        using <continuous V f norm> by (rule fn-norm-works)
    from this and b show ?thesis ..
qed
lemma (in normed-vectorspace-with-fn-norm) fn-norm-leastB:
    assumes continuous V f norm
    assumes b: \bigwedgeb.b\inBVVf\Longrightarrowb\leqy
    shows |f|-V \leqy
proof -
    interpret continuous V f norm by fact
    have lub (BVf) (|f|-V)
        using<continuous V f norm> by (rule fn-norm-works)
    from this and b show ?thesis ..
qed
```

The norm of a continuous function is always ≥ 0.
lemma (in normed-vectorspace-with-fn-norm) fn-norm-ge-zero [iff]:
assumes continuous V f norm
shows $0 \leq\|f\|-V$
proof -
interpret continuous V f norm by fact
The function norm is defined as the supremum of B. So it is ≥ 0 if all elements in B are ≥ 0, provided the supremum exists and B is not empty.
have lub $(B V f)(\|f\|-V)$
using <continuous V f norm〉 by (rule fn-norm-works)
moreover have $0 \in B V f$..
ultimately show ?thesis ..
qed

The fundamental property of function norms is:

$$
|f x| \leq\|f\| \cdot\|x\|
$$

lemma (in normed-vectorspace-with-fn-norm) fn-norm-le-cong:
assumes continuous V f norm linearform $V f$
assumes $x: x \in V$
shows $|f x| \leq\|f\|-V *\|x\|$
proof -

```
interpret continuous \(V\) f norm by fact
interpret linearform \(V f\) by fact
show ?thesis
proof cases
    assume \(x=0\)
    then have \(|f x|=|f 0|\) by simp
    also have \(f 0=0\) by rule unfold-locales
    also have \(|\ldots|=0\) by simp
    also have \(a: 0 \leq\|f\|-V\)
        using 〈continuous \(V\) f norm〉 by (rule fn-norm-ge-zero)
    from \(x\) have \(0 \leq\) norm \(x\)..
    with \(a\) have \(0 \leq\|f\|-V *\|x\|\) by (simp add: zero-le-mult-iff)
    finally show \(|f x| \leq\|f\|-V *\|x\|\).
next
    assume \(x \neq 0\)
    with \(x\) have neq: \(\|x\| \neq 0\) by simp
    then have \(|f x|=(|f x| *\) inverse \(\|x\|) *\|x\|\) by simp
    also have \(\ldots \leq\|f\|-V *\|x\|\)
    proof (rule mult-right-mono)
        from \(x\) show \(0 \leq\|x\|\)..
        from \(x\) and neq have \(|f x| *\) inverse \(\|x\| \in B V f\)
            by (auto simp add: B-def divide-inverse)
        with 〈continuous \(V\) f norm〉 show \(|f x| *\) inverse \(\|x\| \leq\|f\|-V\)
            by (rule fn-norm-ub)
    qed
    finally show ?thesis.
    qed
qed
```

The function norm is the least positive real number for which the following inequality holds：

$$
|f x| \leq c \cdot\|x\|
$$

lemma（in normed－vectorspace－with－fn－norm）fn－norm－least［intro？］：
assumes continuous V f norm
assumes ineq：$\bigwedge x . x \in V \Longrightarrow|f x| \leq c *\|x\|$ and $g e: 0 \leq c$
shows $\|f\|-V \leq c$
proof－
interpret continuous V f norm by fact
show ？thesis
proof（rule fn－norm－leastB［folded B－def fn－norm－def］）
fix b assume $b: b \in B V f$
show $b \leq c$
proof cases
assume $b=0$
with ge show？？thesis by simp
next
assume $b \neq 0$
with b obtain x where b－rep：$b=|f x| *$ inverse $\|x\|$
and x－neq：$x \neq 0$ and $x: x \in V$
by（auto simp add：B－def divide－inverse）
note b－rep
also have $|f x| *$ inverse $\|x\| \leq(c *\|x\|) *$ inverse $\|x\|$

```
        proof (rule mult-right-mono)
            have 0<|x| using x x-neq ..
            then show 0}\leq\mathrm{ inverse |x| by simp
            from x show }|fx|\leqc*|x|\mathrm{ by (rule ineq)
            qed
            also have ... = c
            proof -
            from x-neq and x have |x|\not=0 by simp
            then show?thesis by simp
            qed
            finally show ?thesis .
            qed
qed (insert <continuous V f norm`, simp-all add: continuous-def)
qed
end
```


9 Zorn's Lemma

theory Zorn-Lemma
 imports Main
 begin

Zorn's Lemmas states: if every linear ordered subset of an ordered set S has an upper bound in S, then there exists a maximal element in S. In our application, S is a set of sets ordered by set inclusion. Since the union of a chain of sets is an upper bound for all elements of the chain, the conditions of Zorn's lemma can be modified: if S is non-empty, it suffices to show that for every non-empty chain c in S the union of c also lies in S.
theorem Zorn's-Lemma:
assumes $r: \bigwedge c . c \in$ chains $S \Longrightarrow \exists x . x \in c \Longrightarrow \bigcup c \in S$ and $a S: a \in S$
shows $\exists y \in S . \forall z \in S . y \subseteq z \longrightarrow z=y$
proof (rule Zorn-Lemma2)
show $\forall c \in$ chains $S . \exists y \in S . \forall z \in c . z \subseteq y$
proof
fix c assume $c \in$ chains S
show $\exists y \in S . \forall z \in c . z \subseteq y$
proof cases
If c is an empty chain, then every element in S is an upper bound of c.
assume $c=\{ \}$
with $a S$ show ?thesis by fast
If c is non-empty, then $\bigcup c$ is an upper bound of c, lying in S.
next
assume $c \neq\{ \}$
show ?thesis
proof
show $\forall z \in c . z \subseteq \bigcup c$ by fast
show $\bigcup c \in S$
proof (rule r)

```
                    from }\langlec\not={}\rangle\mathrm{ show }\existsx.x\inc\mathrm{ by fast
                    show c\in chains S by fact
                    qed
                qed
    qed
    qed
qed
end
```


Part II

Lemmas for the Proof

10 The supremum wrt. the function order

theory Hahn-Banach-Sup-Lemmas
imports Function-Norm Zorn-Lemma
begin

This section contains some lemmas that will be used in the proof of the HahnBanach Theorem. In this section the following context is presumed. Let E be a real vector space with a seminorm p on $E . F$ is a subspace of E and f a linear form on F. We consider a chain c of norm-preserving extensions of f, such that $\bigcup c=$ graph $H h$. We will show some properties about the limit function h, i.e. the supremum of the chain c.

Let c be a chain of norm-preserving extensions of the function f and let graph H h be the supremum of c. Every element in H is member of one of the elements of the chain.

```
lemmas \([\) dest? \(]=\) chains \(D\)
lemmas chainsE2 [elim?] = chainsD2 [elim-format]
lemma some- \(H^{\prime} h^{\prime} t\) :
    assumes \(M\) : \(M=\) norm-pres-extensions \(E p F f\)
        and \(c M: c \in\) chains \(M\)
        and \(u\) : graph \(H h=\bigcup c\)
        and \(x: x \in H\)
    shows \(\exists H^{\prime} h^{\prime}\). graph \(H^{\prime} h^{\prime} \in c\)
        \(\wedge(x, h x) \in\) graph \(H^{\prime} h^{\prime}\)
        \(\wedge\) linearform \(H^{\prime} h^{\prime} \wedge H^{\prime} \unlhd E\)
        \(\wedge F \unlhd H^{\prime} \wedge\) graph \(F f \subseteq\) graph \(H^{\prime} h^{\prime}\)
        \(\wedge\left(\forall x \in H^{\prime} . h^{\prime} x \leq p x\right)\)
proof -
    from \(x\) have \((x, h x) \in\) graph \(H h\)..
    also from \(u\) have \(\ldots=\bigcup c\).
    finally obtain \(g\) where \(g c: g \in c\) and \(g h:(x, h x) \in g\) by blast
    from \(c M\) have \(c \subseteq M\)..
    with \(g c\) have \(g \in M\)..
    also from \(M\) have \(\ldots=\) norm-pres-extensions \(E p F f\).
    finally obtain \(H^{\prime}\) and \(h^{\prime}\) where \(g: g=\) graph \(H^{\prime} h^{\prime}\)
        and \(*\) : linearform \(H^{\prime} h^{\prime} H^{\prime} \unlhd E \quad F \unlhd H^{\prime}\)
        graph \(F f \subseteq\) graph \(H^{\prime} h^{\prime} \forall x \in H^{\prime} . h^{\prime} x \leq p x .\).
    from \(g c\) and \(g\) have graph \(H^{\prime} h^{\prime} \in c\) by (simp only:)
    moreover from \(g h\) and \(g\) have \((x, h x) \in\) graph \(H^{\prime} h^{\prime}\) by (simp only:)
    ultimately show ?thesis using \(*\) by blast
qed
```

Let c be a chain of norm-preserving extensions of the function f and let graph $H h$ be the supremum of c. Every element in the domain H of the supremum
function is member of the domain H^{\prime} of some function h^{\prime}, such that h extends h^{\prime}.
lemma some- $H^{\prime} h^{\prime}$:
assumes $M: M=$ norm-pres-extensions EpFf
and $c M: c \in$ chains M
and u : graph $H h=\bigcup c$
and $x: x \in H$
shows $\exists H^{\prime} h^{\prime} . x \in H^{\prime} \wedge$ graph $H^{\prime} h^{\prime} \subseteq$ graph $H h$
\wedge linearform $H^{\prime} h^{\prime} \wedge H^{\prime} \unlhd E \wedge F \unlhd H^{\prime}$
\wedge graph $F f \subseteq$ graph $H^{\prime} h^{\prime} \wedge\left(\forall x \in H^{\prime} . h^{\prime} x \leq p x\right)$
proof -
from $M c M u x$ obtain $H^{\prime} h^{\prime}$ where
x-hx: $(x, h x) \in$ graph $H^{\prime} h^{\prime}$
and $c:$ graph $H^{\prime} h^{\prime} \in c$
and $*$: linearform $H^{\prime} h^{\prime} H^{\prime} \unlhd E \quad F \unlhd H^{\prime}$
graph $F f \subseteq$ graph $H^{\prime} h^{\prime} \forall x \in H^{\prime} . \overline{h^{\prime}} x \leq p x$
by (rule some- $H^{\prime} h^{\prime} t$ [elim-format]) blast
from x - $h x$ have $x \in H^{\prime}$..
moreover from $c M u c$ have graph $H^{\prime} h^{\prime} \subseteq$ graph $H h$ by blast
ultimately show ?thesis using $*$ by blast
qed

Any two elements x and y in the domain H of the supremum function h are both in the domain H^{\prime} of some function h^{\prime}, such that h extends h^{\prime}.

```
lemma some- \(H^{\prime} h^{\prime}\) 2:
    assumes \(M\) : \(M=\) norm-pres-extensions EpFf
        and \(c M: c \in\) chains \(M\)
        and \(u\) : graph \(H h=\bigcup c\)
        and \(x: x \in H\)
        and \(y: y \in H\)
    shows \(\exists H^{\prime} h^{\prime} . x \in H^{\prime} \wedge y \in H^{\prime}\)
    \(\wedge\) graph \(H^{\prime} h^{\prime} \subseteq\) graph \(H h\)
    \(\wedge\) linearform \(H^{\prime} h^{\prime} \wedge H^{\prime} \unlhd E \wedge F \unlhd H^{\prime}\)
    \(\wedge\) graph \(F f \subseteq\) graph \(H^{\prime} h^{\prime} \wedge\left(\forall x \in H^{\prime} . h^{\prime} x \leq p x\right)\)
proof -
```

y is in the domain $H^{\prime \prime}$ of some function $h^{\prime \prime}$, such that h extends $h^{\prime \prime}$.

```
from \(M c M u\) and \(y\) obtain \(H^{\prime} h^{\prime}\) where
    \(y\)-hy: \((y, h y) \in\) graph \(H^{\prime} h^{\prime}\)
    and \(c^{\prime}\) : graph \(H^{\prime} h^{\prime} \in c\)
    and \(*\) :
        linearform \(H^{\prime} h^{\prime} H^{\prime} \unlhd E F \unlhd H^{\prime}\)
        graph \(F f \subseteq\) graph \(H^{\prime} h^{\prime} \forall x \in H^{\prime} . h^{\prime} x \leq p x\)
    by (rule some- \(H^{\prime} h^{\prime} t\) [elim-format \(]\) ) blast
```

x is in the domain H^{\prime} of some function h^{\prime}, such that h extends h^{\prime}.
from $M c M u$ and x obtain $H^{\prime \prime} h^{\prime \prime}$ where
x-hx: $(x, h x) \in \operatorname{graph} H^{\prime \prime} h^{\prime \prime}$
and $c^{\prime \prime}:$ graph $H^{\prime \prime} h^{\prime \prime} \in c$
and ** :
linearform $H^{\prime \prime} h^{\prime \prime} H^{\prime \prime} \unlhd E \quad F \unlhd H^{\prime \prime}$
graph $F f \subseteq$ graph $H^{\prime \prime} h^{\prime \prime} \forall x \in H^{\prime \prime} . h^{\prime \prime} x \leq p x$
by (rule some- $H^{\prime} h^{\prime} t$ [elim-format $]$) blast
Since both h^{\prime} and $h^{\prime \prime}$ are elements of the chain, $h^{\prime \prime}$ is an extension of h^{\prime} or vice versa. Thus both x and y are contained in the greater one.

```
from \(c M c^{\prime \prime} c^{\prime}\) consider graph \(H^{\prime \prime} h^{\prime \prime} \subseteq\) graph \(H^{\prime} h^{\prime} \mid\) graph \(H^{\prime} h^{\prime} \subseteq\) graph \(H^{\prime \prime} h^{\prime \prime}\)
    by (blast dest: chainsD)
then show ?thesis
proof cases
    case 1
    have \((x, h x) \in\) graph \(H^{\prime \prime} h^{\prime \prime}\) by fact
    also have \(\ldots \subseteq\) graph \(H^{\prime} h^{\prime}\) by fact
    finally have \(x h:(x, h x) \in \operatorname{graph} H^{\prime} h^{\prime}\).
    then have \(x \in H^{\prime}\)..
    moreover from \(y\) - \(h y\) have \(y \in H^{\prime}\)..
    moreover from \(c M u\) and \(c^{\prime}\) have graph \(H^{\prime} h^{\prime} \subseteq\) graph \(H h\) by blast
    ultimately show ?thesis using * by blast
next
    case 2
    from \(x\) - \(h x\) have \(x \in H^{\prime \prime}\)..
    moreover have \(y \in H^{\prime \prime}\)
    proof -
        have \((y, h y) \in\) graph \(H^{\prime} h^{\prime}\) by (rule \(y\)-hy)
        also have \(\ldots \subseteq\) graph \(H^{\prime \prime} h^{\prime \prime}\) by fact
        finally have \((\bar{y}, h y) \in\) graph \(H^{\prime \prime} h^{\prime \prime}\).
        then show ?thesis ..
    qed
    moreover from \(u c^{\prime \prime}\) have graph \(H^{\prime \prime} h^{\prime \prime} \subseteq\) graph \(H h\) by blast
    ultimately show ?thesis using ** by blast
qed
qed
```

The relation induced by the graph of the supremum of a chain c is definite, i.e. it is the graph of a function.

```
lemma sup-definite:
    assumes M-def:M= norm-pres-extensions E p Ff
        and cM:c\in chains M
        and xy: (x,y) \in\bigcupc
        and xz:(x,z)\in\bigcupc
    shows z=y
proof -
    from cM have c:c\subseteqM ..
    from xy obtain G1 where }x\mp@subsup{y}{}{\prime}:(x,y)\inG1 and G1:G1\inc.
    from xz obtain G2 where xz':}(x,z)\inG2 and G2:G2 \in c..
    from G1 c have G1 \inM ..
    then obtain H1 h1 where G1-rep:G1 = graph H1 h1
        unfolding M-def by blast
    from G2 c have G2 \in M ..
    then obtain H2 h2 where G2-rep:G2 = graph H2 h2
        unfolding M-def by blast
```

G_{1} is contained in G_{2} or vice versa, since both G_{1} and G_{2} are members of c.

```
from \(c M G 1 G 2\) consider \(G 1 \subseteq G 2 \mid G 2 \subseteq G 1\)
    by (blast dest: chainsD)
then show?thesis
proof cases
    case 1
    with \(x y^{\prime}\) G2-rep have \((x, y) \in\) graph H2 h2 by blast
    then have \(y=h 2 x\)..
    also
    from \(x z^{\prime}\) G2-rep have ( \(x, z\) ) \(\in\) graph H2 h2 by (simp only:)
    then have \(z=h 2 x\)..
    finally show? ?thesis.
next
    case 2
    with \(x z^{\prime}\) G1-rep have \((x, z) \in\) graph H1 h1 by blast
    then have \(z=h 1 x\)..
    also
    from \(x y^{\prime}\) G1-rep have ( \(x, y\) ) \(\in\) graph H1 h1 by (simp only:)
    then have \(y=h 1 x\)..
    finally show ?thesis ..
qed
qed
```

The limit function h is linear. Every element x in the domain of h is in the domain of a function h^{\prime} in the chain of norm preserving extensions. Furthermore, h is an extension of h^{\prime} so the function values of x are identical for h^{\prime} and h. Finally, the function h^{\prime} is linear by construction of M.

```
lemma sup-lf:
    assumes M:M = norm-pres-extensions E p Ff
        and cM:c\inchains M
        and u: graph Hh=\bigcupc
    shows linearform H h
proof
    fix x y assume x: x\inH and y: y\inH
    with McMu obtain H' h' where
            x ^ { \prime } : x \in H ^ { \prime } \text { and } y ^ { \prime } : y \in H ^ { \prime }
        and b: graph H' }\mp@subsup{H}{}{\prime}\subseteq\mathrm{ graph H h
        and linearform: linearform H' H'
        and subspace: }\mp@subsup{H}{}{\prime}\triangleleft
        by (rule some-H'h'2 [elim-format]) blast
    show h(x+y)=hx+hy
    proof -
        from linearform \mp@subsup{x}{}{\prime}}\mp@subsup{y}{}{\prime}\mathrm{ have }\mp@subsup{h}{}{\prime}(x+y)=\mp@subsup{h}{}{\prime}x+\mp@subsup{h}{}{\prime}
        by (rule linearform.add)
    also from b x' have h' }\mp@subsup{h}{}{\prime}=hx\mathrm{ ..
    also from b y ' have h'y=hy .
    also from subspace \mp@subsup{x}{}{\prime}\mp@subsup{y}{}{\prime}}\mathrm{ have }x+y\in\mp@subsup{H}{}{\prime
        by (rule subspace.add-closed)
    with b have }\mp@subsup{h}{}{\prime}(x+y)=h(x+y).
    finally show ?thesis.
    qed
next
    fix }x\mathrm{ a assume }x:x\in
```

```
with \(M c M u\) obtain \(H^{\prime} h^{\prime}\) where
        \(x^{\prime}: x \in H^{\prime}\)
    and b: graph \(H^{\prime} h^{\prime} \subseteq\) graph \(H h\)
    and linearform: linearform \(H^{\prime} h^{\prime}\)
    and subspace: \(H^{\prime} \unlhd E\)
    by (rule some- \(H^{\prime} h^{\prime}\) [elim-format \(]\) ) blast
show \(h(a \cdot x)=a * h x\)
proof -
    from linearform \(x^{\prime}\) have \(h^{\prime}(a \cdot x)=a * h^{\prime} x\)
        by (rule linearform.mult)
    also from \(b x^{\prime}\) have \(h^{\prime} x=h x\)..
    also from subspace \(x^{\prime}\) have \(a \cdot x \in H^{\prime}\)
        by (rule subspace.mult-closed)
    with \(b\) have \(h^{\prime}(a \cdot x)=h(a \cdot x)\)..
    finally show ?thesis.
qed
qed
```

The limit of a non-empty chain of norm preserving extensions of f is an extension of f, since every element of the chain is an extension of f and the supremum is an extension for every element of the chain.

```
lemma sup-ext:
    assumes graph: graph H h=\c
        and M:M = norm-pres-extensions E p Ff
        and cM:c\in chains M
        and ex: \existsx. x \inc
    shows graph Ff\subseteqgraph Hh
proof -
    from ex obtain x where xc: x\in c..
    from }cM\mathrm{ have }c\subseteqM.
    with }xc\mathrm{ have }x\inM.
    with M have x form-pres-extensions E p Ff
        by (simp only:)
    then obtain Gg}\mathrm{ where x = graph G g and graph Ff graph G g ..
    then have graph Ff\subseteqx by (simp only:)
    also from xc have \ldots\subseteq\bigcup c) by blast
    also from graph have ... = graph H h ..
    finally show ?thesis.
qed
```

The domain H of the limit function is a superspace of F, since F is a subset of H. The existence of the 0 element in F and the closure properties follow from the fact that F is a vector space.

```
lemma sup-supF:
    assumes graph: graph \(H h=\bigcup c\)
    and \(M: M=\) norm-pres-extensions Ep Ff
    and \(c M: c \in\) chains \(M\)
    and ex: \(\exists x . x \in c\)
    and \(F E: F \unlhd E\)
    shows \(F \unlhd H\)
proof
```

```
    from \(F E\) show \(F \neq\{ \}\) by (rule subspace.non-empty)
    from graph \(M c M\) ex have graph \(F f \subseteq\) graph \(H h\) by (rule sup-ext)
    then show \(F \subseteq H\)..
    fix \(x y\) assume \(x \in F\) and \(y \in F\)
    with \(F E\) show \(x+y \in F\) by (rule subspace.add-closed)
next
    fix \(x a\) assume \(x \in F\)
    with \(F E\) show \(a \cdot x \in F\) by (rule subspace.mult-closed)
qed
```

The domain H of the limit function is a subspace of E.

```
lemma sup-subE:
    assumes graph: graph \(H h=\bigcup c\)
    and \(M: M=\) norm-pres-extensions \(E\) p \(F f\)
    and \(c M: c \in\) chains \(M\)
    and \(e x: \exists x . x \in c\)
    and \(F E: F \unlhd E\)
    and \(E\) : vectorspace \(E\)
    shows \(H \unlhd E\)
proof
    show \(H \neq\{ \}\)
    proof -
        from \(F E E\) have \(0 \in F\) by (rule subspace.zero)
        also from graph \(M c M\) ex \(F E\) have \(F \unlhd H\) by (rule sup-sup \(F\) )
    then have \(F \subseteq H\)..
    finally show? thesis by blast
    qed
    show \(H \subseteq E\)
    proof
    fix \(x\) assume \(x \in H\)
    with \(M c M\) graph
    obtain \(H^{\prime}\) where \(x: x \in H^{\prime}\) and \(H^{\prime} E: H^{\prime} \unlhd E\)
            by (rule some- \(H^{\prime} h^{\prime}\) [elim-format \(]\) ) blast
    from \(H^{\prime} E\) have \(H^{\prime} \subseteq E\)..
    with \(x\) show \(x \in E\)..
    qed
    fix \(x y\) assume \(x: x \in H\) and \(y: y \in H\)
    show \(x+y \in H\)
    proof -
        from \(M c M\) graph \(x y\) obtain \(H^{\prime} h^{\prime}\) where
            \(x^{\prime}: x \in H^{\prime}\) and \(y^{\prime}: y \in H^{\prime}\) and \(H^{\prime} E: H^{\prime} \unlhd E\)
            and graphs: graph \(H^{\prime} h^{\prime} \subseteq\) graph \(H h\)
        by (rule some- \(H^{\prime} h^{\prime} 2\) [elim-format]) blast
    from \(H^{\prime} E x^{\prime} y^{\prime}\) have \(x+y \in H^{\prime}\)
        by (rule subspace.add-closed)
    also from graphs have \(H^{\prime} \subseteq H\)..
    finally show ?thesis .
    qed
next
    fix \(x a\) assume \(x: x \in H\)
    show \(a \cdot x \in H\)
    proof -
        from McM graph \(x\)
        obtain \(H^{\prime} h^{\prime}\) where \(x^{\prime}: x \in H^{\prime}\) and \(H^{\prime} E: H^{\prime} \unlhd E\)
```

```
            and graphs: graph H' }\mp@subsup{H}{}{\prime}\subseteq\mathrm{ graph H h
            by (rule some-H'}\mp@subsup{h}{}{\prime}[\mathrm{ [lim-format]) blast
    from H'E 名 have a}a\cdotx\in\mp@subsup{H}{}{\prime}\mathrm{ by (rule subspace.mult-closed)
    also from graphs have H'\subseteqH ..
    finally show ?thesis.
    qed
qed
```

The limit function is bounded by the norm p as well, since all elements in the chain are bounded by p.

```
lemma sup-norm-pres:
    assumes graph: graph H h=\bigcupc
        and M:M = norm-pres-extensions E p Ff
    and cM:c\in chains M
    shows }\forallx\inH.hx\leqp
proof
    fix x assume }x\in
    with McM graph obtain H' }\mp@subsup{h}{}{\prime}\mathrm{ where }\mp@subsup{x}{}{\prime}:x\in\mp@subsup{H}{}{\prime
        and graphs: graph H' h'\subseteqgraph H h
        and a:}\forallx\in\mp@subsup{H}{}{\prime}.\mp@subsup{h}{}{\prime}x\leq\overline{p}
    by (rule some-H'h' [elim-format]) blast
    from graphs \mp@subsup{x}{}{\prime}}\mathrm{ have [symmetric]: h' x = hx..
    also from a x' have h' }\mp@subsup{h}{}{\prime}\leqpx .
    finally show hx \leq px.
qed
```

The following lemma is a property of linear forms on real vector spaces. It will be used for the lemma abs-Hahn-Banach (see page 51). For real vector spaces the following inequality are equivalent:

$$
\forall x \in H .|h x| \leq p x \quad \text { and } \quad \forall x \in H . h x \leq p x
$$

```
lemma abs-ineq-iff:
    assumes subspace H E and vectorspace E and seminorm E p
    and linearform Hh
    shows (\forallx\inH. |hx| \leqpx)=(\forallx\inH.hx\leqpx)(is ?L=?R)
proof
    interpret subspace H E by fact
    interpret vectorspace E by fact
    interpret seminorm E p by fact
    interpret linearform H h by fact
    have H: vectorspace H using <vectorspace E` ..
    {
        assume l:?L
        show ?R
        proof
            fix x assume x: x\inH
            have hx\leq |hx| by arith
            also from lx have ...\leqpx ..
            finally show hx\leqpx.
        qed
    next
        assume r:?R
```

```
    show ?L
    proof
    fix x assume x: x\inH
    show }|b|\leqa\mathrm{ when - a < b b <a for a b:: real
        using that by arith
    from <linearform Hh> and H x
    have - hx =h(-x) by (rule linearform.neg [symmetric])
    also
    from H x have - x\inH by (rule vectorspace.neg-closed)
    with r have h(-x)\leqp(-x)..
    also have ... = px
        using <seminorm E p`\langlevectorspace E〉
    proof (rule seminorm.minus)
        from }x\mathrm{ show }x\inE.
    qed
    finally have - hx\leqpx.
    then show - px\leqhx by simp
    from r x show hx\leqpx..
    qed
}
qed
end
```


11 Extending non-maximal functions

theory Hahn-Banach-Ext-Lemmas
imports Function-Norm
begin
In this section the following context is presumed. Let E be a real vector space with a seminorm q on $E . F$ is a subspace of E and f a linear function on F. We consider a subspace H of E that is a superspace of F and a linear form h on H. H is a not equal to E and x_{0} is an element in $E-H . H$ is extended to the direct sum $H^{\prime}=H+\operatorname{lin} x_{0}$, so for any $x \in H^{\prime}$ the decomposition of $x=y+$ $a \cdot x$ with $y \in H$ is unique. h^{\prime} is defined on H^{\prime} by $h^{\prime} x=h y+a \cdot \xi$ for a certain ξ.
Subsequently we show some properties of this extension h^{\prime} of h.
This lemma will be used to show the existence of a linear extension of f (see page 48). It is a consequence of the completeness of \mathbb{R}. To show

$$
\exists \xi . \forall y \in F . a y \leq \xi \wedge \xi \leq b y
$$

it suffices to show that

$$
\forall u \in F . \forall v \in F . a u \leq b v
$$

```
lemma ex-xi:
    assumes vectorspace F
    assumes r: \bigwedgeuv.u\inF\Longrightarrowv\inF\Longrightarrowau\leqbv
    shows \existsxi::real., }\forally\inF.ay\leqxi\wedge xi\leqb
proof -
```

interpret vectorspace F by fact
From the completeness of the reals follows: The set $S=\{a u . u \in F\}$ has a supremum, if it is non-empty and has an upper bound.

```
let ?S = {au| u.u\inF}
have }\exists\mathrm{ xi.lub ?S xi
proof (rule real-complete)
    have a 0 E ?S by blast
    then show }\existsX.X\in?S.
    have }\forally\in?S.y\leqb
    proof
        fix y assume y:y\in?S
        then obtain u where u:u\inF and y:y=au by blast
        from u}\mathrm{ and zero have au
        with y show y\leqb 0 by (simp only:)
    qed
    then show }\existsu.\forally\in?S.y\lequ.
qed
then obtain xi where xi: lub ?S xi ..
{
    fix y assume y\inF
    then have a y\in?S by blast
    with xi have a y\leqxi by (rule lub.upper)
}
moreover {
    fix y assume y:y\inF
    from xi have xi\leqby
    proof (rule lub.least)
            fix au assume au\in?S
            then obtain u}\mathrm{ where }u:u\inF\mathrm{ and au: au =au by blast
            from }uy\mathrm{ have }au\leqby\mathrm{ by (rule r)
            with au show }au\leqby\mathrm{ by (simp only:)
    qed
}
ultimately show }\existsxi.\forally\inF.ay\leqxi\wedgexi\leqby\mathrm{ by blast
qed
```

The function h^{\prime} is defined as a $h^{\prime} x=h y+a \cdot \xi$ where $x=y+a \cdot \xi$ is a linear extension of h to H^{\prime}.

```
lemma }\mp@subsup{h}{}{\prime}-lf
    assumes }\mp@subsup{h}{}{\prime}\mathrm{ -def: }\x.\mp@subsup{h}{}{\prime}x=(let (y,a)
        SOME (y,a).x=y+a\cdotx0^y\inH in hy+a*xi)
    and }\mp@subsup{H}{}{\prime}\mathrm{ -def: }\mp@subsup{H}{}{\prime}=H+\operatorname{lin}x
    and HE: H}\unlhd
    assumes linearform H h
    assumes x0: x0 &H x0 \inE x0\not=0
    assumes E: vectorspace E
    shows linearform H' h'
proof -
    interpret linearform H h by fact
    interpret vectorspace E by fact
    show ?thesis
    proof
```

```
note \(E=\langle\) vectorspace \(E\rangle\)
have \(H^{\prime}\) : vectorspace \(H^{\prime}\)
proof (unfold \(H^{\prime}\)-def)
    from \(\langle x 0 \in E\rangle\)
    have \(\operatorname{lin} x 0 \unlhd E\)..
    with \(H E\) show vectorspace \((H+\operatorname{lin} x 0)\) using \(E\)..
qed
\{
    fix \(x 1 x 2\) assume \(x 1: x 1 \in H^{\prime}\) and \(x 2: x 2 \in H^{\prime}\)
    show \(h^{\prime}(x 1+x 2)=h^{\prime} x 1+h^{\prime} x 2\)
    proof -
    from \(H^{\prime} x 1 x 2\) have \(x 1+x 2 \in H^{\prime}\)
        by (rule vectorspace.add-closed)
    with \(x 1\) x2 obtain \(y\) y1 y2 a a1 a2 where
        \(x 1 x 2: x 1+x 2=y+a \cdot x 0\) and \(y: y \in H\)
        and \(x 1\)-rep: \(x 1=y 1+a 1 \cdot x 0\) and \(y 1: y 1 \in H\)
        and \(x 2\)-rep: \(x 2=y 2+a 2 \cdot x 0\) and \(y 2: y 2 \in H\)
        unfolding \(H^{\prime}\)-def sum-def lin-def by blast
    have \(y a: y 1+y 2=y \wedge a 1+a 2=a\) using \(E H E-y x 0\)
    proof (rule decomp- \(H^{\prime}\) )
\(\quad\) by (rule subspace.add-closed)
        from \(x 0\) and HE y y1 y2
        have \(x 0 \in E \quad y \in E \quad y 1 \in E \quad y 2 \in E\) by auto
        with \(x 1\)-rep \(x 2\)-rep have \((y 1+y 2)+(a 1+a 2) \cdot x 0=x 1+x_{2}\)
            by (simp add: add-ac add-mult-distrib2)
        also note \(x 1 x 2\)
        finally show \((y 1+y 2)+(a 1+a 2) \cdot x 0=y+a \cdot x 0\).
    qed
    from \(h^{\prime}\)-def \(x 1 x 2 E\) HE y x0
    have \(h^{\prime}(x 1+x 2)=h y+a * x i\)
        by (rule \(h^{\prime}\)-definite)
    also have \(\ldots=h(y 1+y 2)+(a 1+a 2) * x i\)
        by (simp only: ya)
    also from \(y 1\) y2 have \(h(y 1+y 2)=h y 1+h y 2\)
        by \(\operatorname{simp}\)
    also have \(\ldots+(a 1+a 2) * x i=(h y 1+a 1 * x i)+(h y 2+a 2 * x i)\)
        by (simp add: distrib-right)
    also from \(h^{\prime}\)-def x1-rep E HE y1 x0
    have \(h y 1+a 1 * x i=h^{\prime} x 1\)
        by (rule \(h^{\prime}\)-definite [symmetric])
    also from \(h^{\prime}\)-def \(x 2\)-rep \(E\) HE y2 xo
    have \(h y 2+a 2 * x i=h^{\prime} x 2\)
        by (rule \(h^{\prime}\)-definite [symmetric])
    finally show ?thesis.
    qed
next
    fix \(x 1 c\) assume \(x 1: x 1 \in H^{\prime}\)
    show \(h^{\prime}(c \cdot x 1)=c *\left(h^{\prime} x 1\right)\)
    proof -
        from \(H^{\prime} x 1\) have \(a x 1: c \cdot x 1 \in H^{\prime}\)
            by (rule vectorspace.mult-closed)
    with \(x 1\) obtain \(y\) a y1 a1 where
```

```
                cx1-rep: c. x1 = y +a\cdotx0 and y: y\inH
                and x1-rep: x1 = y1 +a1 . x0 and y1:y1\inH
                unfolding H'-def sum-def lin-def by blast
            have ya:c\cdoty1=y^c*a1 = a using E HE-y x0
            proof (rule decomp-H')
                    from HE y1 show c\cdoty1\inH
                    by (rule subspace.mult-closed)
            from x0 and HE y y1
            have }x0\inE\quady\inE y1\inE by aut
            with x1-rep have c\cdoty1+(c*a1)\cdotx0 =c c x1
                    by (simp add: mult-assoc add-mult-distrib1)
            also note cx1-rep
            finally show c
qed
            from }\mp@subsup{h}{}{\prime}\mathrm{ -def cx1-rep E HE y x0 have h' (c f x1) =hy+a*xi
            by (rule h'-definite)
                    also have \ldots. =h(c\cdoty1)+(c*a1)*xi
            by (simp only: ya)
            also from y1 have h(c\cdoty1)=c*hy1
            by simp
            also have \ldots+(c*a1)*xi=c*(hy1 +a1*xi)
            by (simp only: distrib-left)
                also from }\mp@subsup{h}{}{\prime}\mathrm{ -def x1-rep E HE y1 x0 have hy1+a1*xi= h' x1
                    by (rule h'-definite [symmetric])
            finally show ?thesis.
        qed
    }
    qed
qed
```

The linear extension h^{\prime} of h is bounded by the seminorm p.

```
lemma \(h^{\prime}\)-norm-pres:
    assumes \(h^{\prime}\)-def: \(\bigwedge x . h^{\prime} x=(\) let \((y, a)=\)
        \(\operatorname{SOME}(y, a) \cdot x=y+a \cdot x 0 \wedge y \in H\) in \(h y+a * x i)\)
    and \(H^{\prime}\)-def: \(H^{\prime}=H+\operatorname{lin} x 0\)
    and \(x 0: x 0 \notin H \quad x 0 \in E x 0 \neq 0\)
    assumes \(E\) : vectorspace \(E\) and \(H E\) : subspace \(H E\)
    and seminorm \(E p\) and linearform \(H h\)
    assumes \(a: \forall y \in H . h y \leq p y\)
    and \(a^{\prime}: \forall y \in H .-p(y+x 0)-h y \leq x i \wedge x i \leq p(y+x 0)-h y\)
    shows \(\forall x \in H^{\prime} . h^{\prime} x \leq p x\)
proof -
    interpret vectorspace \(E\) by fact
    interpret subspace \(H E\) by fact
    interpret seminorm \(E p\) by fact
    interpret linearform \(H h\) by fact
    show ?thesis
    proof
        fix \(x\) assume \(x^{\prime}: x \in H^{\prime}\)
        show \(h^{\prime} x \leq p x\)
    proof -
        from \(a^{\prime}\) have \(a 1: \forall y a \in H .-p(y a+x 0)-h y a \leq x i\)
```

and $a 2: \forall y a \in H . x i \leq p(y a+x 0)-h y a$ by auto
from x^{\prime} obtain $y a$ where
x-rep: $x=y+a \cdot x 0$ and $y: y \in H$
unfolding H^{\prime}-def sum-def lin-def by blast
from y have $y^{\prime}: y \in E$..
from y have ay: inverse $a \cdot y \in H$ by simp
from h^{\prime}-def x-rep E HE y $x 0$ have $h^{\prime} x=h y+a * x i$
by (rule h^{\prime}-definite)
also have $\ldots \leq p(y+a \cdot x 0)$
proof (rule linorder-cases)
assume $z: a=0$
then have $h y+a * x i=h y$ by simp
also from $a y$ have $\ldots \leq p y$..
also from $x 0 y^{\prime} z$ have $p y=p(y+a \cdot x 0)$ by simp
finally show ?thesis.
next
In the case $a<0$, we use a_{1} with $y a$ taken as y / a :
assume $l z: a<0$ then have $n z: a \neq 0$ by simp
from a1 ay
have - $p($ inverse $a \cdot y+x 0)-h($ inverse $a \cdot y) \leq x i$..
with $l z$ have $a * x i \leq$
$a *(-p($ inverse $a \cdot y+x 0)-h($ inverse $a \cdot y))$
by (simp add: mult-left-mono-neg order-less-imp-le)
also have $\ldots=$
$-a *(p($ inverse $a \cdot y+x 0))-a *(h($ inverse $a \cdot y))$
by (simp add: right-diff-distrib)
also from $l z x 0 y^{\prime}$ have $-a *(p($ inverse $a \cdot y+x 0))=$ $p(a \cdot($ inverse $a \cdot y+x 0))$
by (simp add: abs-homogenous)
also from $n z x 0 y^{\prime}$ have $\ldots=p(y+a \cdot x 0)$
by (simp add: add-mult-distrib1 mult-assoc [symmetric])
also from $n z y$ have $a *(h($ inverse $a \cdot y))=h y$ by simp
finally have $a * x i \leq p(y+a \cdot x 0)-h y$.
then show ?thesis by simp
next
In the case $a>0$, we use a_{2} with $y a$ taken as y / a :

```
assume \(g z: 0<a\) then have \(n z: a \neq 0\) by simp
from a2 ay
have \(x i \leq p(\) inverse \(a \cdot y+x 0)-h(\) inverse \(a \cdot y)\)..
with \(g z\) have \(a * x i \leq\)
    \(a *(p(\) inverse \(a \cdot y+x 0)-h(\) inverse \(a \cdot y))\)
    by \(\operatorname{simp}\)
also have \(\ldots=a * p(\) inverse \(a \cdot y+x 0)-a * h(\) inverse \(a \cdot y)\)
    by (simp add: right-diff-distrib)
also from \(g z x 0 y^{\prime}\)
have \(a * p(\) inverse \(a \cdot y+x 0)=p(a \cdot(\) inverse \(a \cdot y+x 0))\)
    by (simp add: abs-homogenous)
also from \(n z x 0 y^{\prime}\) have \(\ldots=p(y+a \cdot x 0)\)
    by (simp add: add-mult-distrib1 mult-assoc [symmetric])
```

```
also from nz y have a*h(inverse a | y)=hy
by simp
finally have a*xi\leqp(y+a\cdotx0)-hy.
then show ?thesis by simp
qed
also from x-rep have ...=px by (simp only:)
finally show ?thesis.
qed
qed
qed
end
```


Part III

The Main Proof

12 The Hahn-Banach Theorem

theory Hahn-Banach
imports Hahn-Banach-Lemmas
begin

We present the proof of two different versions of the Hahn-Banach Theorem, closely following $[1, \S 36]$.

12.1 The Hahn-Banach Theorem for vector spaces

Hahn-Banach Theorem. Let F be a subspace of a real vector space E, let p be a semi-norm on E, and f be a linear form defined on F such that f is bounded by p, i.e. $\forall x \in F . f x \leq p x$. Then f can be extended to a linear form h on E such that h is norm-preserving, i.e. h is also bounded by p.

Proof Sketch.

1. Define M as the set of norm-preserving extensions of f to subspaces of E. The linear forms in M are ordered by domain extension.
2. We show that every non-empty chain in M has an upper bound in M.
3. With Zorn's Lemma we conclude that there is a maximal function g in M.
4. The domain H of g is the whole space E, as shown by classical contradiction:

- Assuming g is not defined on whole E, it can still be extended in a norm-preserving way to a super-space H^{\prime} of H.
- Thus g can not be maximal. Contradiction!
theorem Hahn-Banach:
assumes E : vectorspace E and subspace $F E$ and seminorm $E p$ and linearform $F f$
assumes $f p: \forall x \in F . f x \leq p x$
shows \exists h. linearform $E h \wedge(\forall x \in F . h x=f x) \wedge(\forall x \in E . h x \leq p x)$
- Let E be a vector space, F a subspace of E, p a seminorm on E,
- and f a linear form on F such that f is bounded by p,
- then f can be extended to a linear form h on E in a norm-preserving way.
proof -
interpret vectorspace E by fact
interpret subspace $F E$ by fact
interpret seminorm E p by fact
interpret linearform $F f$ by fact
define M where $M=$ norm-pres-extensions EpFf
then have $M: M=\ldots$ by (simp only:)

```
from E have F: vectorspace F ..
note FE=\langleF\unlhdE\rangle
{
    fix c assume cM:c\inchains M and ex: \existsx. x\inc
    have }\bigcupc\in
    - Show that every non-empty chain c of M has an upper bound in M:
    - \bigcupc is greater than any element of the chain c, so it suffices to show }\bigcupc\inM
    unfolding M-def
    proof (rule norm-pres-extensionI)
        let ?H= domain (Uc)
        let ?h = funct ( }\c
    have a: graph ?H ?h = \bigcupc
    proof (rule graph-domain-funct)
        fix }xyz\mathrm{ assume (x,y) G \c and (x,z) G \c
        with M-def cM show z=y by (rule sup-definite)
    qed
    moreover from M cM a have linearform ?H ?h
        by (rule sup-lf)
    moreover from aM cM ex FE E have ?H}\unlhd
        by (rule sup-subE)
    moreover from a M cM ex FE have F\unlhd?H
        by (rule sup-supF)
    moreover from a M cM ex have graph F f\subseteqgraph ?H ?h
        by (rule sup-ext)
    moreover from a McM have }\forallx\in??H. ?h x \leq p
        by (rule sup-norm-pres)
    ultimately show \existsHh.\ \ = graph Hh
            \wedge linearform H h
            \wedgeH\unlhdE
            \wedgeF\unlhdH
            ^graph F f\subseteqgraph H h
            \wedge(\forallx\inH.hx\leqpx) by blast
    qed
}
then have }\existsg\inM.\forallx\inM.g\subseteqx\longrightarrowx=
- With Zorn's Lemma we can conclude that there is a maximal element in M.
proof (rule Zorn's-Lemma)
    - We show that M is non-empty:
    show graph F f}\in
        unfolding M-def
    proof (rule norm-pres-extensionI2)
        show linearform F f by fact
        show }F\unlhdE\mathrm{ by fact
        from F}\mathrm{ show }F\unlhdF\mathrm{ by (rule vectorspace.subspace-refl)
        show graph F f\subseteqgraph Ff ..
        show }\forallx\inF.fx\leqpx by fac
    qed
qed
then obtain g}\mathrm{ where gM:g}g\inM\mathrm{ and gx: }\forallx\inM.g\subseteqx\longrightarrowg=
    by blast
from gM obtain Hh}\mathrm{ where
    g-rep: g= graph H h
    and linearform: linearform H h
```

and $H E: H \unlhd E$ and $F H: F \unlhd H$
and graphs: graph $F f \subseteq$ graph $H h$
and $h p: \forall x \in H . h x \leq p x$ unfolding M-def ..

- g is a norm-preserving extension of f, in other words:
- g is the graph of some linear form h defined on a subspace H of E,
- and h is an extension of f that is again bounded by p.
from $H E E$ have H : vectorspace H
by (rule subspace.vectorspace)
have $H E$-eq: $H=E$
- We show that h is defined on whole E by classical contradiction.
proof (rule classical)
assume neq: $H \neq E$
- Assume h is not defined on whole E. Then show that h can be extended - in a norm-preserving way to a function h^{\prime} with the graph g^{\prime}.
have $\exists g^{\prime} \in M . g \subseteq g^{\prime} \wedge g \neq g^{\prime}$

proof -

from $H E$ have $H \subseteq E$..
with neq obtain x^{\prime} where $x^{\prime} E: x^{\prime} \in E$ and $x^{\prime} \notin H$ by blast
obtain $x^{\prime}: x^{\prime} \neq 0$
proof
show $x^{\prime} \neq 0$
proof
assume $x^{\prime}=0$
with H have $x^{\prime} \in H$ by (simp only: vectorspace.zero)
with $\left\langle x^{\prime} \notin H\right\rangle$ show False by contradiction
qed
qed
define H^{\prime} where $H^{\prime}=H+\operatorname{lin} x^{\prime}$

- Define H^{\prime} as the direct sum of H and the linear closure of x^{\prime}.
have $H H^{\prime}: H \unlhd H^{\prime}$
proof (unfold H^{\prime}-def)
from $x^{\prime} E$ have vectorspace $\left(\operatorname{lin} x^{\prime}\right)$.. with H show $H \unlhd H+\operatorname{lin} x^{\prime} .$.
qed
obtain $x i$ where

$$
x i: \forall y \in H .-p\left(y+x^{\prime}\right)-h y \leq x i
$$

$\wedge x i \leq p\left(y+x^{\prime}\right)-h y$

- Pick a real number ξ that fulfills certain inequality; this will
- be used to establish that h^{\prime} is a norm-preserving extension of h.

proof -

from H have $\exists x i . \forall y \in H .-p\left(y+x^{\prime}\right)-h y \leq x i$

$$
\wedge x i \leq p\left(y+x^{\prime}\right)-h y
$$

proof (rule ex-xi)
fix $u v$ assume $u: u \in H$ and $v: v \in H$
with $H E$ have $u E: u \in E$ and $v E: v \in E$ by auto
from $H u v$ linearform have $h v-h u=h(v-u)$
by (simp add: linearform.diff)
also from $h p$ and $H u v$ have $\ldots \leq p(v-u)$
by (simp only: vectorspace.diff-closed)
also from $x^{\prime} E u E v E$ have $v-u=x^{\prime}+-x^{\prime}+v+-u$

```
    by (simp add: diff-eq1)
    also from \mp@subsup{x}{}{\prime}EuEvE have }\ldots=v+\mp@subsup{x}{}{\prime}+-(u+\mp@subsup{x}{}{\prime}
    by (simp add: add-ac)
    also from \mp@subsup{x}{}{\prime}EuEvE have \ldots=(v+\mp@subsup{x}{}{\prime})-(u+\mp@subsup{x}{}{\prime})
    by (simp add: diff-eq1)
    also from \mp@subsup{x}{}{\prime}EuEvEE have p\ldots\leqp(v+\mp@subsup{x}{}{\prime})+p(u+\mp@subsup{x}{}{\prime})
    by (simp add: diff-subadditive)
    finally have hv -hu\leqp(v+\mp@subsup{x}{}{\prime})+p(u+\mp@subsup{x}{}{\prime}).
    then show - p(u+\mp@subsup{x}{}{\prime})-hu\leqp(v+\mp@subsup{x}{}{\prime})-hv by simp
qed
    then show thesis by (blast intro: that)
qed
define }\mp@subsup{h}{}{\prime}\mathrm{ where }\mp@subsup{h}{}{\prime}x=(let (y,a)
    SOME (y,a). x = y+a\cdot\mp@subsup{x}{}{\prime}\wedge y\inH in hy+a*xi) for x
    - Define the extension }\mp@subsup{h}{}{\prime}\mathrm{ of }h\mathrm{ to }\mp@subsup{H}{}{\prime}\mathrm{ using }\xi\mathrm{ .
have g\subseteqgraph H' h' ^g\not=graph H' }\mp@subsup{h}{}{\prime
    - }\mp@subsup{h}{}{\prime}\mathrm{ is an extension of h...
proof
    show g\subseteqgraph H' h'
    proof -
    have graph H h\subseteqgraph H' h'
    proof (rule graph-extI)
        fix t assume t:t\inH
        from E HE t have (SOME (y,a).t=y+a\cdot 和^y\inH)=(t,0)
            using \langle\mp@subsup{x}{}{\prime}\not\inH\rangle\langle\mp@subsup{x}{}{\prime}\inE\rangle\langle\mp@subsup{x}{}{\prime}\not=0\rangle\mathrm{ by (rule decomp-H}\mp@subsup{H}{}{\prime}-H)
        with }\mp@subsup{h}{}{\prime}\mathrm{ -def show ht= h't by (simp add: Let-def)
    next
        from }H\mp@subsup{H}{}{\prime}\mathrm{ show }H\subseteq\mp@subsup{H}{}{\prime}.
    qed
    with g-rep show ?thesis by (simp only:)
    qed
    show g\not= graph H' }\mp@subsup{H}{}{\prime
    proof -
        have graph H h}\not=\mathrm{ graph H' h'
        proof
        assume eq: graph H h = graph H' h'
        have }\mp@subsup{x}{}{\prime}\in\mp@subsup{H}{}{\prime
            unfolding H'-def
            proof
            from H show 0\inH by (rule vectorspace.zero)
            from }\mp@subsup{x}{}{\prime}E\mathrm{ show }\mp@subsup{x}{}{\prime}\in\operatorname{lin}\mp@subsup{x}{}{\prime}\mathrm{ by (rule }x\mathrm{ -lin-x)
            from }\mp@subsup{x}{}{\prime}E\mathrm{ show }\mp@subsup{x}{}{\prime}=0+\mp@subsup{x}{}{\prime}\mathrm{ by simp
        qed
        then have ( }\mp@subsup{x}{}{\prime},\mp@subsup{h}{}{\prime}\mp@subsup{x}{}{\prime})\in\mathrm{ graph }\mp@subsup{H}{}{\prime}\mp@subsup{h}{}{\prime}.
        with eq have ( }\mp@subsup{x}{}{\prime},\mp@subsup{h}{}{\prime}\mp@subsup{x}{}{\prime})\in\mathrm{ graph H h by (simp only:)
        then have }\mp@subsup{x}{}{\prime}\inH\mathrm{ ..
        with }\langle\mp@subsup{x}{}{\prime}\not\inH\rangle\mathrm{ show False by contradiction
        qed
        with g-rep show ?thesis by simp
    qed
qed
```

```
    moreover have graph \(H^{\prime} h^{\prime} \in M\)
        - and \(h^{\prime}\) is norm-preserving.
        proof (unfold \(M\)-def)
    show graph \(H^{\prime} h^{\prime} \in\) norm-pres-extensions E p Ff
    proof (rule norm-pres-extensionI2)
        show linearform \(H^{\prime} h^{\prime}\)
            using \(h^{\prime}\)-def \(H^{\prime}\)-def HE linearform \(\left\langle x^{\prime} \notin H\right\rangle\left\langle x^{\prime} \in E\right\rangle\left\langle x^{\prime} \neq 0\right\rangle E\)
            by (rule \(h^{\prime}-l f\) )
        show \(H^{\prime} \unlhd E\)
        unfolding \(H^{\prime}\)-def
        proof
            show \(H \unlhd E\) by fact
            show vectorspace \(E\) by fact
            from \(x^{\prime} E\) show \(\operatorname{lin} x^{\prime} \unlhd E\)..
        qed
        from \(H\langle F \unlhd H\rangle H H^{\prime}\) show \(F H^{\prime}: F \unlhd H^{\prime}\)
            by (rule vectorspace.subspace-trans)
        show graph \(F f \subseteq\) graph \(H^{\prime} h^{\prime}\)
        proof (rule graph-extI)
            fix \(x\) assume \(x: x \in F\)
            with graphs have \(f x=h x\)..
            also have \(\ldots=h x+0 * x i\) by \(\operatorname{simp}\)
            also have \(\ldots=(\) let \((y, a)=(x, 0)\) in \(h y+a * x i)\)
            by (simp add: Let-def)
            also have \((x, 0)=\)
                    \(\left(\operatorname{SOME}(y, a) . x=y+a \cdot x^{\prime} \wedge y \in H\right)\)
            using \(E H E\)
            proof (rule decomp- \(H^{\prime}-H\) [symmetric])
                from \(F H x\) show \(x \in H\)..
                from \(x^{\prime}\) show \(x^{\prime} \neq 0\).
                show \(x^{\prime} \notin H\) by fact
                show \(x^{\prime} \in E\) by fact
                qed
                also have
                    \(\left(\right.\) let \((y, a)=\left(\operatorname{SOME}(y, a) . x=y+a \cdot x^{\prime} \wedge y \in H\right)\)
                in \(h y+a * x i)=h^{\prime} x\) by (simp only: \(h^{\prime}-d e f\) )
            finally show \(f x=h^{\prime} x\).
        next
            from \(F H^{\prime}\) show \(F \subseteq H^{\prime}\)..
        qed
        show \(\forall x \in H^{\prime} . h^{\prime} x \leq p x\)
            using \(h^{\prime}\)-def \(H^{\prime}\)-def \(\left\langle x^{\prime} \notin H\right\rangle\left\langle x^{\prime} \in E\right\rangle\left\langle x^{\prime} \neq 0\right\rangle E H E\)
                〈seminorm E p» linearform and \(h p x i\)
            by (rule \(h^{\prime}\)-norm-pres)
        qed
    qed
    ultimately show? thesis ..
qed
then have \(\neg(\forall x \in M . g \subseteq x \longrightarrow g=x)\) by simp
    - So the graph \(g\) of \(h\) cannot be maximal. Contradiction!
    with \(g x\) show \(H=E\) by contradiction
qed
```

from $H E-e q$ and linearform have linearform $E h$

```
    by (simp only:)
    moreover have }\forallx\inF.hx=f
    proof
    fix }x\mathrm{ assume }x\in
    with graphs have fx=hx..
    then show hx = fx..
    qed
    moreover from HE-eq and hp have }\forallx\inE.hx\leqp
    by (simp only:)
    ultimately show ?thesis by blast
qed
```


12.2 Alternative formulation

The following alternative formulation of the Hahn-Banach Theorem uses the fact that for a real linear form f and a seminorm p the following inequality are equivalent: ${ }^{1}$

$$
\forall x \in H .|h x| \leq p x \quad \text { and } \quad \forall x \in H . h x \leq p x
$$

```
theorem abs-Hahn-Banach:
    assumes \(E\) : vectorspace \(E\) and \(F E\) : subspace \(F E\)
        and \(l f\) : linearform \(F f\) and \(s n\) : seminorm \(E p\)
    assumes \(f p: \forall x \in F .|f x| \leq p x\)
    shows \(\exists\) g. linearform \(E g\)
        \(\wedge(\forall x \in F . g x=f x)\)
        \(\wedge(\forall x \in E .|g x| \leq p x)\)
proof -
    interpret vectorspace \(E\) by fact
    interpret subspace \(F E\) by fact
    interpret linearform \(F f\) by fact
    interpret seminorm \(E p\) by fact
    have \(\exists g\). linearform \(E g \wedge(\forall x \in F . g x=f x) \wedge(\forall x \in E . g x \leq p x)\)
        using \(E F E\) sn lf
    proof (rule Hahn-Banach)
        show \(\forall x \in F . f x \leq p x\)
            using \(F E E\) sn lf and \(f p\) by (rule abs-ineq-iff [THEN iffD1])
    qed
    then obtain \(g\) where \(l g\) : linearform \(E g\) and \(*: \forall x \in F . g x=f x\)
        and \(* *: \forall x \in E . g x \leq p x\) by blast
    have \(\forall x \in E .|g x| \leq p x\)
        using - E sn lg **
    proof (rule abs-ineq-iff [THEN iffD2])
        show \(E \unlhd E\)..
    qed
    with \(l g *\) show ?thesis by blast
qed
```


12.3 The Hahn-Banach Theorem for normed spaces

Every continuous linear form f on a subspace F of a norm space E, can be extended to a continuous linear form g on E such that $\|f\|=\|g\|$.

[^0]```
theorem norm-Hahn-Banach:
 fixes \(V\) and norm (||-\|)
 fixes \(B\) defines \(\bigwedge V f . B V f \equiv\{0\} \cup\{|f x| /\|x\| \mid x . x \neq 0 \wedge x \in V\}\)
 fixes fn-norm \((\|-\|--[0,1000]\) 999)
 defines \(\bigwedge V f .\|f\|-V \equiv \bigsqcup(B V f)\)
 assumes \(E\)-norm: normed-vectorspace \(E\) norm and \(F E\) : subspace \(F E\)
 and linearform: linearform \(F f\) and continuous \(F f\) norm
 shows \(\exists\) g. linearform \(E g\)
 \(\wedge\) continuous \(E\) g norm
 \(\wedge(\forall x \in F . g x=f x)\)
 \(\wedge\|g\|-E=\|f\|-F\)
proof -
 interpret normed-vectorspace E norm by fact
 interpret normed-vectorspace-with-fn-norm E norm B fn-norm
 by (auto simp: B-def fn-norm-def) intro-locales
 interpret subspace \(F E\) by fact
 interpret linearform \(F f\) by fact
 interpret continuous \(F\) f norm by fact
 have \(E\) : vectorspace \(E\) by intro-locales
 have \(F\) : vectorspace \(F\) by rule intro-locales
 have \(F\)-norm: normed-vectorspace \(F\) norm
 using \(F E\) E-norm by (rule subspace-normed-vs)
 have ge-zero: \(0 \leq\|f\|-F\)
 by (rule normed-vectorspace-with-fn-norm.fn-norm-ge-zero
 OF normed-vectorspace-with-fn-norm.intro,
 OF F-norm 〈continuous Ff norm〉, folded B-def fn-norm-def])
```

We define a function $p$ on $E$ as follows: $p x=\|f\| \cdot\|x\|$
define $p$ where $p x=\|f\|-F *\|x\|$ for $x$
$p$ is a seminorm on $E$ :

```
have \(q\) : seminorm E \(p\)
proof
 fix \(x y a\) assume \(x: x \in E\) and \(y: y \in E\)
```

$p$ is positive definite:
have $0 \leq\|f\|-F$ by (rule ge-zero)
moreover from $x$ have $0 \leq\|x\|$..
ultimately show $0 \leq p x$
by (simp add: p-def zero-le-mult-iff)
$p$ is absolutely homogeneous:
show $p(a \cdot x)=|a| * p x$
proof -
have $p(a \cdot x)=\|f\|-F *\|a \cdot x\|$ by (simp only: $p$-def)
also from $x$ have $\|a \cdot x\|=|a| *\|x\|$ by (rule abs-homogenous)
also have $\|f\|-F *(|a| *\|x\|)=|a| *(\|f\|-F *\|x\|)$ by simp
also have $\ldots=|a| * p x$ by (simp only: $p$-def)
finally show ?thesis.
qed
Furthermore, $p$ is subadditive:
show $p(x+y) \leq p x+p y$

```
 proof -
 have p(x+y)=|f|-F*|x+y| by (simp only: p-def)
 also have a: 0\leq|f|-F by (rule ge-zero)
 from }xy\mathrm{ have |x+y|}\leq|x|+|y|.
 with a have |f|-F*|x+y|\leq|f|-F*(|x| + |y|)
 by (simp add: mult-left-mono)
 also have }\ldots=|f|-F*|x|+|f|-F*|y| by (simp only: distrib-left
 also have }\ldots=px+py\mathrm{ by (simp only: p-def)
 finally show ?thesis.
 qed
qed
f is bounded by p.
have }\forallx\inF.|fx|\leqp
proof
 fix }x\mathrm{ assume }x\in
 with <continuous F f norm` and linearform
 show |fx| \leq p x
 unfolding p-def by (rule normed-vectorspace-with-fn-norm.fn-norm-le-cong
 [OF normed-vectorspace-with-fn-norm.intro,
 OF F-norm, folded B-def fn-norm-def])
 qed
```

Using the fact that $p$ is a seminorm and $f$ is bounded by $p$ we can apply the HahnBanach Theorem for real vector spaces. So $f$ can be extended in a norm-preserving way to some function $g$ on the whole vector space $E$.

```
with \(E\) FE linearform \(q\) obtain \(g\) where
 linearformE: linearform \(E g\)
 and \(a: \forall x \in F . g x=f x\)
 and \(b: \forall x \in E .|g x| \leq p x\)
 by (rule abs-Hahn-Banach [elim-format]) iprover
```

We furthermore have to show that $g$ is also continuous:

```
have \(g\)-cont: continuous \(E\) g norm using linearformE
proof
 fix \(x\) assume \(x \in E\)
 with \(b\) show \(|g x| \leq\|f\|-F *\|x\|\)
 by (simp only: \(p\)-def)
qed
```

To complete the proof, we show that $\|g\|=\|f\|$.

```
have \(\|g\|-E=\|f\|-F\)
proof (rule order-antisym)
```

First we show $\|g\| \leq\|f\|$. The function norm $\|g\|$ is defined as the smallest $c \in \mathbb{R}$ such that

$$
\forall x \in E .|g x| \leq c \cdot\|x\|
$$

Furthermore holds

$$
\forall x \in E .|g x| \leq\|f\| \cdot\|x\|
$$

from $g$-cont - ge-zero

```
show \(\|g\|-E \leq\|f\|-F\)
proof
 fix \(x\) assume \(x \in E\)
 with \(b\) show \(|g x| \leq\|f\|-F *\|x\|\)
 by (simp only: \(p\)-def)
 qed
```

The other direction is achieved by a similar argument.
show $\|f\|-F \leq\|g\|-E$
proof (rule normed-vectorspace-with-fn-norm.fn-norm-least
[OF normed-vectorspace-with-fn-norm.intro,
OF F-norm, folded B-def fn-norm-def])
fix $x$ assume $x: x \in F$
show $|f x| \leq\|g\|-E *\|x\|$
proof -
from $a x$ have $g x=f x$..
then have $|f x|=|g x|$ by (simp only:)
also from $g$-cont have $\ldots \leq\|g\|-E *\|x\|$
proof (rule fn-norm-le-cong [OF - linearformE, folded B-def fn-norm-def])
from $F E x$ show $x \in E$..
qed
finally show ?thesis .
qed
next
show $0 \leq\|g\|-E$
using $g$-cont by (rule fn-norm-ge-zero [of $g$, folded B-def fn-norm-def])
show continuous $F f$ norm by fact
qed
qed
with linearforme a g-cont show? thesis by blast
qed
end

## References

[1] H. Heuser. Funktionalanalysis: Theorie und Anwendung. Teubner, 1986.
[2] L. Narici and E. Beckenstein. The Hahn-Banach Theorem: The life and times. In Topology Atlas. York University, Toronto, Ontario, Canada, 1996. http://at.yorku.ca/topology/preprint.htm and http://at.yorku.ca/p/ $\mathrm{a} / \mathrm{a} / \mathrm{a} / 16 . \mathrm{htm}$.
[3] B. Nowak and A. Trybulec. Hahn-Banach theorem. Journal of Formalized Mathematics, 5, 1993. http://mizar.uwb.edu.pl/JFM/Vol5/hahnban.html.


[^0]:    ${ }^{1}$ This was shown in lemma abs-ineq-iff (see page 39).

