How to Prove it in Isabelle/HOL

Tobias Nipkow

September 11, 2023

Abstract

How does one perform induction on the length of a list? How are numerals converted into Suc terms? How does one prove equalities in rings and other algebraic structures?

This document is a collection of practical hints and techniques for dealing with specific frequently occurring situations in proofs in Isabelle/HOL. Not arbitrary proofs but proofs that refer to material that is part of Main or Complex_Main.

This is not an introduction to - proofs in general; for that see mathematics or logic books. - Isabelle/HOL and its proof language; for that see the tutorial [1] or the reference manual [3]. - the contents of theory Main; for that see the overview [2].

Contents

1 Main 2
1.1 Natural numbers 2
1.2 Lists 2
1.3 Algebraic simplification 3

Chapter 1

Main

1.1 Natural numbers

Induction rules

In addition to structural induction there is the induction rule less_induct:
$(\bigwedge x .(\bigwedge y . y<x \Longrightarrow P y) \Longrightarrow P x) \Longrightarrow P a$
This is often called "complete induction". It is applied like this:
(induction n rule: less induct)
In fact, it is not restricted to nat but works for any wellfounded order $<$.
There are many more special induction rules. You can find all of them via the Find button (in Isabelle/jedit) with the following search criteria:
name: Nat name: induct

How to convert numerals into Suc terms

Solution: simplify with the lemma numeral eq-Suc.
Example:
lemma fixes x :: int shows " x ^ $3=x * x * x$ "
by (simp add: numeral_eq_Suc)
This is a typical situation: function " \leadsto " is defined by pattern matching on Suc but is applied to a numeral.

Note: simplification with numeral_eq_Suc will convert all numerals. One can be more specific with the lemmas numeral 2 eq_2 (2 = Suc (Suc 0)) and numeral-3-eq-3 $(3=\operatorname{Suc}(S u c(S u c 0)))$.

1.2 Lists

Induction rules

In addition to structural induction there are a few more induction rules that come in handy at times:

- Structural induction where the new element is appended to the end of the list (rev induct):
$\llbracket P[] ; \wedge x x s . P x s \Longrightarrow P(x s @[x]) \rrbracket \Longrightarrow P x s$
- Induction on the length of a list (length induct):
$(\bigwedge x s . \forall y s$. length $y s<$ length $x s \longrightarrow P y s \Longrightarrow P x s) \Longrightarrow P x s$
- Simultaneous induction on two lists of the same length (list induct2):

【length $x s=$ length $y s ; P[][] ;$
$\wedge x x s y y s$.
$\llbracket l e n g t h x s=$ length $y s ; P x s y s \rrbracket \Longrightarrow P(x \# x s)(y \# y s) \rrbracket$
$\Longrightarrow P x s y s$

1.3 Algebraic simplification

On the numeric types nat, int and real, proof method simp and friends can deal with a limited amount of linear arithmetic (no multiplication except by numerals) and method arith can handle full linear arithmetic (on nat, int including quantifiers). But what to do when proper multiplication is involved? At this point it can be helpful to simplify with the lemma list algebra_simps. Examples:

```
lemma fixes }x\mathrm{ :: int
    shows "}(x+y)*(y-z)=(y-z)*x+y*(y-z)
by(simp add: algebra_simps)
lemma fixes x :: "' }a\mathrm{ :: comm_ring"
    shows "}(x+y)*(y-z)=(y-z)*x+y*(y-z)
by(simp add: algebra_simps)
```

Rewriting with algebra_simps has the following effect: terms are rewritten into a normal form by multiplying out, rearranging sums and products into some canonical order. In the above lemma the normal form will be something like $x * y+y * y-x * z-y * z$. This works for concrete types like int as well as for classes like comm_ring (commutative rings). For some classes (e.g. ring and comm ring) this yields a decision procedure for equality.

Additional function and predicate symbols are not a problem either:
lemma fixes $f::$ "int \Rightarrow int" shows " $2 * f(x * y)-f(y * x)<f(y * x)+1$ " by (simp add: algebra-simps)
Here algebra simps merely has the effect of rewriting $y * x$ to $x * y$ (or the other way around). This yields a problem of the form $2 * t-t<t+1$ and we are back in the realm of linear arithmetic.

Because algebra』simps multiplies out, terms can explode. If one merely wants to bring sums or products into a canonical order it suffices to rewrite with ac-simps:
lemma fixes $f::$ "int \Rightarrow int" shows " $f(x * y * z)-f(z * x * y)=0$ "
by (simp add: ac_simps)
The lemmas algebra_simps take care of addition, subtraction and multiplication (algebraic structures up to rings) but ignore division (fields). The lemmas field_simps also deal with division:
lemma fixes $x::$ real shows " $x+z \neq 0 \Longrightarrow 1+y /(x+z)=(x+y+z) /(x+z)$ " by (simp add: field_simps)

Warning: field_simps can blow up your terms beyond recognition.

Bibliography

[1] Tobias Nipkow. Programming and Proving in Isabelle/HOL. https: //isabelle.in.tum.de/doc/prog-prove.pdf.
[2] Tobias Nipkow. What's in Main. https://isabelle.in.tum.de/doc/ main.pdf.
[3] Makarius Wenzel. The Isabelle/Isar Reference Manual. https:// isabelle.in.tum.de/doc/isar-ref.pdf.

