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Preface

Several logics come with Isabelle. Many of them are sufficiently developed
to serve as comfortable reasoning environments. They are also good starting
points for defining new logics. Each logic is distributed with sample proofs,
some of which are described in this document.

HOL is currently the best developed Isabelle object-logic, including an ex-
tensive library of (concrete) mathematics, and various packages for advanced
definitional concepts (like (co-)inductive sets and types, well-founded recur-
sion etc.). The distribution also includes some large applications.

ZF provides another starting point for applications, with a slightly less
developed library than HOL. ZF’s definitional packages are similar to those
of HOL. Untyped ZF set theory provides more advanced constructions for
sets than simply-typed HOL. ZF is built on FOL (first-order logic), both are
described in a separate manual Isabelle’s Logics: FOL and ZF [12].

There are some further logics distributed with Isabelle:

CCL is Martin Coen’s Classical Computational Logic, which is the basis of a
preliminary method for deriving programs from proofs [2]. It is built
upon classical FOL.

LCF is a version of Scott’s Logic for Computable Functions, which is also
implemented by the lcf system [13]. It is built upon classical FOL.

HOLCF is a version of lcf, defined as an extension of HOL. See [10] for more
details on HOLCF.

CTT is a version of Martin-Löf’s Constructive Type Theory [11], with exten-
sional equality. Universes are not included.

Cube is Barendregt’s λ-cube.

The directory Sequents contains several logics based upon the sequent
calculus. Sequents have the form A1, . . . ,Am ` B1, . . . ,Bn; rules are applied
using associative matching.

LK is classical first-order logic as a sequent calculus.

Modal implements the modal logics T , S4, and S43.

1



CONTENTS 2

ILL implements intuitionistic linear logic.

The logics CCL, LCF, Modal, ILL and Cube are undocumented. All object-
logics’ sources are distributed with Isabelle (see the directory src). They are
also available for browsing on the WWW at

http://www.cl.cam.ac.uk/Research/HVG/Isabelle/library/
https://isabelle.in.tum.de/library/

Note that this is not necessarily consistent with your local sources!

Do not read the Isabelle’s Logics manuals before reading Isabelle/HOL —
The Tutorial or Introduction to Isabelle, and performing some Isabelle proofs.
Consult the Reference Manual for more information on tactics, packages, etc.

http://www.cl.cam.ac.uk/Research/HVG/Isabelle/library/
https://isabelle.in.tum.de/library/


Chapter 1

Syntax definitions

The syntax of each logic is presented using a context-free grammar. These
grammars obey the following conventions:

• identifiers denote nonterminal symbols

• typewriter font denotes terminal symbols

• parentheses (. . .) express grouping

• constructs followed by a Kleene star, such as id∗ and (. . .)∗ can be
repeated 0 or more times

• alternatives are separated by a vertical bar, |

• the symbol for alphanumeric identifiers is id

• the symbol for scheme variables is var

To reduce the number of nonterminals and grammar rules required, Isabelle’s
syntax module employs priorities, or precedences. Each grammar rule is
given by a mixfix declaration, which has a priority, and each argument place
has a priority. This general approach handles infix operators that associate
either to the left or to the right, as well as prefix and binding operators.

In a syntactically valid expression, an operator’s arguments never involve
an operator of lower priority unless brackets are used. Consider first-order
logic, where ∃ has lower priority than ∨, which has lower priority than ∧.
There, P ∧ Q ∨ R abbreviates (P ∧ Q) ∨ R rather than P ∧ (Q ∨ R). Also,
∃x .P ∨Q abbreviates ∃x . (P ∨Q) rather than (∃x .P)∨Q. Note especially
that P ∨ (∃x . Q) becomes syntactically invalid if the brackets are removed.

A binder is a symbol associated with a constant of type (σ ⇒ τ) ⇒ τ ′.
For instance, we may declare ∀ as a binder for the constant All, which has
type (α ⇒ o) ⇒ o. This defines the syntax ∀x . t to mean All(λx . t). We can
also write ∀x1 . . . xm . t to abbreviate ∀x1 . . . . ∀xm . t; this is possible for any
constant provided that τ and τ ′ are the same type. The Hilbert description
operator εx . P x has type (α ⇒ bool) ⇒ α and normally binds only one
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CHAPTER 1. SYNTAX DEFINITIONS 4

variable. ZF’s bounded quantifier ∀x ∈ A . P(x) cannot be declared as a
binder because it has type [i, i ⇒ o] ⇒ o. The syntax for binders allows type
constraints on bound variables, as in

∀(x::α) (y::β) z::γ . Q(x, y, z)

To avoid excess detail, the logic descriptions adopt a semi-formal style.
Infix operators and binding operators are listed in separate tables, which
include their priorities. Grammar descriptions do not include numeric prior-
ities; instead, the rules appear in order of decreasing priority. This should
suffice for most purposes; for full details, please consult the actual syntax
definitions in the .thy files.

Each nonterminal symbol is associated with some Isabelle type. For ex-
ample, the formulae of first-order logic have type o. Every Isabelle expres-
sion of type o is therefore a formula. These include atomic formulae such
as P, where P is a variable of type o, and more generally expressions such
as P(t, u), where P, t and u have suitable types. Therefore, ‘expression of
type o’ is listed as a separate possibility in the grammar for formulae.



Chapter 2

Higher-Order Logic

This chapter describes Isabelle’s formalization of Higher-Order Logic, a poly-
morphic version of Church’s Simple Theory of Types. HOL can be best un-
derstood as a simply-typed version of classical set theory. The monograph
Isabelle/HOL — A Proof Assistant for Higher-Order Logic provides a gentle
introduction on using Isabelle/HOL in practice. All of this material is mainly
of historical interest!

2.1 Syntax
Figure 2.1 lists the constants (including infixes and binders), while Fig. 2.2
presents the grammar of higher-order logic. Note that a~=b is translated to
¬(a = b).

! HOL has no if-and-only-if connective; logical equivalence is expressed using
equality. But equality has a high priority, as befitting a relation, while if-and-

only-if typically has the lowest priority. Thus, ¬¬P = P abbreviates ¬¬(P = P)
and not (¬¬P) = P. When using = to mean logical equivalence, enclose both
operands in parentheses.

2.1.1 Types and overloading
The universal type class of higher-order terms is called term. By default,
explicit type variables have class term. In particular the equality symbol
and quantifiers are polymorphic over class term.

The type of formulae, bool, belongs to class term; thus, formulae are
terms. The built-in type fun, which constructs function types, is overloaded
with arity (term, term) term. Thus, σ ⇒ τ belongs to class term if σ and τ
do, allowing quantification over functions.

HOL allows new types to be declared as subsets of existing types, either
using the primitive typedef or the more convenient datatype (see §2.6).

Several syntactic type classes — plus, minus, times and power— permit
overloading of the operators +, -, *. and ^. They are overloaded to denote
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CHAPTER 2. HIGHER-ORDER LOGIC 6

name meta-type description
Trueprop bool ⇒ prop coercion to prop

Not bool ⇒ bool negation (¬)
True bool tautology (>)

False bool absurdity (⊥)
If [bool, α, α] ⇒ α conditional
Let [α, α ⇒ β] ⇒ β let binder

Constants

symbol name meta-type description
SOME or @ Eps (α ⇒ bool) ⇒ α Hilbert description (ε)
ALL or ! All (α ⇒ bool) ⇒ bool universal quantifier (∀)
EX or ? Ex (α ⇒ bool) ⇒ bool existential quantifier (∃)
EX! or ?! Ex1 (α ⇒ bool) ⇒ bool unique existence (∃!)

LEAST Least (α :: ord ⇒ bool) ⇒ α least element

Binders

symbol meta-type priority description
o [β ⇒ γ, α ⇒ β] ⇒ (α ⇒ γ) Left 55 composition (◦)
= [α, α] ⇒ bool Left 50 equality (=)
< [α :: ord, α] ⇒ bool Left 50 less than (<)
<= [α :: ord, α] ⇒ bool Left 50 less than or equals (≤)
& [bool, bool] ⇒ bool Right 35 conjunction (∧)
| [bool, bool] ⇒ bool Right 30 disjunction (∨)

--> [bool, bool] ⇒ bool Right 25 implication (→)

Infixes

Figure 2.1: Syntax of HOL
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term = expression of class term
| SOME id . formula | @ id . formula
| let id = term; . . . ; id = term in term
| if formula then term else term
| LEAST id . formula

formula = expression of type bool
| term = term
| term ~= term
| term < term
| term <= term
| ~ formula
| formula & formula
| formula | formula
| formula --> formula
| ALL id id∗ . formula | ! id id∗ . formula
| EX id id∗ . formula | ? id id∗ . formula
| EX! id id∗ . formula | ?! id id∗ . formula

Figure 2.2: Full grammar for HOL
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the obvious arithmetic operations on types nat, int and real. (With the ^
operator, the exponent always has type nat.) Non-arithmetic overloadings
are also done: the operator - can denote set difference, while ^ can denote
exponentiation of relations (iterated composition). Unary minus is also writ-
ten as - and is overloaded like its 2-place counterpart; it even can stand for
set complement.

The constant 0 is also overloaded. It serves as the zero element of several
types, of which the most important is nat (the natural numbers). The type
class plus_ac0 comprises all types for which 0 and + satisfy the laws x+y =
y+x, (x+y)+z = x+(y+z) and 0+x = x. These types include the numeric
ones nat, int and real and also multisets. The summation operator sum is
available for all types in this class.

Theory Ord defines the syntactic class ord of order signatures. The rela-
tions < and ≤ are polymorphic over this class, as are the functions mono, min
and max, and the LEAST operator. Ord also defines a subclass order of ord
which axiomatizes the types that are partially ordered with respect to ≤. A
further subclass linorder of order axiomatizes linear orderings. For details,
see the file Ord.thy.

If you state a goal containing overloaded functions, you may need to
include type constraints. Type inference may otherwise make the goal more
polymorphic than you intended, with confusing results. For example, the
variables i, j and k in the goal i ≤ j =⇒ i ≤ j + k have type α :: {ord, plus},
although you may have expected them to have some numeric type, e.g. nat.
Instead you should have stated the goal as (i :: nat) ≤ j =⇒ i ≤ j + k, which
causes all three variables to have type nat.

! If resolution fails for no obvious reason, try setting show_types to true, caus-
ing Isabelle to display types of terms. Possibly set show_sorts to true as well,

causing Isabelle to display type classes and sorts.
Where function types are involved, Isabelle’s unification code does not guar-

antee to find instantiations for type variables automatically. Be prepared to use
res_inst_tac instead of resolve_tac, possibly instantiating type variables. Set-
ting Unify.unify_trace in combination with Unify.unify_trace_types to true
causes Isabelle to report omitted search paths during unification.

2.1.2 Binders
Hilbert’s description operator εx . P[x] stands for some x satisfying P, if
such exists. Since all terms in HOL denote something, a description is always
meaningful, but we do not know its value unless P defines it uniquely. We
may write descriptions as Eps(λx . P[x]) or use the syntax SOME x. P[x].
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Existential quantification is defined by

∃x . P x ≡ P(εx . P x).

The unique existence quantifier, ∃!x . P, is defined in terms of ∃ and ∀. An
Isabelle binder, it admits nested quantifications. For instance, ∃!x y . P x y
abbreviates ∃!x . ∃!y . P x y; note that this does not mean that there exists a
unique pair (x, y) satisfying P x y.

The basic Isabelle/HOL binders have two notations. Apart from the usual
ALL and EX for ∀ and ∃, Isabelle/HOL also supports the original notation of
Gordon’s hol system: ! and ?. In the latter case, the existential quantifier
must be followed by a space; thus ?x is an unknown, while ? x. f x=y is a
quantification. Both notations are accepted for input. The print mode “HOL”
governs the output notation. If enabled (e.g. by passing option -m HOL to
the isabelle executable), then ! and ? are displayed.

If τ is a type of class ord, P a formula and x a variable of type τ , then the
term LEAST x .P[x] is defined to be the least (w.r.t. ≤) x such that P x holds
(see Fig. 2.4). The definition uses Hilbert’s ε choice operator, so Least is
always meaningful, but may yield nothing useful in case there is not a unique
least element satisfying P.1

All these binders have priority 10.

! The low priority of binders means that they need to be enclosed in parenthesis
when they occur in the context of other operations. For example, instead of

P ∧ ∀x . Q you need to write P ∧ (∀x . Q).

2.1.3 The let and case constructions
Local abbreviations can be introduced by a let construct whose syntax ap-
pears in Fig. 2.2. Internally it is translated into the constant Let. It can be
expanded by rewriting with its definition, Let_def.

HOL also defines the basic syntax

case e of c1 => e1 | . . . | cn => en

as a uniform means of expressing case constructs. Therefore case and of
are reserved words. Initially, this is mere syntax and has no logical meaning.
By declaring translations, you can cause instances of the case construct
to denote applications of particular case operators. This is what happens
automatically for each datatype definition (see §2.6).

1Class ord does not require much of its instances, so ≤ need not be a well-ordering,
not even an order at all!
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refl t = (t::'a)
subst [| s = t; P s |] ==> P (t::'a)
ext (!!x::'a. (f x :: 'b) = g x) ==> (%x. f x) = (%x. g x)
impI (P ==> Q) ==> P-->Q
mp [| P-->Q; P |] ==> Q
iff (P-->Q) --> (Q-->P) --> (P=Q)
someI P(x::'a) ==> P(@x. P x)
True_or_False (P=True) | (P=False)

Figure 2.3: The HOL rules

! Both if and case constructs have as low a priority as quantifiers, which re-
quires additional enclosing parentheses in the context of most other opera-

tions. For example, instead of f x = if . . . then . . . else . . . you need to write
f x = (if . . . then . . . else . . .).

2.2 Rules of inference
Figure 2.3 shows the primitive inference rules of HOL, with their ml names.
Some of the rules deserve additional comments:

ext expresses extensionality of functions.

iff asserts that logically equivalent formulae are equal.

someI gives the defining property of the Hilbert ε-operator. It is a form of
the Axiom of Choice. The derived rule some_equality (see below) is
often easier to use.

True_or_False makes the logic classical.2

HOL follows standard practice in higher-order logic: only a few connec-
tives are taken as primitive, with the remainder defined obscurely (Fig. 2.4).
Gordon’s hol system expresses the corresponding definitions [6, page 270]
using object-equality (=), which is possible because equality in higher-order
logic may equate formulae and even functions over formulae. But the-
ory HOL, like all other Isabelle theories, uses meta-equality (==) for defi-
nitions.

2In fact, the ε-operator already makes the logic classical, as shown by Diaconescu; see
Paulson [14] for details.
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True_def True == ((%x::bool. x)=(%x. x))
All_def All == (%P. P = (%x. True))
Ex_def Ex == (%P. P(@x. P x))
False_def False == (!P. P)
not_def not == (%P. P-->False)
and_def op & == (%P Q. !R. (P-->Q-->R) --> R)
or_def op | == (%P Q. !R. (P-->R) --> (Q-->R) --> R)
Ex1_def Ex1 == (%P. ? x. P x & (! y. P y --> y=x))

o_def op o == (%(f::'b=>'c) g x::'a. f(g x))
if_def If P x y ==

(%P x y. @z::'a.(P=True --> z=x) & (P=False --> z=y))
Let_def Let s f == f s
Least_def Least P == @x. P(x) & (ALL y. P(y) --> x <= y)"

Figure 2.4: The HOL definitions

! The definitions above should never be expanded and are shown for complete-
ness only. Instead users should reason in terms of the derived rules shown

below or, better still, using high-level tactics.

Some of the rules mention type variables; for example, refl mentions the
type variable 'a. This allows you to instantiate type variables explicitly by
calling res_inst_tac.

Some derived rules are shown in Figures 2.5 and 2.6, with their ml names.
These include natural rules for the logical connectives, as well as sequent-style
elimination rules for conjunctions, implications, and universal quantifiers.

Note the equality rules: ssubst performs substitution in backward proofs,
while box_equals supports reasoning by simplifying both sides of an equa-
tion.

The following simple tactics are occasionally useful:

strip_tac i applies allI and impI repeatedly to remove all outermost uni-
versal quantifiers and implications from subgoal i.

case_tac "P" i performs case distinction on P for subgoal i: the latter is
replaced by two identical subgoals with the added assumptions P and
¬P, respectively.

smp_tac j i applies j times spec and then mp in subgoal i, which is typi-
cally useful when forward-chaining from an induction hypothesis. As
a generalization of mp_tac, if there are assumptions ∀~x .P~x → Q~x and
P~a, (~x being a vector of j variables) then it replaces the universally
quantified implication by Q~a. It may instantiate unknowns. It fails if
it can do nothing.
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sym s=t ==> t=s
trans [| r=s; s=t |] ==> r=t
ssubst [| t=s; P s |] ==> P t
box_equals [| a=b; a=c; b=d |] ==> c=d
arg_cong x = y ==> f x = f y
fun_cong f = g ==> f x = g x
cong [| f = g; x = y |] ==> f x = g y
not_sym t ~= s ==> s ~= t

Equality

TrueI True
FalseE False ==> P

conjI [| P; Q |] ==> P&Q
conjunct1 [| P&Q |] ==> P
conjunct2 [| P&Q |] ==> Q
conjE [| P&Q; [| P; Q |] ==> R |] ==> R

disjI1 P ==> P|Q
disjI2 Q ==> P|Q
disjE [| P | Q; P ==> R; Q ==> R |] ==> R

notI (P ==> False) ==> ~ P
notE [| ~ P; P |] ==> R
impE [| P-->Q; P; Q ==> R |] ==> R

Propositional logic

iffI [| P ==> Q; Q ==> P |] ==> P=Q
iffD1 [| P=Q; P |] ==> Q
iffD2 [| P=Q; Q |] ==> P
iffE [| P=Q; [| P --> Q; Q --> P |] ==> R |] ==> R

Logical equivalence

Figure 2.5: Derived rules for HOL
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allI (!!x. P x) ==> !x. P x
spec !x. P x ==> P x
allE [| !x. P x; P x ==> R |] ==> R
all_dupE [| !x. P x; [| P x; !x. P x |] ==> R |] ==> R

exI P x ==> ? x. P x
exE [| ? x. P x; !!x. P x ==> Q |] ==> Q

ex1I [| P a; !!x. P x ==> x=a |] ==> ?! x. P x
ex1E [| ?! x. P x; !!x. [| P x; ! y. P y --> y=x |] ==> R

|] ==> R

some_equality [| P a; !!x. P x ==> x=a |] ==> (@x. P x) = a

Quantifiers and descriptions

ccontr (~P ==> False) ==> P
classical (~P ==> P) ==> P
excluded_middle ~P | P

disjCI (~Q ==> P) ==> P|Q
exCI (! x. ~ P x ==> P a) ==> ? x. P x
impCE [| P-->Q; ~ P ==> R; Q ==> R |] ==> R
iffCE [| P=Q; [| P;Q |] ==> R; [| ~P; ~Q |] ==> R |] ==> R
notnotD ~~P ==> P
swap ~P ==> (~Q ==> P) ==> Q

Classical logic

if_P P ==> (if P then x else y) = x
if_not_P ~ P ==> (if P then x else y) = y
split_if P(if Q then x else y) = ((Q --> P x) & (~Q --> P y))

Conditionals

Figure 2.6: More derived rules
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2.3 A formulation of set theory
Historically, higher-order logic gives a foundation for Russell andWhitehead’s
theory of classes. Let us use modern terminology and call them sets, but
note that these sets are distinct from those of ZF set theory, and behave
more like ZF classes.

• Sets are given by predicates over some type σ. Types serve to define
universes for sets, but type-checking is still significant.

• There is a universal set (for each type). Thus, sets have complements,
and may be defined by absolute comprehension.

• Although sets may contain other sets as elements, the containing set
must have a more complex type.

Finite unions and intersections have the same behaviour in HOL as they do
in ZF. In HOL the intersection of the empty set is well-defined, denoting the
universal set for the given type.

2.3.1 Syntax of set theory
HOL’s set theory is called Set. The type α set is essentially the same as
α ⇒ bool. The new type is defined for clarity and to avoid complications
involving function types in unification. The isomorphisms between the two
types are declared explicitly. They are very natural: Collect maps α ⇒ bool
to α set, while op : maps in the other direction (ignoring argument order).

Figure 2.7 lists the constants, infixes, and syntax translations. Figure 2.8
presents the grammar of the new constructs. Infix operators include union
and intersection (A ∪ B and A ∩ B), the subset and membership relations,
and the image operator ``. Note that a~:b is translated to ¬(a ∈ b).

The {a1, . . .} notation abbreviates finite sets constructed in the obvious
manner using insert and {}:

{a, b, c} ≡ insert a (insert b (insert c {}))

The set {x. P[x]} consists of all x (of suitable type) that satisfy P[x],
where P[x] is a formula that may contain free occurrences of x. This syntax
expands to Collect(λx . P[x]). It defines sets by absolute comprehension,
which is impossible in ZF; the type of x implicitly restricts the comprehen-
sion.
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name meta-type description
{} α set the empty set

insert [α, α set] ⇒ α set insertion of element
Collect (α ⇒ bool) ⇒ α set comprehension

INTER [α set, α ⇒ β set] ⇒ β set intersection over a set
UNION [α set, α ⇒ β set] ⇒ β set union over a set
Inter (α set)set ⇒ α set set of sets intersection
Union (α set)set ⇒ α set set of sets union
Pow α set ⇒ (α set)set powerset

range (α ⇒ β) ⇒ β set range of a function
Ball Bex [α set, α ⇒ bool] ⇒ bool bounded quantifiers

Constants

symbol name meta-type priority description
INT INTER1 (α ⇒ β set) ⇒ β set 10 intersection
UN UNION1 (α ⇒ β set) ⇒ β set 10 union

Binders

symbol meta-type priority description
`` [α ⇒ β, α set] ⇒ β set Left 90 image

Int [α set, α set] ⇒ α set Left 70 intersection (∩)
Un [α set, α set] ⇒ α set Left 65 union (∪)
: [α, α set] ⇒ bool Left 50 membership (∈)

<= [α set, α set] ⇒ bool Left 50 subset (⊆)

Infixes

Figure 2.7: Syntax of the theory Set
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external internal description
a ~: b ~(a : b) not in

{a1, . . .} insert a1 . . . {} finite set
{x. P[x]} Collect(λx . P[x]) comprehension

INT x:A. B[x] INTER A λx . B[x] intersection
UN x:A. B[x] UNION A λx . B[x] union

ALL x:A. P[x] or ! x:A. P[x] Ball A λx . P[x] bounded ∀
EX x:A. P[x] or ? x:A. P[x] Bex A λx . P[x] bounded ∃

Translations

term = other terms…
| {}
| { term (,term)∗ }
| { id . formula }
| term `` term
| term Int term
| term Un term
| INT id:term . term
| UN id:term . term
| INT id id∗ . term
| UN id id∗ . term

formula = other formulae…
| term : term
| term ~: term
| term <= term
| ALL id:term . formula | ! id:term . formula
| EX id:term . formula | ? id:term . formula

Full Grammar

Figure 2.8: Syntax of the theory Set (continued)
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mem_Collect_eq (a : {x. P x}) = P a
Collect_mem_eq {x. x:A} = A

empty_def {} == {x. False}
insert_def insert a B == {x. x=a} Un B
Ball_def Ball A P == ! x. x:A --> P x
Bex_def Bex A P == ? x. x:A & P x
subset_def A <= B == ! x:A. x:B
Un_def A Un B == {x. x:A | x:B}
Int_def A Int B == {x. x:A & x:B}
set_diff_def A - B == {x. x:A & x~:B}
Compl_def -A == {x. ~ x:A}
INTER_def INTER A B == {y. ! x:A. y: B x}
UNION_def UNION A B == {y. ? x:A. y: B x}
INTER1_def INTER1 B == INTER {x. True} B
UNION1_def UNION1 B == UNION {x. True} B
Inter_def Inter S == (INT x:S. x)
Union_def Union S == (UN x:S. x)
Pow_def Pow A == {B. B <= A}
image_def f``A == {y. ? x:A. y=f x}
range_def range f == {y. ? x. y=f x}

Figure 2.9: Rules of the theory Set

The set theory defines two bounded quantifiers:

∀x ∈ A . P[x] abbreviates ∀x . x ∈ A → P[x]
∃x ∈ A . P[x] abbreviates ∃x . x ∈ A ∧ P[x]

The constants Ball and Bex are defined accordingly. Instead of Ball A
P and Bex A P we may write ALL x:A. P[x] and EX x:A. P[x]. The
original notation of Gordon’s hol system is supported as well: ! and ?.

Unions and intersections over sets, namely ⋃
x∈A B[x] and ⋂

x∈A B[x], are
written UN x:A. B[x] and INT x:A. B[x].

Unions and intersections over types, namely ⋃
x B[x] and ⋂

x B[x], are
written UN x. B[x] and INT x. B[x]. They are equivalent to the previous
union and intersection operators when A is the universal set.

The operators ⋃A and ⋂A act upon sets of sets. They are not binders,
but are equal to ⋃

x∈A x and ⋂
x∈A x, respectively.

2.3.2 Axioms and rules of set theory
Figure 2.9 presents the rules of theory Set. The axioms mem_Collect_eq
and Collect_mem_eq assert that the functions Collect and op : are iso-
morphisms. Of course, op : also serves as the membership relation.
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CollectI [| P a |] ==> a : {x. P x}
CollectD [| a : {x. P x} |] ==> P a
CollectE [| a : {x. P x}; P a ==> W |] ==> W

ballI [| !!x. x:A ==> P x |] ==> ! x:A. P x
bspec [| ! x:A. P x; x:A |] ==> P x
ballE [| ! x:A. P x; P x ==> Q; ~ x:A ==> Q |] ==> Q

bexI [| P x; x:A |] ==> ? x:A. P x
bexCI [| ! x:A. ~ P x ==> P a; a:A |] ==> ? x:A. P x
bexE [| ? x:A. P x; !!x. [| x:A; P x |] ==> Q |] ==> Q

Comprehension and Bounded quantifiers

subsetI (!!x. x:A ==> x:B) ==> A <= B
subsetD [| A <= B; c:A |] ==> c:B
subsetCE [| A <= B; ~ (c:A) ==> P; c:B ==> P |] ==> P

subset_refl A <= A
subset_trans [| A<=B; B<=C |] ==> A<=C

equalityI [| A <= B; B <= A |] ==> A = B
equalityD1 A = B ==> A<=B
equalityD2 A = B ==> B<=A
equalityE [| A = B; [| A<=B; B<=A |] ==> P |] ==> P

equalityCE [| A = B; [| c:A; c:B |] ==> P;
[| ~ c:A; ~ c:B |] ==> P

|] ==> P

The subset and equality relations

Figure 2.10: Derived rules for set theory
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emptyE a : {} ==> P

insertI1 a : insert a B
insertI2 a : B ==> a : insert b B
insertE [| a : insert b A; a=b ==> P; a:A ==> P |] ==> P

ComplI [| c:A ==> False |] ==> c : -A
ComplD [| c : -A |] ==> ~ c:A

UnI1 c:A ==> c : A Un B
UnI2 c:B ==> c : A Un B
UnCI (~c:B ==> c:A) ==> c : A Un B
UnE [| c : A Un B; c:A ==> P; c:B ==> P |] ==> P

IntI [| c:A; c:B |] ==> c : A Int B
IntD1 c : A Int B ==> c:A
IntD2 c : A Int B ==> c:B
IntE [| c : A Int B; [| c:A; c:B |] ==> P |] ==> P

UN_I [| a:A; b: B a |] ==> b: (UN x:A. B x)
UN_E [| b: (UN x:A. B x); !!x.[| x:A; b:B x |] ==> R |] ==> R

INT_I (!!x. x:A ==> b: B x) ==> b : (INT x:A. B x)
INT_D [| b: (INT x:A. B x); a:A |] ==> b: B a
INT_E [| b: (INT x:A. B x); b: B a ==> R; ~ a:A ==> R |] ==> R

UnionI [| X:C; A:X |] ==> A : Union C
UnionE [| A : Union C; !!X.[| A:X; X:C |] ==> R |] ==> R

InterI [| !!X. X:C ==> A:X |] ==> A : Inter C
InterD [| A : Inter C; X:C |] ==> A:X
InterE [| A : Inter C; A:X ==> R; ~ X:C ==> R |] ==> R

PowI A<=B ==> A: Pow B
PowD A: Pow B ==> A<=B

imageI [| x:A |] ==> f x : f``A
imageE [| b : f``A; !!x.[| b=f x; x:A |] ==> P |] ==> P

rangeI f x : range f
rangeE [| b : range f; !!x.[| b=f x |] ==> P |] ==> P

Figure 2.11: Further derived rules for set theory
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Union_upper B:A ==> B <= Union A
Union_least [| !!X. X:A ==> X<=C |] ==> Union A <= C

Inter_lower B:A ==> Inter A <= B
Inter_greatest [| !!X. X:A ==> C<=X |] ==> C <= Inter A

Un_upper1 A <= A Un B
Un_upper2 B <= A Un B
Un_least [| A<=C; B<=C |] ==> A Un B <= C

Int_lower1 A Int B <= A
Int_lower2 A Int B <= B
Int_greatest [| C<=A; C<=B |] ==> C <= A Int B

Figure 2.12: Derived rules involving subsets

All the other axioms are definitions. They include the empty set, bounded
quantifiers, unions, intersections, complements and the subset relation. They
also include straightforward constructions on functions: image (``) and
range.

Figures 2.10 and 2.11 present derived rules. Most are obvious and resem-
ble rules of Isabelle’s ZF set theory. Certain rules, such as subsetCE, bexCI
and UnCI, are designed for classical reasoning; the rules subsetD, bexI, Un1
and Un2 are not strictly necessary but yield more natural proofs. Similarly,
equalityCE supports classical reasoning about extensionality, after the fash-
ion of iffCE. See the file HOL/Set.ML for proofs pertaining to set theory.

Figure 2.12 presents lattice properties of the subset relation. Unions form
least upper bounds; non-empty intersections form greatest lower bounds.
Reasoning directly about subsets often yields clearer proofs than reasoning
about the membership relation. See the file HOL/subset.ML.

Figure 2.13 presents many common set equalities. They include commu-
tative, associative and distributive laws involving unions, intersections and
complements. For a complete listing see the file HOL/equalities.ML.

! Blast_tac proves many set-theoretic theorems automatically. Hence you sel-
dom need to refer to the theorems above.

2.3.3 Properties of functions
Figure 2.14 presents a theory of simple properties of functions. Note that
inv f uses Hilbert’s ε to yield an inverse of f . See the file HOL/Fun.ML for a
complete listing of the derived rules. Reasoning about function composition
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Int_absorb A Int A = A
Int_commute A Int B = B Int A
Int_assoc (A Int B) Int C = A Int (B Int C)
Int_Un_distrib (A Un B) Int C = (A Int C) Un (B Int C)

Un_absorb A Un A = A
Un_commute A Un B = B Un A
Un_assoc (A Un B) Un C = A Un (B Un C)
Un_Int_distrib (A Int B) Un C = (A Un C) Int (B Un C)

Compl_disjoint A Int (-A) = {x. False}
Compl_partition A Un (-A) = {x. True}
double_complement -(-A) = A
Compl_Un -(A Un B) = (-A) Int (-B)
Compl_Int -(A Int B) = (-A) Un (-B)

Union_Un_distrib Union(A Un B) = (Union A) Un (Union B)
Int_Union A Int (Union B) = (UN C:B. A Int C)

Inter_Un_distrib Inter(A Un B) = (Inter A) Int (Inter B)
Un_Inter A Un (Inter B) = (INT C:B. A Un C)

Figure 2.13: Set equalities

name meta-type description
inj surj (α ⇒ β) ⇒ bool injective/surjective

inj_on [α ⇒ β, α set] ⇒ bool injective over subset
inv (α ⇒ β) ⇒ (β ⇒ α) inverse function

inj_def inj f == ! x y. f x=f y --> x=y
surj_def surj f == ! y. ? x. y=f x
inj_on_def inj_on f A == !x:A. !y:A. f x=f y --> x=y
inv_def inv f == (%y. @x. f(x)=y)

Figure 2.14: Theory Fun
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(the operator o) and the predicate surj is done simply by expanding the
definitions.

There is also a large collection of monotonicity theorems for constructions
on sets in the file HOL/mono.ML.

2.4 Simplification and substitution
Simplification tactics tactics such as Asm_simp_tac and Full_simp_tac use
the default simpset (simpset()), which works for most purposes. A quite
minimal simplification set for higher-order logic is HOL_ss; even more frugal
is HOL_basic_ss. Equality (=), which also expresses logical equivalence, may
be used for rewriting. See the file HOL/simpdata.ML for a complete listing of
the basic simplification rules.

See the Reference Manual for details of substitution and simplification.

! Reducing a = b ∧ P(a) to a = b ∧ P(b) is sometimes advantageous. The left
part of a conjunction helps in simplifying the right part. This effect is not

available by default: it can be slow. It can be obtained by including conj_cong
in a simpset, addcongs [conj_cong].

! By default only the condition of an if is simplified but not the then and else
parts. Of course the latter are simplified once the condition simplifies to True

or False. To ensure full simplification of all parts of a conditional you must remove
if_weak_cong from the simpset, delcongs [if_weak_cong].

If the simplifier cannot use a certain rewrite rule — either because of
nontermination or because its left-hand side is too flexible — then you might
try stac:

stac thm i, where thm is of the form lhs = rhs, replaces in subgoal i in-
stances of lhs by corresponding instances of rhs. In case of multiple
instances of lhs in subgoal i, backtracking may be necessary to select
the desired ones.
If thm is a conditional equality, the instantiated condition becomes an
additional (first) subgoal.

HOL provides the tactic hyp_subst_tac, which substitutes for an equal-
ity throughout a subgoal and its hypotheses. This tactic uses HOL’s general
substitution rule.
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2.4.1 Case splitting
HOL also provides convenient means for case splitting during rewriting.
Goals containing a subterm of the form if b then…else… often require a
case distinction on b. This is expressed by the theorem split_if:

?P(if ?b then ?x else ?y) = ((?b → ?P(?x)) ∧ (¬?b → ?P(?y))) (∗)

For example, a simple instance of (∗) is

x ∈ (if x ∈ A then A else {x}) = ((x ∈ A → x ∈ A)∧(x /∈ A → x ∈ {x}))

Because (∗) is too general as a rewrite rule for the simplifier (the left-hand
side is not a higher-order pattern in the sense of the Reference Manual),
there is a special infix function addsplits of type simpset * thm list ->
simpset (analogous to addsimps) that adds rules such as (∗) to a simpset,
as in

by(simp_tac (simpset() addsplits [split_if]) 1);

The effect is that after each round of simplification, one occurrence of if is
split acording to split_if, until all occurrences of if have been eliminated.

It turns out that using split_if is almost always the right thing to do.
Hence split_if is already included in the default simpset. If you want to
delete it from a simpset, use delsplits, which is the inverse of addsplits:

by(simp_tac (simpset() delsplits [split_if]) 1);

In general, addsplits accepts rules of the form

?P(c ?x1 . . . ?xn) = rhs

where c is a constant and rhs is arbitrary. Note that (∗) is of the right form
because internally the left-hand side is ?P(If ?b ?x ?y). Important further
examples are splitting rules for case expressions (see §2.5.4 and §2.6.1).

Analogous to Addsimps and Delsimps, there are also imperative versions
of addsplits and delsplits

Addsplits: thm list -> unit
Delsplits: thm list -> unit

for adding splitting rules to, and deleting them from the current simpset.

2.5 Types
This section describes HOL’s basic predefined types (α × β, α + β, nat and
α list) and ways for introducing new types in general. The most important
type construction, the datatype, is treated separately in §2.6.
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2.5.1 Product and sum types

symbol meta-type description
Pair [α, β] ⇒ α× β ordered pairs (a, b)
fst α× β ⇒ α first projection
snd α× β ⇒ β second projection

split [[α, β] ⇒ γ, α× β] ⇒ γ generalized projection
Sigma [α set, α ⇒ β set] ⇒ (α× β)set general sum of sets

Sigma_def Sigma A B == UN x:A. UN y:B x. {(x,y)}

prod.inject ((a,b) = (a',b')) = (a=a' & b=b')
Pair_inject [| (a, b) = (a',b'); [| a=a'; b=b' |] ==> R |] ==> R
prod.exhaust [| !!x y. p = (x,y) ==> Q |] ==> Q

fst_conv fst (a,b) = a
snd_conv snd (a,b) = b
surjective_pairing p = (fst p,snd p)

split case_prod c (a,b) = c a b
prod.split R(case_prod c p) = (! x y. p = (x,y) --> R(c x y))

SigmaI [| a:A; b:B a |] ==> (a,b) : Sigma A B

SigmaE [| c:Sigma A B; !!x y.[| x:A; y:B x; c=(x,y) |] ==> P
|] ==> P

Figure 2.15: Type α× β

Theory Prod (Fig. 2.15) defines the product type α×β, with the ordered
pair syntax (a, b). General tuples are simulated by pairs nested to the right:

external internal
τ1 × . . .× τn τ1 × (. . . (τn−1 × τn) . . .)
(t1, . . . , tn) (t1, (. . . , (tn−1, tn) . . .)

In addition, it is possible to use tuples as patterns in abstractions:
%(x,y). t stands for split(%x y. t)

Nested patterns are also supported. They are translated stepwise:
%(x,y,z). t ; %(x,(y,z)). t

; case_prod(%x.%(y,z). t)
; case_prod(%x. case_prod(%y z. t))

The reverse translation is performed upon printing.
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! The translation between patterns and split is performed automatically by the
parser and printer. Thus the internal and external form of a term may differ,

which can affects proofs. For example the term (%(x,y).(y,x))(a,b) requires
the theorem split (which is in the default simpset) to rewrite to (b,a).

In addition to explicit λ-abstractions, patterns can be used in any variable
binding construct which is internally described by a λ-abstraction. Some
important examples are

Let: let pattern = t in u

Quantifiers: ALL pattern:A. P

Choice: SOME pattern. P

Set operations: UN pattern:A. B

Sets: {pattern. P}

There is a simple tactic which supports reasoning about patterns:

split_all_tac i replaces in subgoal i all !!-quantified variables of product
type by individual variables for each component. A simple example:

1. !!p. (%(x,y,z). (x, y, z)) p = p
by(split_all_tac 1);

1. !!x xa ya. (%(x,y,z). (x, y, z)) (x, xa, ya) = (x, xa, ya)

Theory Prod also introduces the degenerate product type unit which
contains only a single element named () with the property

unit_eq u = ()

Theory Sum (Fig. 2.16) defines the sum type α+β which associates to the
right and has a lower priority than ∗: τ1+τ2+τ3∗τ4 means τ1+(τ2+(τ3∗τ4)).

The definition of products and sums in terms of existing types is not
shown. The constructions are fairly standard and can be found in the re-
spective theory files. Although the sum and product types are constructed
manually for foundational reasons, they are represented as actual datatypes
later.
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symbol meta-type description
Inl α ⇒ α+ β first injection
Inr β ⇒ α+ β second injection

case_sum [α ⇒ γ, β ⇒ γ, α+ β] ⇒ γ conditional

Inl_not_Inr Inl a ~= Inr b

inj_Inl inj Inl
inj_Inr inj Inr

sumE [| !!x. P(Inl x); !!y. P(Inr y) |] ==> P s

case_sum_Inl case_sum f g (Inl x) = f x
case_sum_Inr case_sum f g (Inr x) = g x

surjective_sum case_sum (%x. f(Inl x)) (%y. f(Inr y)) s = f s
sum.split_case R(case_sum f g s) = ((! x. s = Inl(x) --> R(f(x))) &

(! y. s = Inr(y) --> R(g(y))))

Figure 2.16: Type α + β

2.5.2 The type of natural numbers, nat
The theory Nat defines the natural numbers in a roundabout but traditional
way. The axiom of infinity postulates a type ind of individuals, which is
non-empty and closed under an injective operation. The natural numbers are
inductively generated by choosing an arbitrary individual for 0 and using the
injective operation to take successors. This is a least fixedpoint construction.

Type nat is an instance of class ord, which makes the overloaded functions
of this class (especially < and <=, but also min, max and LEAST) available on
nat. Theory Nat also shows that <= is a linear order, so nat is also an instance
of class linorder.

Theory NatArith develops arithmetic on the natural numbers. It defines
addition, multiplication and subtraction. Theory Divides defines division,
remainder and the “divides” relation. The numerous theorems proved include
commutative, associative, distributive, identity and cancellation laws. See
Figs. 2.17 and 2.18. The recursion equations for the operators +, - and * on
nat are part of the default simpset.

Functions on nat can be defined by primitive or well-founded recursion;
see §2.7. A simple example is addition. Here, op + is the name of the infix
operator +, following the standard convention.
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symbol meta-type priority description
0 α zero

Suc nat ⇒ nat successor function
* [α, α] ⇒ α Left 70 multiplication

div [α, α] ⇒ α Left 70 division
mod [α, α] ⇒ α Left 70 modulus
dvd [α, α] ⇒ bool Left 70 “divides” relation

+ [α, α] ⇒ α Left 65 addition
- [α, α] ⇒ α Left 65 subtraction

Constants and infixes

nat_induct [| P 0; !!n. P n ==> P(Suc n) |] ==> P n

Suc_not_Zero Suc m ~= 0
inj_Suc inj Suc
n_not_Suc_n n~=Suc n

Basic properties

Figure 2.17: The type of natural numbers, nat

0+n = n
(Suc m)+n = Suc(m+n)

m-0 = m
0-n = n
Suc(m)-Suc(n) = m-n

0*n = 0
Suc(m)*n = n + m*n

mod_less m<n ==> m mod n = m
mod_geq [| 0<n; ~m<n |] ==> m mod n = (m-n) mod n

div_less m<n ==> m div n = 0
div_geq [| 0<n; ~m<n |] ==> m div n = Suc((m-n) div n)

Figure 2.18: Recursion equations for the arithmetic operators
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primrec
"0 + n = n"

"Suc m + n = Suc (m + n)"

There is also a case-construct of the form

case e of 0 => a | Suc m => b

Note that Isabelle insists on precisely this format; you may not even change
the order of the two cases. Both primrec and case are realized by a recursion
operator rec_nat, which is available because nat is represented as a datatype.

Tactic induct_tac "n" i performs induction on variable n in subgoal i
using theorem nat_induct. There is also the derived theorem less_induct:

[| !!n. [| ! m. m<n --> P m |] ==> P n |] ==> P n

2.5.3 Numerical types and numerical reasoning
The integers (type int) are also available in HOL, and the reals (type real)
are available in the logic image HOL-Complex. They support the expected
operations of addition (+), subtraction (-) and multiplication (*), and much
else. Type int provides the div and mod operators, while type real provides
real division and other operations. Both types belong to class linorder, so
they inherit the relational operators and all the usual properties of linear
orderings. For full details, please survey the theories in subdirectories Integ,
Real, and Complex.

All three numeric types admit numerals of the form sd . . . d, where s is an
optional minus sign and d . . . d is a string of digits. Numerals are represented
internally by a datatype for binary notation, which allows numerical calcu-
lations to be performed by rewriting. For example, the integer division of
54342339 by 3452 takes about five seconds. By default, the simplifier cancels
like terms on the opposite sites of relational operators (reducing z+x<x+y to
z<y, for instance. The simplifier also collects like terms, replacing x+y+x*3
by 4*x+y.

Sometimes numerals are not wanted, because for example n+3 does not
match a pattern of the form Suc k. You can re-arrange the form of an arith-
metic expression by proving (via subgoal_tac) a lemma such as n+3 = Suc
(Suc (Suc n)). As an alternative, you can disable the fancier simplifica-
tions by using a basic simpset such as HOL_ss rather than the default one,
simpset().

Reasoning about arithmetic inequalities can be tedious. Fortunately,
HOL provides a decision procedure for linear arithmetic: formulae involv-
ing addition and subtraction. The simplifier invokes a weak version of this
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decision procedure automatically. If this is not sufficent, you can invoke the
full procedure Lin_Arith.tac explicitly. It copes with arbitrary formulae
involving =, <, <=, +, -, Suc, min, max and numerical constants. Other sub-
terms are treated as atomic, while subformulae not involving numerical types
are ignored. Quantified subformulae are ignored unless they are positive uni-
versal or negative existential. The running time is exponential in the number
of occurrences of min, max, and - because they require case distinctions. If
k is a numeral, then div k, mod k and k dvd are also supported. The for-
mer two are eliminated by case distinctions, again blowing up the running
time. If the formula involves explicit quantifiers, Lin_Arith.tac may take
super-exponential time and space.

If Lin_Arith.tac fails, try to find relevant arithmetic results in the li-
brary. The theories Nat and NatArith contain theorems about <, <=, +, -
and *. Theory Divides contains theorems about div and mod. Use Proof
General’s find button (or other search facilities) to locate them.

2.5.4 The type constructor for lists, list
Figure 2.19 presents the theory List: the basic list operations with their
types and syntax. Type α list is defined as a datatype with the constructors
[] and #. As a result the generic structural induction and case analysis
tactics induct tac and cases tac also become available for lists. A case
construct of the form

case e of [] => a | x#xs => b

is defined by translation. For details see §2.6. There is also a case splitting
rule list.split

P(case e of [] => a | x#xs => f x xs) =
((e = [] → P(a)) ∧ (∀x xs . e = x#xs → P(f x xs)))

which can be fed to addsplits just like split_if (see §2.4.1).
List provides a basic library of list processing functions defined by prim-

itive recursion. The recursion equations are shown in Figs. 2.20 and 2.21.

2.6 Datatype definitions
Inductive datatypes, similar to those of ml, frequently appear in applica-
tions of Isabelle/HOL. In principle, such types could be defined by hand
via typedef, but this would be far too tedious. The datatype definition
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symbol meta-type priority description
[] α list empty list
# [α, α list] ⇒ α list Right 65 list constructor

null α list ⇒ bool emptiness test
hd α list ⇒ α head
tl α list ⇒ α list tail

last α list ⇒ α last element
butlast α list ⇒ α list drop last element

@ [α list, α list] ⇒ α list Left 65 append
map (α ⇒ β) ⇒ (α list ⇒ β list) apply to all

filter (α ⇒ bool) ⇒ (α list ⇒ α list) filter functional
set α list ⇒ α set elements
mem α ⇒ α list ⇒ bool Left 55 membership

foldl (β ⇒ α ⇒ β) ⇒ β ⇒ α list ⇒ β iteration
concat (α list)list ⇒ α list concatenation

rev α list ⇒ α list reverse
length α list ⇒ nat length

! α list ⇒ nat ⇒ α Left 100 indexing
take, drop nat ⇒ α list ⇒ α list take/drop a prefix
takeWhile,
dropWhile (α ⇒ bool) ⇒ α list ⇒ α list take/drop a prefix

Constants and infixes

external internal description
[x1, . . ., xn] x1 # · · · # xn # [] finite list

[x:l. P] filter (λx.P) l list comprehension

Translations

Figure 2.19: The theory List
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null [] = True
null (x#xs) = False

hd (x#xs) = x

tl (x#xs) = xs
tl [] = []

[] @ ys = ys
(x#xs) @ ys = x # xs @ ys

set [] = {}
set (x#xs) = insert x (set xs)

x mem [] = False
x mem (y#ys) = (if y=x then True else x mem ys)

concat([]) = []
concat(x#xs) = x @ concat(xs)

rev([]) = []
rev(x#xs) = rev(xs) @ [x]

length([]) = 0
length(x#xs) = Suc(length(xs))

xs!0 = hd xs
xs!(Suc n) = (tl xs)!n

Figure 2.20: Simple list processing functions
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map f [] = []
map f (x#xs) = f x # map f xs

filter P [] = []
filter P (x#xs) = (if P x then x#filter P xs else filter P xs)

foldl f a [] = a
foldl f a (x#xs) = foldl f (f a x) xs

take n [] = []
take n (x#xs) = (case n of 0 => [] | Suc(m) => x # take m xs)

drop n [] = []
drop n (x#xs) = (case n of 0 => x#xs | Suc(m) => drop m xs)

takeWhile P [] = []
takeWhile P (x#xs) = (if P x then x#takeWhile P xs else [])

dropWhile P [] = []
dropWhile P (x#xs) = (if P x then dropWhile P xs else xs)

Figure 2.21: Further list processing functions

package of Isabelle/HOL (cf. [1]) automates such chores. It generates an
appropriate typedef based on a least fixed-point construction, and proves
freeness theorems and induction rules, as well as theorems for recursion and
case combinators. The user just has to give a simple specification of new
inductive types using a notation similar to ml or Haskell.

The current datatype package can handle both mutual and indirect re-
cursion. It also offers to represent existing types as datatypes giving the
advantage of a more uniform view on standard theories.

2.6.1 Basics
A general datatype definition is of the following form:

datatype (~α)t1 = C 1
1 τ 11,1 . . . τ 11,m1

1
| . . . | C 1

k1 τ 1k1,1 . . . τ 1k1,m1
k1...

and (~α)tn = C n
1 τn

1,1 . . . τn
1,mn

1
| . . . | C n

kn τn
kn ,1 . . . τn

kn ,mn
kn

where ~α = (α1, . . . , αh) is a list of type variables, C j
i are distinct constructor

names and τ j
i,i′ are admissible types containing at most the type variables

α1, . . . , αh. A type τ occurring in a datatype definition is admissible if and
only if
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• τ is non-recursive, i.e. τ does not contain any of the newly defined type
constructors t1, . . . , tn, or

• τ = (~α)tj′ where 1 ≤ j ′ ≤ n, or

• τ = (τ ′1, . . . , τ
′
h′)t ′, where t ′ is the type constructor of an already existing

datatype and τ ′1, . . . , τ
′
h′ are admissible types.

• τ = σ → τ ′, where τ ′ is an admissible type and σ is non-recursive (i.e.
the occurrences of the newly defined types are strictly positive)

If some (~α)tj′ occurs in a type τ j
i,i′ of the form

(. . . , . . . (~α)tj′ . . . , . . .)t ′

this is called a nested (or indirect) occurrence. A very simple example of a
datatype is the type list, which can be defined by

datatype 'a list = Nil
| Cons 'a ('a list)

Arithmetic expressions aexp and boolean expressions bexp can be modelled
by the mutually recursive datatype definition

datatype 'a aexp = If_then_else ('a bexp) ('a aexp) ('a aexp)
| Sum ('a aexp) ('a aexp)
| Diff ('a aexp) ('a aexp)
| Var 'a
| Num nat

and 'a bexp = Less ('a aexp) ('a aexp)
| And ('a bexp) ('a bexp)
| Or ('a bexp) ('a bexp)

The datatype term, which is defined by

datatype ('a, 'b) term = Var 'a
| App 'b ((('a, 'b) term) list)

is an example for a datatype with nested recursion. Using nested recursion
involving function spaces, we may also define infinitely branching datatypes,
e.g.

datatype 'a tree = Atom 'a | Branch "nat => 'a tree"

Types in HOL must be non-empty. Each of the new datatypes (~α)tj
with 1 ≤ j ≤ n is non-empty if and only if it has a constructor C j

i with the
following property: for all argument types τ j

i,i′ of the form (~α)tj′ the datatype
(~α)tj′ is non-empty.
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If there are no nested occurrences of the newly defined datatypes, ob-
viously at least one of the newly defined datatypes (~α)tj must have a con-
structor C j

i without recursive arguments, a base case, to ensure that the new
types are non-empty. If there are nested occurrences, a datatype can even
be non-empty without having a base case itself. Since list is a non-empty
datatype, datatype t = C (t list) is non-empty as well.

Freeness of the constructors

The datatype constructors are automatically defined as functions of their
respective type:

C j
i :: [τ j

i,1, . . . , τ
j
i,mj

i
] ⇒ (α1, . . . , αh)tj

These functions have certain freeness properties. They construct distinct
values:

C j
i x1 . . . xmj

i
6= C j

i′ y1 . . . ymj
i′

for all i 6= i ′.

The constructor functions are injective:

(C j
i x1 . . . xmj

i
= C j

i y1 . . . ymj
i
) = (x1 = y1 ∧ . . . ∧ xmj

i
= ymj

i
)

Since the number of distinctness inequalities is quadratic in the number of
constructors, the datatype package avoids proving them separately if there
are too many constructors. Instead, specific inequalities are proved by a
suitable simplification procedure on demand.3

3This procedure, which is already part of the default simpset, may be referred to by
the ML identifier DatatypePackage.distinct_simproc.
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Structural induction

The datatype package also provides structural induction rules. For datatypes
without nested recursion, this is of the following form:
∧ x1 . . . xm1

1
. [[Ps11,1 xr11,1 ; . . . ;Ps1

1,l1
1

xr1
1,l1

1

]] =⇒ P1

(
C 1

1 x1 . . . xm1
1

)
...∧ x1 . . . xm1

k1
. [[Ps1k1,1

xr1k1,1
; . . . ;Ps1

k1,l1k1

xr1
k1,l1k1

]] =⇒ P1

(
C 1

k1 x1 . . . xm1
k1

)
...∧ x1 . . . xmn

1
. [[Psn

1,1
xrn

1,1
; . . . ;Psn

1,ln
1

xrn
1,ln

1

]] =⇒ Pn
(
C n

1 x1 . . . xmn
1

)
...∧ x1 . . . xmn

kn
. [[Psn

kn ,1
xrn

kn ,1
; . . .Psn

kn ,lnkn
xrn

kn ,lnkn
]] =⇒ Pn

(
C n

kn x1 . . . xmn
kn

)
P1 x1 ∧ . . . ∧ Pn xn

where

Recj
i :=

{(
r j

i,1, s
j
i,1

)
, . . . ,

(
r j

i,lj
i
, sj

i,lj
i

)}
={

(i ′, i ′′)
∣∣∣ 1 ≤ i ′ ≤ mj

i ∧ 1 ≤ i ′′ ≤ n ∧ τ j
i,i′ = (α1, . . . , αh)ti′′

}
i.e. the properties Pj can be assumed for all recursive arguments.

For datatypes with nested recursion, such as the term example from
above, things are a bit more complicated. Conceptually, Isabelle/HOL un-
folds a definition like

datatype ('a,'b) term = Var 'a
| App 'b ((('a, 'b) term) list)

to an equivalent definition without nesting:

datatype ('a,'b) term = Var
| App 'b (('a, 'b) term_list)

and ('a,'b) term_list = Nil'
| Cons' (('a,'b) term) (('a,'b) term_list)

Note however, that the type ('a,'b) term_list and the constructors Nil'
and Cons' are not really introduced. One can directly work with the original
(isomorphic) type (('a, 'b) term) list and its existing constructors Nil
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and Cons. Thus, the structural induction rule for term gets the form∧ x . P1 (Var x)∧ x1 x2 . P2 x2 =⇒ P1 (App x1 x2)
P2 Nil∧ x1 x2 . [[P1 x1;P2 x2]] =⇒ P2 (Cons x1 x2)

P1 x1 ∧ P2 x2

Note that there are two predicates P1 and P2, one for the type ('a,'b) term
and one for the type (('a, 'b) term) list.

For a datatype with function types such as 'a tree, the induction rule
is of the form∧ a . P (Atom a) ∧ ts . (∀x . P (ts x)) =⇒ P (Branch ts)

P t

In principle, inductive types are already fully determined by freeness and
structural induction. For convenience in applications, the following derived
constructions are automatically provided for any datatype.

The case construct

The type comes with an ml-like case-construct:

case e of C j
1 x1,1 . . . x1,mj

1
⇒ e1

...
| C j

kj
xkj ,1 . . . xkj ,mj

kj
⇒ ekj

where the xi,j are either identifiers or nested tuple patterns as in §2.5.1.

! All constructors must be present, their order is fixed, and nested patterns are
not supported (with the exception of tuples). Violating this restriction results

in strange error messages.

To perform case distinction on a goal containing a case-construct, the
theorem tj .split is provided:

P(tj case f1 . . . fkj e) = ((∀x1 . . . xmj
1
. e = C j

1 x1 . . . xmj
1
→ P(f1 x1 . . . xmj

1
))

∧ . . . ∧
(∀x1 . . . xmj

kj
. e = C j

kj
x1 . . . xmj

kj
→ P(fkj x1 . . . xmj

kj
)))

where tj_case is the internal name of the case-construct. This theorem can
be added to a simpset via addsplits (see §2.4.1).
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Case splitting on assumption works as well, by using the rule tj .split_asm
in the same manner. Both rules are available under tj .splits (this name is
not bound in ML, though).

! By default only the selector expression (e above) in a case-construct is simpli-
fied, in analogy with if (see page 22). Only if that reduces to a constructor is

one of the arms of the case-construct exposed and simplified. To ensure full simpli-
fication of all parts of a case-construct for datatype t, remove t.case_weak_cong
from the simpset, for example by delcongs [thm "t.case_cong_weak"].

The function size

Theory NatArith declares a generic function size of type α ⇒ nat. Each
datatype defines a particular instance of size by overloading according to
the following scheme:

size(C j
i x1 . . . xmj

i
) =


0 if Recj

i = ∅

1 +
lj
i∑

h=1
size xrj

i,h
if Recj

i =
{(

r j
i,1, s

j
i,1

)
, . . . ,

(
r j

i,lj
i
, sj

i,lj
i

)}

where Recj
i is defined above. Viewing datatypes as generalised trees, the size

of a leaf is 0 and the size of a node is the sum of the sizes of its subtrees +1.

2.6.2 Defining datatypes
The theory syntax for datatype definitions is given in the Isabelle/Isar refer-
ence manual. In order to be well-formed, a datatype definition has to obey
the rules stated in the previous section. As a result the theory is extended
with the new types, the constructors, and the theorems listed in the previous
section.

Most of the theorems about datatypes become part of the default simpset
and you never need to see them again because the simplifier applies them
automatically. Only induction or case distinction are usually invoked by
hand.

induct_tac "x" i applies structural induction on variable x to subgoal i,
provided the type of x is a datatype.

induct_tac "x1 . . . xn" i applies simultaneous structural induction on the
variables x1, . . . , xn to subgoal i. This is the canonical way to prove
properties of mutually recursive datatypes such as aexp and bexp, or
datatypes with nested recursion such as term.
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In some cases, induction is overkill and a case distinction over all constructors
of the datatype suffices.
case_tac "u" i performs a case analysis for the term u whose type must be

a datatype. If the datatype has kj constructors C j
1, …C j

kj
, subgoal i is

replaced by kj new subgoals which contain the additional assumption
u = C j

i′ x1 . . . xmj
i′
for i ′ = 1, . . ., kj .

Note that induction is only allowed on free variables that should not occur
among the premises of the subgoal. Case distinction applies to arbitrary
terms.

For the technically minded, we exhibit some more details. Processing
the theory file produces an ml structure which, in addition to the usual
components, contains a structure named t for each datatype t defined in the
file. Each structure t contains the following elements:

val distinct : thm list
val inject : thm list
val induct : thm
val exhaust : thm
val cases : thm list
val split : thm
val split_asm : thm
val recs : thm list
val size : thm list
val simps : thm list

distinct, inject, induct, size and split contain the theorems described
above. For user convenience, distinct contains inequalities in both direc-
tions. The reduction rules of the case-construct are in cases. All theorems
from distinct, inject and cases are combined in simps. In case of mut-
ually recursive datatypes, recs, size, induct and simps are contained in a
separate structure named t1 . . . tn.

2.7 Old-style recursive function definitions
Old-style recursive definitions via recdef requires that you supply a well-
founded relation that governs the recursion. Recursive calls are only allowed
if they make the argument decrease under the relation. Complicated recur-
sion forms, such as nested recursion, can be dealt with. Termination can
even be proved at a later time, though having unsolved termination condi-
tions around can make work difficult.4

4This facility is based on Konrad Slind’s TFL package [16]. Thanks are due to Konrad
for implementing TFL and assisting with its installation.
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Using recdef, you can declare functions involving nested recursion and
pattern-matching. Recursion need not involve datatypes and there are few
syntactic restrictions. Termination is proved by showing that each recursive
call makes the argument smaller in a suitable sense, which you specify by
supplying a well-founded relation.

Here is a simple example, the Fibonacci function. The first line declares
fib to be a constant. The well-founded relation is simply < (on the natural
numbers). Pattern-matching is used here: 1 is a macro for Suc 0.

consts fib :: "nat => nat"
recdef fib "less_than"

"fib 0 = 0"
"fib 1 = 1"
"fib (Suc(Suc x)) = (fib x + fib (Suc x))"

With recdef, function definitions may be incomplete, and patterns may
overlap, as in functional programming. The recdef package disambiguates
overlapping patterns by taking the order of rules into account. For missing
patterns, the function is defined to return a default value.

The well-founded relation defines a notion of “smaller” for the function’s
argument type. The relation ≺ is well-founded provided it admits no in-
finitely decreasing chains

· · · ≺ xn ≺ · · · ≺ x1.

If the function’s argument has type τ , then ≺ has to be a relation over τ : it
must have type (τ × τ)set.

Proving well-foundedness can be tricky, so Isabelle/HOL provides a col-
lection of operators for building well-founded relations. The package recog-
nises these operators and automatically proves that the constructed relation
is well-founded. Here are those operators, in order of importance:

• less_than is “less than” on the natural numbers. (It has type (nat ×
nat)set, while < has type [nat, nat] ⇒ bool.

• measure f , where f has type τ ⇒ nat, is the relation ≺ on type τ such
that x ≺ y if and only if f (x) < f (y). Typically, f takes the recursive
function’s arguments (as a tuple) and returns a result expressed in
terms of the function size. It is called a measure function. Recall
that size is overloaded and is defined on all datatypes (see §2.6.1).

• inv imageR f is a generalisation of measure. It specifies a relation
such that x ≺ y if and only if f (x) is less than f (y) according to R,
which must itself be a well-founded relation.
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• R1<*lex*>R2 is the lexicographic product of two relations. It is a
relation on pairs and satisfies (x1, x2) ≺ (y1, y2) if and only if x1 is less
than y1 according to R1 or x1 = y1 and x2 is less than y2 according
to R2.

• finite_psubset is the proper subset relation on finite sets.

We can use measure to declare Euclid’s algorithm for the greatest com-
mon divisor. The measure function, λ(m, n) . n, specifies that the recursion
terminates because argument n decreases.

recdef gcd "measure ((%(m,n). n) ::nat*nat=>nat)"
"gcd (m, n) = (if n=0 then m else gcd(n, m mod n))"

The general form of a well-founded recursive definition is

recdef function rel
congs congruence rules (optional)
simpset simplification set (optional)
reduction rules

where

• function is the name of the function, either as an id or a string.

• rel is a HOL expression for the well-founded termination relation.

• congruence rules are required only in highly exceptional circumstances.

• The simplification set is used to prove that the supplied relation is
well-founded. It is also used to prove the termination conditions:
assertions that arguments of recursive calls decrease under rel. By
default, simplification uses simpset(), which is sufficient to prove well-
foundedness for the built-in relations listed above.

• reduction rules specify one or more recursion equations. Each left-hand
side must have the form f t, where f is the function and t is a tuple of
distinct variables. If more than one equation is present then f is defined
by pattern-matching on components of its argument whose type is a
datatype.
The ml identifier f .simps contains the reduction rules as a list of
theorems.

With the definition of gcd shown above, Isabelle/HOL is unable to prove
one termination condition. It remains as a precondition of the recursion
theorems:
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gcd.simps;
["! m n. n ~= 0 --> m mod n < n

==> gcd (?m,?n) = (if ?n=0 then ?m else gcd (?n, ?m mod ?n))"]
: thm list

The theory HOL/ex/Primes illustrates how to prove termination conditions
afterwards. The function Tfl.tgoalw is like the standard function goalw,
which sets up a goal to prove, but its argument should be the identifier
f .simps and its effect is to set up a proof of the termination conditions:

Tfl.tgoalw thy [] gcd.simps;
Level 0
! m n. n ~= 0 --> m mod n < n
1. ! m n. n ~= 0 --> m mod n < n

This subgoal has a one-step proof using simp_tac. Once the theorem is
proved, it can be used to eliminate the termination conditions from elements
of gcd.simps. Theory HOL/Subst/Unify is a much more complicated exam-
ple of this process, where the termination conditions can only be proved by
complicated reasoning involving the recursive function itself.

Isabelle/HOL can prove the gcd function’s termination condition auto-
matically if supplied with the right simpset.

recdef gcd "measure ((%(m,n). n) ::nat*nat=>nat)"
simpset "simpset() addsimps [mod_less_divisor, zero_less_eq]"
"gcd (m, n) = (if n=0 then m else gcd(n, m mod n))"

If all termination conditions were proved automatically, f .simps is added
to the simpset automatically, just as in primrec. The simplification rules
corresponding to clause i (where counting starts at 0) are called f .i and can
be accessed as thms "f .i", which returns a list of theorems. Thus you can,
for example, remove specific clauses from the simpset. Note that a single
clause may give rise to a set of simplification rules in order to capture the
fact that if clauses overlap, their order disambiguates them.

A recdef definition also returns an induction rule specialised for the
recursive function. For the gcd function above, the induction rule is

gcd.induct;
"(!!m n. n ~= 0 --> ?P n (m mod n) ==> ?P m n) ==> ?P ?u ?v" : thm

This rule should be used to reason inductively about the gcd function. It
usually makes the induction hypothesis available at all recursive calls, leading
to very direct proofs. If any termination conditions remain unproved, they
will become additional premises of this rule.
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2.8 Example: Cantor’s Theorem
Cantor’s Theorem states that every set has more subsets than it has elements.
It has become a favourite example in higher-order logic since it is so easily
expressed:

∀f :: α ⇒ α ⇒ bool . ∃S :: α ⇒ bool . ∀x :: α . f x 6= S

Viewing types as sets, α ⇒ bool represents the powerset of α. This version
states that for every function from α to its powerset, some subset is outside
its range.

The Isabelle proof uses HOL’s set theory, with the type α set and the
operator range.

context Set.thy;

The set S is given as an unknown instead of a quantified variable so that we
may inspect the subset found by the proof.

Goal "?S ~: range (f :: 'a=>'a set)";
Level 0
?S ~: range f
1. ?S ~: range f

The first two steps are routine. The rule rangeE replaces ?S ∈ range f by
?S = f x for some x.

by (resolve_tac [notI] 1);
Level 1
?S ~: range f
1. ?S : range f ==> False

by (eresolve_tac [rangeE] 1);
Level 2
?S ~: range f
1. !!x. ?S = f x ==> False

Next, we apply equalityCE, reasoning that since ?S = f x, we have ?c ∈ ?S
if and only if ?c ∈ f x for any ?c.

by (eresolve_tac [equalityCE] 1);
Level 3
?S ~: range f
1. !!x. [| ?c3 x : ?S; ?c3 x : f x |] ==> False
2. !!x. [| ?c3 x ~: ?S; ?c3 x ~: f x |] ==> False

Now we use a bit of creativity. Suppose that ?S has the form of a comprehen-
sion. Then ?c ∈ {x . ?P x} implies ?P ?c. Destruct-resolution using CollectD
instantiates ?S and creates the new assumption.
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by (dresolve_tac [CollectD] 1);
Level 4
{x. ?P7 x} ~: range f
1. !!x. [| ?c3 x : f x; ?P7(?c3 x) |] ==> False
2. !!x. [| ?c3 x ~: {x. ?P7 x}; ?c3 x ~: f x |] ==> False

Forcing a contradiction between the two assumptions of subgoal 1 completes
the instantiation of S . It is now the set {x . x 6∈ f x}, which is the standard
diagonal construction.

by (contr_tac 1);
Level 5
{x. x ~: f x} ~: range f
1. !!x. [| x ~: {x. x ~: f x}; x ~: f x |] ==> False

The rest should be easy. To apply CollectI to the negated assumption, we
employ swap_res_tac:

by (swap_res_tac [CollectI] 1);
Level 6
{x. x ~: f x} ~: range f
1. !!x. [| x ~: f x; ~ False |] ==> x ~: f x

by (assume_tac 1);
Level 7
{x. x ~: f x} ~: range f
No subgoals!

How much creativity is required? As it happens, Isabelle can prove this theo-
rem automatically. The default classical set claset() contains rules for most
of the constructs of HOL’s set theory. We must augment it with equalityCE
to break up set equalities, and then apply best-first search. Depth-first search
would diverge, but best-first search successfully navigates through the large
search space.

choplev 0;
Level 0
?S ~: range f
1. ?S ~: range f

by (best_tac (claset() addSEs [equalityCE]) 1);
Level 1
{x. x ~: f x} ~: range f
No subgoals!

If you run this example interactively, make sure your current theory con-
tains theory Set, for example by executing context Set.thy. Otherwise the
default claset may not contain the rules for set theory.



Chapter 3

First-Order Sequent Calculus

The theory LK implements classical first-order logic through Gentzen’s se-
quent calculus (see Gallier [5] or Takeuti [17]). Resembling the method of
semantic tableaux, the calculus is well suited for backwards proof. Asser-
tions have the form Γ ` ∆, where Γ and ∆ are lists of formulae. Associative
unification, simulated by higher-order unification, handles lists (§3.7 presents
details, if you are interested).

The logic is many-sorted, using Isabelle’s type classes. The class of first-
order terms is called term. No types of individuals are provided, but ex-
tensions can define types such as nat::term and type constructors such as
list::(term)term. Below, the type variable α ranges over class term; the
equality symbol and quantifiers are polymorphic (many-sorted). The type of
formulae is o, which belongs to class logic.

LK implements a classical logic theorem prover that is nearly as powerful
as the generic classical reasoner. The simplifier is now available too.

To work in LK, start up Isabelle specifying Sequents as the object-logic.
Once in Isabelle, change the context to theory LK.thy:

isabelle Sequents
context LK.thy;

Modal logic and linear logic are also available, but unfortunately they are
not documented.

3.1 Syntax and rules of inference
Figure 3.1 gives the syntax for LK, which is complicated by the representation
of sequents. Type sobj ⇒ sobj represents a list of formulae.

The definite description operator ιx . P[x] stands for some a satisfy-
ing P[a], if one exists and is unique. Since all terms in LK denote something,
a description is always meaningful, but we do not know its value unless P[x]
defines it uniquely. The Isabelle notation is THE x. P[x]. The correspond-
ing rule (Fig. 3.4) does not entail the Axiom of Choice because it requires
uniqueness.

44
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name meta-type description
Trueprop [sobj ⇒ sobj, sobj ⇒ sobj] ⇒ prop coercion to prop

Seqof [o, sobj] ⇒ sobj singleton sequence
Not o ⇒ o negation (¬)

True o tautology (>)
False o absurdity (⊥)

Constants

symbol name meta-type priority description
ALL All (α ⇒ o) ⇒ o 10 universal quantifier (∀)
EX Ex (α ⇒ o) ⇒ o 10 existential quantifier (∃)
THE The (α ⇒ o) ⇒ α 10 definite description (ι)

Binders

symbol meta-type priority description
= [α, α] ⇒ o Left 50 equality (=)
& [o, o] ⇒ o Right 35 conjunction (∧)
| [o, o] ⇒ o Right 30 disjunction (∨)

--> [o, o] ⇒ o Right 25 implication (→)
<-> [o, o] ⇒ o Right 25 biconditional (↔)

Infixes

external internal description
Γ |- ∆ Trueprop(Γ, ∆) sequent Γ ` ∆

Translations

Figure 3.1: Syntax of LK



CHAPTER 3. FIRST-ORDER SEQUENT CALCULUS 46

prop = sequence |- sequence

sequence = elem (, elem)∗

| empty

elem = $ term
| formula
| <<sequence>>

formula = expression of type o
| term = term
| ~ formula
| formula & formula
| formula | formula
| formula --> formula
| formula <-> formula
| ALL id id∗ . formula
| EX id id∗ . formula
| THE id . formula

Figure 3.2: Grammar of LK
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basic $H, P, $G |- $E, P, $F

contRS $H |- $E, $S, $S, $F ==> $H |- $E, $S, $F
contLS $H, $S, $S, $G |- $E ==> $H, $S, $G |- $E

thinRS $H |- $E, $F ==> $H |- $E, $S, $F
thinLS $H, $G |- $E ==> $H, $S, $G |- $E

cut [| $H |- $E, P; $H, P |- $E |] ==> $H |- $E

Structural rules

refl $H |- $E, a=a, $F
subst $H(a), $G(a) |- $E(a) ==> $H(b), a=b, $G(b) |- $E(b)

Equality rules

Figure 3.3: Basic Rules of LK

Conditional expressions are available with the notation

if formula then term else term.

Figure 3.2 presents the grammar of LK. Traditionally, Γ and ∆ are meta-
variables for sequences. In Isabelle’s notation, the prefix $ on a term makes
it range over sequences. In a sequent, anything not prefixed by $ is taken as
a formula.

The notation <<sequence>> stands for a sequence of formulæ. For exam-
ple, you can declare the constant imps to consist of two implications:

consts P,Q,R :: o
constdefs imps :: seq'=>seq'

"imps == <<P --> Q, Q --> R>>"

Then you can use it in axioms and goals, for example
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True_def True == False-->False
iff_def P<->Q == (P-->Q) & (Q-->P)

conjR [| $H|- $E, P, $F; $H|- $E, Q, $F |] ==> $H|- $E, P&Q, $F
conjL $H, P, Q, $G |- $E ==> $H, P & Q, $G |- $E

disjR $H |- $E, P, Q, $F ==> $H |- $E, P|Q, $F
disjL [| $H, P, $G |- $E; $H, Q, $G |- $E |] ==> $H, P|Q, $G |- $E

impR $H, P |- $E, Q, $F ==> $H |- $E, P-->Q, $F
impL [| $H,$G |- $E,P; $H, Q, $G |- $E |] ==> $H, P-->Q, $G |- $E

notR $H, P |- $E, $F ==> $H |- $E, ~P, $F
notL $H, $G |- $E, P ==> $H, ~P, $G |- $E

FalseL $H, False, $G |- $E

allR (!!x. $H|- $E, P(x), $F) ==> $H|- $E, ALL x. P(x), $F
allL $H, P(x), $G, ALL x. P(x) |- $E ==> $H, ALL x. P(x), $G|- $E

exR $H|- $E, P(x), $F, EX x. P(x) ==> $H|- $E, EX x. P(x), $F
exL (!!x. $H, P(x), $G|- $E) ==> $H, EX x. P(x), $G|- $E

The [| $H |- $E, P(a), $F; !!x. $H, P(x) |- $E, x=a, $F |] ==>
$H |- $E, P(THE x. P(x)), $F

Logical rules

Figure 3.4: Rules of LK
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thinR $H |- $E, $F ==> $H |- $E, P, $F
thinL $H, $G |- $E ==> $H, P, $G |- $E

contR $H |- $E, P, P, $F ==> $H |- $E, P, $F
contL $H, P, P, $G |- $E ==> $H, P, $G |- $E

symR $H |- $E, $F, a=b ==> $H |- $E, b=a, $F
symL $H, $G, b=a |- $E ==> $H, a=b, $G |- $E

transR [| $H|- $E, $F, a=b; $H|- $E, $F, b=c |]
==> $H|- $E, a=c, $F

TrueR $H |- $E, True, $F

iffR [| $H, P |- $E, Q, $F; $H, Q |- $E, P, $F |]
==> $H |- $E, P<->Q, $F

iffL [| $H, $G |- $E, P, Q; $H, Q, P, $G |- $E |]
==> $H, P<->Q, $G |- $E

allL_thin $H, P(x), $G |- $E ==> $H, ALL x. P(x), $G |- $E
exR_thin $H |- $E, P(x), $F ==> $H |- $E, EX x. P(x), $F

the_equality [| $H |- $E, P(a), $F;
!!x. $H, P(x) |- $E, x=a, $F |]

==> $H |- $E, (THE x. P(x)) = a, $F

Figure 3.5: Derived rules for LK

Goalw [imps_def] "P, $imps |- R";
Level 0
P, $imps |- R
1. P, P --> Q, Q --> R |- R

by (Fast_tac 1);
Level 1
P, $imps |- R
No subgoals!

Figures 3.3 and 3.4 present the rules of theory LK. The connective ↔ is
defined using ∧ and →. The axiom for basic sequents is expressed in a form
that provides automatic thinning: redundant formulae are simply ignored.
The other rules are expressed in the form most suitable for backward proof;
exchange and contraction rules are not normally required, although they are
provided anyway.

Figure 3.5 presents derived rules, including rules for ↔. The weakened
quantifier rules discard each quantification after a single use; in an automatic
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proof procedure, they guarantee termination, but are incomplete. Multiple
use of a quantifier can be obtained by a contraction rule, which in backward
proof duplicates a formula. The tactic res_inst_tac can instantiate the
variable ?P in these rules, specifying the formula to duplicate. See theory
Sequents/LK0 in the sources for complete listings of the rules and derived
rules.

To support the simplifier, hundreds of equivalences are proved for
the logical connectives and for if-then-else expressions. See the file
Sequents/simpdata.ML.

3.2 Automatic Proof
LK instantiates Isabelle’s simplifier. Both equality (=) and the biconditional
(↔) may be used for rewriting. The tactic Simp_tac refers to the default
simpset (simpset()). With sequents, the full_ and asm_ forms of the sim-
plifier are not required; all the formulae in the sequent will be simplified.
The left-hand formulae are taken as rewrite rules. (Thus, the behaviour is
what you would normally expect from calling Asm_full_simp_tac.)

For classical reasoning, several tactics are available:

Safe_tac : int -> tactic
Step_tac : int -> tactic
Fast_tac : int -> tactic
Best_tac : int -> tactic
Pc_tac : int -> tactic

These refer not to the standard classical reasoner but to a separate one
provided for the sequent calculus. Two commands are available for adding
new sequent calculus rules, safe or unsafe, to the default “theorem pack”:

Add_safes : thm list -> unit
Add_unsafes : thm list -> unit

To control the set of rules for individual invocations, lower-case versions of
all these primitives are available. Sections 3.8 and 3.9 give full details.

3.3 Tactics for the cut rule
According to the cut-elimination theorem, the cut rule can be eliminated
from proofs of sequents. But the rule is still essential. It can be used to
structure a proof into lemmas, avoiding repeated proofs of the same formula.
More importantly, the cut rule cannot be eliminated from derivations of rules.
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For example, there is a trivial cut-free proof of the sequent P ∧ Q ` Q ∧ P.
Noting this, we might want to derive a rule for swapping the conjuncts in a
right-hand formula:

Γ ` ∆,P ∧ Q
Γ ` ∆,Q ∧ P

The cut rule must be used, for P∧Q is not a subformula of Q∧P. Most cuts
directly involve a premise of the rule being derived (a meta-assumption). In
a few cases, the cut formula is not part of any premise, but serves as a bridge
between the premises and the conclusion. In such proofs, the cut formula is
specified by calling an appropriate tactic.

cutR_tac : string -> int -> tactic
cutL_tac : string -> int -> tactic

These tactics refine a subgoal into two by applying the cut rule. The cut
formula is given as a string, and replaces some other formula in the sequent.

cutR_tac P i reads an LK formula P, and applies the cut rule to subgoal i.
It then deletes some formula from the right side of subgoal i, replacing
that formula by P.

cutL_tac P i reads an LK formula P, and applies the cut rule to subgoal i.
It then deletes some formula from the left side of the new subgoal i+1,
replacing that formula by P.

All the structural rules — cut, contraction, and thinning — can be applied
to particular formulae using res_inst_tac.

3.4 Tactics for sequents
forms_of_seq : term -> term list
could_res : term * term -> bool
could_resolve_seq : term * term -> bool
filseq_resolve_tac : thm list -> int -> int -> tactic

Associative unification is not as efficient as it might be, in part because the
representation of lists defeats some of Isabelle’s internal optimisations. The
following operations implement faster rule application, and may have other
uses.

forms_of_seq t returns the list of all formulae in the sequent t, removing
sequence variables.
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could_res (t,u) tests whether two formula lists could be resolved. List
t is from a premise or subgoal, while u is from the conclusion of an
object-rule. Assuming that each formula in u is surrounded by sequence
variables, it checks that each conclusion formula is unifiable (using
could_unify) with some subgoal formula.

could_resolve_seq (t,u) tests whether two sequents could be resolved.
Sequent t is a premise or subgoal, while u is the conclusion of an object-
rule. It simply calls could_res twice to check that both the left and
the right sides of the sequents are compatible.

filseq_resolve_tac thms maxr i uses filter_thms could_resolve to
extract the thms that are applicable to subgoal i. If more than
maxr theorems are applicable then the tactic fails. Otherwise it
calls resolve_tac. Thus, it is the sequent calculus analogue of
filt_resolve_tac.

3.5 A simple example of classical reasoning
The theorem ` ∃y . ∀x . P(y) → P(x) is a standard example of the classical
treatment of the existential quantifier. Classical reasoning is easy using LK,
as you can see by comparing this proof with the one given in the FOL man-
ual [12]. From a logical point of view, the proofs are essentially the same;
the key step here is to use exR rather than the weaker exR_thin.

Goal "|- EX y. ALL x. P(y)-->P(x)";
Level 0
|- EX y. ALL x. P(y) --> P(x)
1. |- EX y. ALL x. P(y) --> P(x)

by (resolve_tac [exR] 1);
Level 1
|- EX y. ALL x. P(y) --> P(x)
1. |- ALL x. P(?x) --> P(x), EX x. ALL xa. P(x) --> P(xa)

There are now two formulae on the right side. Keeping the existential one in
reserve, we break down the universal one.

by (resolve_tac [allR] 1);
Level 2
|- EX y. ALL x. P(y) --> P(x)
1. !!x. |- P(?x) --> P(x), EX x. ALL xa. P(x) --> P(xa)

by (resolve_tac [impR] 1);
Level 3
|- EX y. ALL x. P(y) --> P(x)
1. !!x. P(?x) |- P(x), EX x. ALL xa. P(x) --> P(xa)

Because LK is a sequent calculus, the formula P(?x) does not become an
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assumption; instead, it moves to the left side. The resulting subgoal cannot
be instantiated to a basic sequent: the bound variable x is not unifiable with
the unknown ?x.

by (resolve_tac [basic] 1);
by: tactic failed

We reuse the existential formula using exR_thin, which discards it; we shall
not need it a third time. We again break down the resulting formula.

by (resolve_tac [exR_thin] 1);
Level 4
|- EX y. ALL x. P(y) --> P(x)
1. !!x. P(?x) |- P(x), ALL xa. P(?x7(x)) --> P(xa)

by (resolve_tac [allR] 1);
Level 5
|- EX y. ALL x. P(y) --> P(x)
1. !!x xa. P(?x) |- P(x), P(?x7(x)) --> P(xa)

by (resolve_tac [impR] 1);
Level 6
|- EX y. ALL x. P(y) --> P(x)
1. !!x xa. P(?x), P(?x7(x)) |- P(x), P(xa)

Subgoal 1 seems to offer lots of possibilities. Actually the only useful step is
instantiating ?x7 to λx . x, transforming ?x7(x) into x.

by (resolve_tac [basic] 1);
Level 7
|- EX y. ALL x. P(y) --> P(x)

No subgoals!

This theorem can be proved automatically. Because it involves quantifier
duplication, we employ best-first search:

Goal "|- EX y. ALL x. P(y)-->P(x)";
Level 0
|- EX y. ALL x. P(y) --> P(x)
1. |- EX y. ALL x. P(y) --> P(x)

by (best_tac LK_dup_pack 1);
Level 1
|- EX y. ALL x. P(y) --> P(x)

No subgoals!

3.6 A more complex proof
Many of Pelletier’s test problems for theorem provers [15] can be solved auto-
matically. Problem 39 concerns set theory, asserting that there is no Russell
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set — a set consisting of those sets that are not members of themselves:

` ¬(∃x . ∀y . y ∈ x ↔ y 6∈ y)

This does not require special properties of membership; we may generalize
x ∈ y to an arbitrary predicate F(x, y). The theorem, which is trivial for
Fast_tac, has a short manual proof. See the directory Sequents/LK for
many more examples.

We set the main goal and move the negated formula to the left.

Goal "|- ~ (EX x. ALL y. F(y,x) <-> ~F(y,y))";
Level 0
|- ~ (EX x. ALL y. F(y,x) <-> ~ F(y,y))
1. |- ~ (EX x. ALL y. F(y,x) <-> ~ F(y,y))

by (resolve_tac [notR] 1);
Level 1
|- ~ (EX x. ALL y. F(y,x) <-> ~ F(y,y))
1. EX x. ALL y. F(y,x) <-> ~ F(y,y) |-

The right side is empty; we strip both quantifiers from the formula on the
left.

by (resolve_tac [exL] 1);
Level 2
|- ~ (EX x. ALL y. F(y,x) <-> ~ F(y,y))
1. !!x. ALL y. F(y,x) <-> ~ F(y,y) |-

by (resolve_tac [allL_thin] 1);
Level 3
|- ~ (EX x. ALL y. F(y,x) <-> ~ F(y,y))
1. !!x. F(?x2(x),x) <-> ~ F(?x2(x),?x2(x)) |-

The rule iffL says, if P ↔ Q then P and Q are either both true or both
false. It yields two subgoals.

by (resolve_tac [iffL] 1);
Level 4
|- ~ (EX x. ALL y. F(y,x) <-> ~ F(y,y))
1. !!x. |- F(?x2(x),x), ~ F(?x2(x),?x2(x))
2. !!x. ~ F(?x2(x),?x2(x)), F(?x2(x),x) |-

We must instantiate ?x2, the shared unknown, to satisfy both subgoals. Be-
ginning with subgoal 2, we move a negated formula to the left and create a
basic sequent.
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by (resolve_tac [notL] 2);
Level 5
|- ~ (EX x. ALL y. F(y,x) <-> ~ F(y,y))
1. !!x. |- F(?x2(x),x), ~ F(?x2(x),?x2(x))
2. !!x. F(?x2(x),x) |- F(?x2(x),?x2(x))

by (resolve_tac [basic] 2);
Level 6
|- ~ (EX x. ALL y. F(y,x) <-> ~ F(y,y))
1. !!x. |- F(x,x), ~ F(x,x)

Thanks to the instantiation of ?x2, subgoal 1 is obviously true.

by (resolve_tac [notR] 1);
Level 7
|- ~ (EX x. ALL y. F(y,x) <-> ~ F(y,y))
1. !!x. F(x,x) |- F(x,x)

by (resolve_tac [basic] 1);
Level 8
|- ~ (EX x. ALL y. F(y,x) <-> ~ F(y,y))

No subgoals!

3.7 *Unification for lists
Higher-order unification includes associative unification as a special case, by
an encoding that involves function composition [7, page 37]. To represent
lists, let C be a new constant. The empty list is λx . x, while [t1, t2, . . . , tn] is
represented by

λx . C (t1,C (t2, . . . ,C (tn, x))).

The unifiers of this with λx . ?f (?g(x)) give all the ways of expressing
[t1, t2, . . . , tn] as the concatenation of two lists.

Unlike orthodox associative unification, this technique can represent cer-
tain infinite sets of unifiers by flex-flex equations. But note that the term
λx .C (t, ?a) does not represent any list. Flex-flex constraints containing such
garbage terms may accumulate during a proof.

This technique lets Isabelle formalize sequent calculus rules, where the
comma is the associative operator:

Γ,P,Q,∆ ` Θ

Γ,P ∧ Q,∆ ` Θ
(∧-left)

Multiple unifiers occur whenever this is resolved against a goal containing
more than one conjunction on the left.

LK exploits this representation of lists. As an alternative, the sequent
calculus can be formalized using an ordinary representation of lists, with a
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logic program for removing a formula from a list. Amy Felty has applied this
technique using the language λProlog [4].

Explicit formalization of sequents can be tiresome. But it gives precise
control over contraction and weakening, and is essential to handle relevant
and linear logics.

3.8 *Packaging sequent rules
The sequent calculi come with simple proof procedures. These are incomplete
but are reasonably powerful for interactive use. They expect rules to be
classified as safe or unsafe. A rule is safe if applying it to a provable goal
always yields provable subgoals. If a rule is safe then it can be applied
automatically to a goal without destroying our chances of finding a proof.
For instance, all the standard rules of the classical sequent calculus lk are
safe. An unsafe rule may render the goal unprovable; typical examples are
the weakened quantifier rules allL_thin and exR_thin.

Proof procedures use safe rules whenever possible, using an unsafe rule as
a last resort. Those safe rules are preferred that generate the fewest subgoals.
Safe rules are (by definition) deterministic, while the unsafe rules require a
search strategy, such as backtracking.

A pack is a pair whose first component is a list of safe rules and whose
second is a list of unsafe rules. Packs can be extended in an obvious way
to allow reasoning with various collections of rules. For clarity, LK declares
pack as an ml datatype, although is essentially a type synonym:

datatype pack = Pack of thm list * thm list;

Pattern-matching using constructor Pack can inspect a pack’s contents.
Packs support the following operations:

pack : unit -> pack
pack_of : theory -> pack
empty_pack : pack
prop_pack : pack
LK_pack : pack
LK_dup_pack : pack
add_safes : pack * thm list -> pack infix 4
add_unsafes : pack * thm list -> pack infix 4

pack returns the pack attached to the current theory.

pack_of thy returns the pack attached to theory thy.

empty_pack is the empty pack.
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prop_pack contains the propositional rules, namely those for ∧, ∨, ¬, →
and ↔, along with the rules basic and refl. These are all safe.

LK_pack extends prop_pack with the safe rules allR and exL and the unsafe
rules allL_thin and exR_thin. Search using this is incomplete since
quantified formulae are used at most once.

LK_dup_pack extends prop_pack with the safe rules allR and exL and the
unsafe rules allL and exR. Search using this is complete, since quan-
tified formulae may be reused, but frequently fails to terminate. It is
generally unsuitable for depth-first search.

pack add_safes rules adds some safe rules to the pack pack.

pack add_unsafes rules adds some unsafe rules to the pack pack.

3.9 *Proof procedures
The LK proof procedure is similar to the classical reasoner described in the
Reference Manual. In fact it is simpler, since it works directly with sequents
rather than simulating them. There is no need to distinguish introduction
rules from elimination rules, and of course there is no swap rule. As always,
Isabelle’s classical proof procedures are less powerful than resolution theorem
provers. But they are more natural and flexible, working with an open-ended
set of rules.

Backtracking over the choice of a safe rule accomplishes nothing: applying
them in any order leads to essentially the same result. Backtracking may be
necessary over basic sequents when they perform unification. Suppose that 0,
1, 2, 3 are constants in the subgoals

P(0),P(1),P(2) ` P(?a)
P(0),P(2),P(3) ` P(?a)
P(1),P(3),P(2) ` P(?a)

The only assignment that satisfies all three subgoals is ?a 7→ 2, and this can
only be discovered by search. The tactics given below permit backtracking
only over axioms, such as basic and refl; otherwise they are deterministic.

3.9.1 Method A
reresolve_tac : thm list -> int -> tactic
repeat_goal_tac : pack -> int -> tactic
pc_tac : pack -> int -> tactic

These tactics use a method developed by Philippe de Groote. A subgoal



CHAPTER 3. FIRST-ORDER SEQUENT CALCULUS 58

is refined and the resulting subgoals are attempted in reverse order. For
some reason, this is much faster than attempting the subgoals in order. The
method is inherently depth-first.

At present, these tactics only work for rules that have no more than two
premises. They fail — return no next state — if they can do nothing.

reresolve_tac thms i repeatedly applies the thms to subgoal i and the
resulting subgoals.

repeat_goal_tac pack i applies the safe rules in the pack to a goal and
the resulting subgoals. If no safe rule is applicable then it applies an
unsafe rule and continues.

pc_tac pack i applies repeat_goal_tac using depth-first search to solve
subgoal i.

3.9.2 Method B
safe_tac : pack -> int -> tactic
step_tac : pack -> int -> tactic
fast_tac : pack -> int -> tactic
best_tac : pack -> int -> tactic

These tactics are analogous to those of the generic classical reasoner. They
use ‘Method A’ only on safe rules. They fail if they can do nothing.

safe_goal_tac pack i applies the safe rules in the pack to a goal and the
resulting subgoals. It ignores the unsafe rules.

step_tac pack i either applies safe rules (using safe_goal_tac) or applies
one unsafe rule.

fast_tac pack i applies step_tac using depth-first search to solve sub-
goal i. Despite its name, it is frequently slower than pc_tac.

best_tac pack i applies step_tac using best-first search to solve subgoal i.
It is particularly useful for quantifier duplication (using LK_dup_pack).



Chapter 4

Defining A Sequent-Based
Logic

The Isabelle theory Sequents.thy provides facilities for using sequent nota-
tion in users’ object logics. This theory allows users to easily interface the
surface syntax of sequences with an underlying representation suitable for
higher-order unification.

4.1 Concrete syntax of sequences
Mathematicians and logicians have used sequences in an informal way much
before proof systems such as Isabelle were created. It seems sensible to allow
people using Isabelle to express sequents and perform proofs in this same
informal way, and without requiring the theory developer to spend a lot of
time in ml programming.

By using Sequents.thy appropriately, a logic developer can allow users
to refer to sequences in several ways:

• A sequence variable is any alphanumeric string with the first character
being a $ sign. So, consider the sequent $A |- B, where $A is intended
to match a sequence of zero or more items.

• A sequence with unspecified sub-sequences and unspecified or indi-
vidual items is written as a comma-separated list of regular variables
(representing items), particular items, and sequence variables, as in

$A, B, C, $D(x) |- E

Here both $A and $D(x) are allowed to match any subsequences of
items on either side of the two items that match B and C . Moreover,
the sequence matching $D(x) may contain occurrences of x.

• An empty sequence can be represented by a blank space, as in
|- true.
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These syntactic constructs need to be assimilated into the object theory
being developed. The type that we use for these visible objects is given the
name seq. A seq is created either by the empty space, a seqobj or a seqobj
followed by a seq, with a comma between them. A seqobj is either an item
or a variable representing a sequence. Thus, a theory designer can specify
a function that takes two sequences and returns a meta-level proposition by
giving it the Isabelle type [seq, seq] => prop.

This is all part of the concrete syntax, but one may wish to exploit Isa-
belle’s higher-order abstract syntax by actually having a different, more pow-
erful internal syntax.

4.2 Basis
One could opt to represent sequences as first-order objects (such as simple
lists), but this would not allow us to use many facilities Isabelle provides
for matching. By using a slightly more complex representation, users of the
logic can reap many benefits in facilities for proofs and ease of reading logical
terms.

A sequence can be represented as a function — a constructor for fur-
ther sequences — by defining a binary abstract function Seq0' with type
[o,seq']=>seq', and translating a sequence such as A, B, C into

%s. Seq0'(A, SeqO'(B, SeqO'(C, s)))

This sequence can therefore be seen as a constructor for further sequences.
The constructor Seq0' is never given a value, and therefore it is not possible
to evaluate this expression into a basic value.

Furthermore, if we want to represent the sequence A, $B, C, we note
that $B already represents a sequence, so we can use B itself to refer to the
function, and therefore the sequence can be mapped to the internal form:
%s. SeqO'(A, B(SeqO'(C, s))).

So, while we wish to continue with the standard, well-liked external rep-
resentation of sequences, we can represent them internally as functions of
type seq'=>seq'.

4.3 Object logics
Recall that object logics are defined by mapping elements of particular types
to the Isabelle type prop, usually with a function called Trueprop. So, an ob-
ject logic proposition P is matched to the Isabelle proposition Trueprop(P).
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The name of the function is often hidden, so the user just sees P. Isabelle
is eager to make types match, so it inserts Trueprop automatically when an
object of type prop is expected. This mechanism can be observed in most of
the object logics which are direct descendants of Pure.

In order to provide the desired syntactic facilities for sequent calculi,
rather than use just one function that maps object-level propositions to
meta-level propositions, we use two functions, and separate internal from
the external representation.

These functions need to be given a type that is appropriate for the partic-
ular form of sequents required: single or multiple conclusions. So multiple-
conclusion sequents (used in the LK logic) can be specified by the following
two definitions, which are lifted from the inbuilt Sequents/LK.thy:

Trueprop :: two_seqi
"@Trueprop" :: two_seqe ("((_)/ |- (_))" [6,6] 5)

where the types used are defined in Sequents.thy as abbreviations:

two_seqi = [seq'=>seq', seq'=>seq'] => prop
two_seqe = [seq, seq] => prop

The next step is to actually create links into the low-level parsing and
pretty-printing mechanisms, which map external and internal representa-
tions. These functions go below the user level and capture the underlying
structure of Isabelle terms in ml. Fortunately the theory developer need not
delve in this level; Sequents.thy provides the necessary facilities. All the
theory developer needs to add in the ml section is a specification of the two
translation functions:

ML
val parse_translation = [("@Trueprop",Sequents.two_seq_tr "Trueprop")];
val print_translation = [("Trueprop",Sequents.two_seq_tr' "@Trueprop")];

In summary: in the logic theory being developed, the developer needs to
specify the types for the internal and external representation of the sequences,
and use the appropriate parsing and pretty-printing functions.

4.4 What’s in Sequents.thy
Theory Sequents.thy makes many declarations that you need to know
about:

1. The Isabelle types given below, which can be used for the constants
that map object-level sequents and meta-level propositions:
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single_seqe = [seq,seqobj] => prop
single_seqi = [seq'=>seq',seq'=>seq'] => prop
two_seqi = [seq'=>seq', seq'=>seq'] => prop
two_seqe = [seq, seq] => prop
three_seqi = [seq'=>seq', seq'=>seq', seq'=>seq'] => prop
three_seqe = [seq, seq, seq] => prop
four_seqi = [seq'=>seq', seq'=>seq', seq'=>seq', seq'=>seq'] => prop
four_seqe = [seq, seq, seq, seq] => prop

The single_ and two_ sets of mappings for internal and external rep-
resentations are the ones used for, say single and multiple conclusion
sequents. The other functions are provided to allow rules that ma-
nipulate more than two functions, as can be seen in the inbuilt object
logics.

2. An auxiliary syntactic constant has been defined that directly maps a
sequence to its internal representation:

"@Side" :: seq=>(seq'=>seq') ("<<(_)>>")

Whenever a sequence (such as << A, $B, $C>>) is entered using this
syntax, it is translated into the appropriate internal representation.
This form can be used only where a sequence is expected.

3. The ml functions single tr, two seq tr, three seq tr, four seq
tr for parsing, that is, the translation from external to internal
form. Analogously there are single tr', two seq tr', three seq
tr', four seq tr' for pretty-printing, that is, the translation from in-
ternal to external form. These functions can be used in the ml section
of a theory file to specify the translations to be used. As an example
of use, note that in LK.thy we declare two identifiers:

val parse_translation =
[("@Trueprop",Sequents.two_seq_tr "Trueprop")];

val print_translation =
[("Trueprop",Sequents.two_seq_tr' "@Trueprop")];

The given parse translation will be applied whenever a @Trueprop con-
stant is found, translating using two_seq_tr and inserting the constant
Trueprop. The pretty-printing translation is applied analogously; a
term that contains Trueprop is printed as a @Trueprop.
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Constructive Type Theory

Martin-Löf’s Constructive Type Theory [9, 11] can be viewed at many differ-
ent levels. It is a formal system that embodies the principles of intuitionistic
mathematics; it embodies the interpretation of propositions as types; it is a
vehicle for deriving programs from proofs.

Thompson’s book [18] gives a readable and thorough account of Type
Theory. Nuprl is an elaborate implementation [3]. alf is a more recent tool
that allows proof terms to be edited directly [8].

Isabelle’s original formulation of Type Theory was a kind of sequent cal-
culus, following Martin-Löf [9]. It included rules for building the context,
namely variable bindings with their types. A typical judgement was

a(x1, . . . , xn) ∈ A(x1, . . . , xn) [x1 ∈ A1, x2 ∈ A2(x1), . . . , xn ∈ An(x1, . . . , xn−1)]

This sequent calculus was not satisfactory because assumptions like ‘suppose
A is a type’ or ‘suppose B(x) is a type for all x in A’ could not be formalized.

The theory CTT implements Constructive Type Theory, using natural
deduction. The judgement above is expressed using ∧ and =⇒:∧ x1 . . . xn.[[x1 ∈ A1; x2 ∈ A2(x1); · · · xn ∈ An(x1, . . . , xn−1)]] =⇒

a(x1, . . . , xn) ∈ A(x1, . . . , xn)

Assumptions can use all the judgement forms, for instance to express that B
is a family of types over A:∧

x . x ∈ A =⇒ B(x) type

To justify the CTT formulation it is probably best to appeal directly to the
semantic explanations of the rules [9], rather than to the rules themselves.
The order of assumptions no longer matters, unlike in standard Type Theory.
Contexts, which are typical of many modern type theories, are difficult to
represent in Isabelle. In particular, it is difficult to enforce that all the
variables in a context are distinct.

The theory does not use polymorphism. Terms in CTT have type i, the
type of individuals. Types in CTT have type t.
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name meta-type description
Type t → prop judgement form

Eqtype [t, t] → prop judgement form
Elem [i, t] → prop judgement form

Eqelem [i, i, t] → prop judgement form
Reduce [i, i] → prop extra judgement form

N t natural numbers type
0 i constructor

succ i → i constructor
rec [i, i, [i, i] → i] → i eliminator

Prod [t, i → t] → t general product type
lambda (i → i) → i constructor

Sum [t, i → t] → t general sum type
pair [i, i] → i constructor

split [i, [i, i] → i] → i eliminator
fst snd i → i projections

inl inr i → i constructors for +
when [i, i → i, i → i] → i eliminator for +

Eq [t, i, i] → t equality type
eq i constructor

F t empty type
contr i → i eliminator

T t singleton type
tt i constructor

Figure 5.1: The constants of CTT
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CTT supports all of Type Theory apart from list types, well-ordering
types, and universes. Universes could be introduced à la Tarski, adding new
constants as names for types. The formulation à la Russell, where types
denote themselves, is only possible if we identify the meta-types i and t.
Most published formulations of well-ordering types have difficulties involving
extensionality of functions; I suggest that you use some other method for
defining recursive types. List types are easy to introduce by declaring new
rules.

CTT uses the 1982 version of Type Theory, with extensional equality. The
computation a = b ∈ A and the equality c ∈ Eq(A, a, b) are interchangeable.
Its rewriting tactics prove theorems of the form a = b ∈ A. It could be
modified to have intensional equality, but rewriting tactics would have to
prove theorems of the form c ∈ Eq(A, a, b) and the computation rules might
require a separate simplifier.

5.1 Syntax
The constants are shown in Fig. 5.1. The infixes include the function appli-
cation operator (sometimes called ‘apply’), and the 2-place type operators.
Note that meta-level abstraction and application, λx . b and f (a), differ from
object-level abstraction and application, lam x. b and b‘a. A CTT func-
tion f is simply an individual as far as Isabelle is concerned: its Isabelle type
is i, not say i ⇒ i.

The notation for CTT (Fig. 5.2) is based on that of Nordström et al. [11].
The empty type is called F and the one-element type is T ; other finite types
are built as T + T + T , etc.

Quantification is expressed by sums ∑
x∈A B[x] and products ∏

x∈A B[x].
Instead of Sum(A,B) and Prod(A,B) we may write SUM x:A. B[x] and
PROD x:A. B[x]. For example, we may write

SUM y:B. PROD x:A. C(x,y) for Sum(B, %y. Prod(A, %x. C(x,y)))

The special cases as A*B and A-->B abbreviate general sums and products
over a constant family.1 Isabelle accepts these abbreviations in parsing and
uses them whenever possible for printing.

1Unlike normal infix operators, * and --> merely define abbreviations; there are no
constants op * and op -->.
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symbol name meta-type priority description
lam lambda (i ⇒ o) ⇒ i 10 λ-abstraction

Binders

symbol meta-type priority description
` [i, i] → i Left 55 function application
+ [t, t] → t Right 30 sum of two types

Infixes

external internal standard notation
PROD x:A . B[x] Prod(A, λx . B[x]) product ∏

x∈A B[x]
SUM x:A . B[x] Sum(A, λx . B[x]) sum ∑

x∈A B[x]
A --> B Prod(A, λx . B) function space A → B

A * B Sum(A, λx . B) binary product A × B

Translations

prop = type type
| type = type
| term : type
| term = term : type

type = expression of type t
| PROD id : type . type
| SUM id : type . type

term = expression of type i
| lam id id∗ . term
| < term , term >

Grammar

Figure 5.2: Syntax of CTT
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refl_type A type ==> A = A
refl_elem a : A ==> a = a : A

sym_type A = B ==> B = A
sym_elem a = b : A ==> b = a : A

trans_type [| A = B; B = C |] ==> A = C
trans_elem [| a = b : A; b = c : A |] ==> a = c : A

equal_types [| a : A; A = B |] ==> a : B
equal_typesL [| a = b : A; A = B |] ==> a = b : B

subst_type [| a : A; !!z. z:A ==> B(z) type |] ==> B(a) type
subst_typeL [| a = c : A; !!z. z:A ==> B(z) = D(z)

|] ==> B(a) = D(c)

subst_elem [| a : A; !!z. z:A ==> b(z):B(z) |] ==> b(a):B(a)
subst_elemL [| a = c : A; !!z. z:A ==> b(z) = d(z) : B(z)

|] ==> b(a) = d(c) : B(a)

refl_red Reduce(a,a)
red_if_equal a = b : A ==> Reduce(a,b)
trans_red [| a = b : A; Reduce(b,c) |] ==> a = c : A

Figure 5.3: General equality rules
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NF N type

NI0 0 : N
NI_succ a : N ==> succ(a) : N
NI_succL a = b : N ==> succ(a) = succ(b) : N

NE [| p: N; a: C(0);
!!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u))

|] ==> rec(p, a, %u v. b(u,v)) : C(p)

NEL [| p = q : N; a = c : C(0);
!!u v. [| u: N; v: C(u) |] ==> b(u,v)=d(u,v): C(succ(u))

|] ==> rec(p, a, %u v. b(u,v)) = rec(q,c,d) : C(p)

NC0 [| a: C(0);
!!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u))

|] ==> rec(0, a, %u v. b(u,v)) = a : C(0)

NC_succ [| p: N; a: C(0);
!!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u))

|] ==> rec(succ(p), a, %u v. b(u,v)) =
b(p, rec(p, a, %u v. b(u,v))) : C(succ(p))

zero_ne_succ [| a: N; 0 = succ(a) : N |] ==> 0: F

Figure 5.4: Rules for type N

ProdF [| A type; !!x. x:A ==> B(x) type |] ==> PROD x:A. B(x) type
ProdFL [| A = C; !!x. x:A ==> B(x) = D(x) |] ==>

PROD x:A. B(x) = PROD x:C. D(x)

ProdI [| A type; !!x. x:A ==> b(x):B(x)
|] ==> lam x. b(x) : PROD x:A. B(x)

ProdIL [| A type; !!x. x:A ==> b(x) = c(x) : B(x)
|] ==> lam x. b(x) = lam x. c(x) : PROD x:A. B(x)

ProdE [| p : PROD x:A. B(x); a : A |] ==> p`a : B(a)
ProdEL [| p=q: PROD x:A. B(x); a=b : A |] ==> p`a = q`b : B(a)

ProdC [| a : A; !!x. x:A ==> b(x) : B(x)
|] ==> (lam x. b(x)) ` a = b(a) : B(a)

ProdC2 p : PROD x:A. B(x) ==> (lam x. p`x) = p : PROD x:A. B(x)

Figure 5.5: Rules for the product type ∏
x∈A B[x]
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SumF [| A type; !!x. x:A ==> B(x) type |] ==> SUM x:A. B(x) type
SumFL [| A = C; !!x. x:A ==> B(x) = D(x)

|] ==> SUM x:A. B(x) = SUM x:C. D(x)

SumI [| a : A; b : B(a) |] ==> <a,b> : SUM x:A. B(x)
SumIL [| a=c:A; b=d:B(a) |] ==> <a,b> = <c,d> : SUM x:A. B(x)

SumE [| p: SUM x:A. B(x);
!!x y. [| x:A; y:B(x) |] ==> c(x,y): C(<x,y>)

|] ==> split(p, %x y. c(x,y)) : C(p)

SumEL [| p=q : SUM x:A. B(x);
!!x y. [| x:A; y:B(x) |] ==> c(x,y)=d(x,y): C(<x,y>)

|] ==> split(p, %x y. c(x,y)) = split(q, %x y. d(x,y)) : C(p)

SumC [| a: A; b: B(a);
!!x y. [| x:A; y:B(x) |] ==> c(x,y): C(<x,y>)

|] ==> split(<a,b>, %x y. c(x,y)) = c(a,b) : C(<a,b>)

fst_def fst(a) == split(a, %x y. x)
snd_def snd(a) == split(a, %x y. y)

Figure 5.6: Rules for the sum type ∑
x∈A B[x]

5.2 Rules of inference
The rules obey the following naming conventions. Type formation rules have
the suffix F. Introduction rules have the suffix I. Elimination rules have the
suffix E. Computation rules, which describe the reduction of eliminators, have
the suffix C. The equality versions of the rules (which permit reductions on
subterms) are called long rules; their names have the suffix L. Introduction
and computation rules are often further suffixed with constructor names.

Figure 5.3 presents the equality rules. Most of them are straightforward:
reflexivity, symmetry, transitivity and substitution. The judgement Reduce
does not belong to Type Theory proper; it has been added to implement
rewriting. The judgement Reduce(a, b) holds when a = b : A holds. It also
holds when a and b are syntactically identical, even if they are ill-typed,
because rule refl_red does not verify that a belongs to A.

The Reduce rules do not give rise to new theorems about the standard
judgements. The only rule with Reduce in a premise is trans_red, whose
other premise ensures that a and b (and thus c) are well-typed.

Figure 5.4 presents the rules for N , the type of natural numbers. They
include zero_ne_succ, which asserts 0 6= n + 1. This is the fourth Peano
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PlusF [| A type; B type |] ==> A+B type
PlusFL [| A = C; B = D |] ==> A+B = C+D

PlusI_inl [| a : A; B type |] ==> inl(a) : A+B
PlusI_inlL [| a = c : A; B type |] ==> inl(a) = inl(c) : A+B

PlusI_inr [| A type; b : B |] ==> inr(b) : A+B
PlusI_inrL [| A type; b = d : B |] ==> inr(b) = inr(d) : A+B

PlusE [| p: A+B;
!!x. x:A ==> c(x): C(inl(x));
!!y. y:B ==> d(y): C(inr(y))

|] ==> when(p, %x. c(x), %y. d(y)) : C(p)

PlusEL [| p = q : A+B;
!!x. x: A ==> c(x) = e(x) : C(inl(x));
!!y. y: B ==> d(y) = f(y) : C(inr(y))

|] ==> when(p, %x. c(x), %y. d(y)) =
when(q, %x. e(x), %y. f(y)) : C(p)

PlusC_inl [| a: A;
!!x. x:A ==> c(x): C(inl(x));
!!y. y:B ==> d(y): C(inr(y))

|] ==> when(inl(a), %x. c(x), %y. d(y)) = c(a) : C(inl(a))

PlusC_inr [| b: B;
!!x. x:A ==> c(x): C(inl(x));
!!y. y:B ==> d(y): C(inr(y))

|] ==> when(inr(b), %x. c(x), %y. d(y)) = d(b) : C(inr(b))

Figure 5.7: Rules for the binary sum type A + B

FF F type
FE [| p: F; C type |] ==> contr(p) : C
FEL [| p = q : F; C type |] ==> contr(p) = contr(q) : C

TF T type
TI tt : T
TE [| p : T; c : C(tt) |] ==> c : C(p)
TEL [| p = q : T; c = d : C(tt) |] ==> c = d : C(p)
TC p : T ==> p = tt : T)

Figure 5.8: Rules for types F and T
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EqF [| A type; a : A; b : A |] ==> Eq(A,a,b) type
EqFL [| A=B; a=c: A; b=d : A |] ==> Eq(A,a,b) = Eq(B,c,d)
EqI a = b : A ==> eq : Eq(A,a,b)
EqE p : Eq(A,a,b) ==> a = b : A
EqC p : Eq(A,a,b) ==> p = eq : Eq(A,a,b)

Figure 5.9: Rules for the equality type Eq(A, a, b)

replace_type [| B = A; a : A |] ==> a : B
subst_eqtyparg [| a=c : A; !!z. z:A ==> B(z) type |] ==> B(a)=B(c)

subst_prodE [| p: Prod(A,B); a: A; !!z. z: B(a) ==> c(z): C(z)
|] ==> c(p`a): C(p`a)

SumIL2 [| c=a : A; d=b : B(a) |] ==> <c,d> = <a,b> : Sum(A,B)

SumE_fst p : Sum(A,B) ==> fst(p) : A

SumE_snd [| p: Sum(A,B); A type; !!x. x:A ==> B(x) type
|] ==> snd(p) : B(fst(p))

Figure 5.10: Derived rules for CTT

axiom and cannot be derived without universes [9, page 91].
The constant rec constructs proof terms when mathematical induction,

rule NE, is applied. It can also express primitive recursion. Since rec can be
applied to higher-order functions, it can even express Ackermann’s function,
which is not primitive recursive [18, page 104].

Figure 5.5 shows the rules for general product types, which include func-
tion types as a special case. The rules correspond to the predicate calculus
rules for universal quantifiers and implication. They also permit reasoning
about functions, with the rules of a typed λ-calculus.

Figure 5.6 shows the rules for general sum types, which include binary
product types as a special case. The rules correspond to the predicate cal-
culus rules for existential quantifiers and conjunction. They also permit
reasoning about ordered pairs, with the projections fst and snd.

Figure 5.7 shows the rules for binary sum types. They correspond to
the predicate calculus rules for disjunction. They also permit reasoning
about disjoint sums, with the injections inl and inr and case analysis oper-
ator when.

Figure 5.8 shows the rules for the empty and unit types, F and T . They
correspond to the predicate calculus rules for absurdity and truth.
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Figure 5.9 shows the rules for equality types. If a = b ∈ A is provable
then eq is a canonical element of the type Eq(A, a, b), and vice versa. These
rules define extensional equality; the most recent versions of Type Theory
use intensional equality [11].

Figure 5.10 presents the derived rules. The rule subst_prodE is derived
from prodE, and is easier to use in backwards proof. The rules SumE_fst
and SumE_snd express the typing of fst and snd; together, they are roughly
equivalent to SumE with the advantage of creating no parameters. Section 5.12
below demonstrates these rules in a proof of the Axiom of Choice.

All the rules are given in η-expanded form. For instance, every occur-
rence of λu v . b(u, v) could be abbreviated to b in the rules for N . The
expanded form permits Isabelle to preserve bound variable names during
backward proof. Names of bound variables in the conclusion (here, u and v)
are matched with corresponding bound variables in the premises.

5.3 Rule lists
The Type Theory tactics provide rewriting, type inference, and logical rea-
soning. Many proof procedures work by repeatedly resolving certain Type
Theory rules against a proof state. CTT defines lists — each with type
thm list — of related rules.

form_rls contains formation rules for the types N , Π, Σ, +, Eq, F , and T .

formL_rls contains long formation rules for Π, Σ, +, and Eq. (For other
types use refl_type.)

intr_rls contains introduction rules for the types N , Π, Σ, +, and T .

intrL_rls contains long introduction rules for N , Π, Σ, and +. (For T use
refl_elem.)

elim_rls contains elimination rules for the types N , Π, Σ, +, and F . The
rules for Eq and T are omitted because they involve no eliminator.

elimL_rls contains long elimination rules for N , Π, Σ, +, and F .

comp_rls contains computation rules for the types N , Π, Σ, and +. Those
for Eq and T involve no eliminator.

basic_defs contains the definitions of fst and snd.
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5.4 Tactics for subgoal reordering
test_assume_tac : int -> tactic
typechk_tac : thm list -> tactic
equal_tac : thm list -> tactic
intr_tac : thm list -> tactic

Blind application of CTT rules seldom leads to a proof. The elimination
rules, especially, create subgoals containing new unknowns. These subgoals
unify with anything, creating a huge search space. The standard tactic
filt_resolve_tac (see the Reference Manual) fails for goals that are too
flexible; so does the CTT tactic test_assume_tac. Used with the tactical
REPEAT_FIRST they achieve a simple kind of subgoal reordering: the less flex-
ible subgoals are attempted first. Do some single step proofs, or study the
examples below, to see why this is necessary.

test_assume_tac i uses assume_tac to solve the subgoal by assumption,
but only if subgoal i has the form a ∈ A and the head of a is not an
unknown. Otherwise, it fails.

typechk_tac thms uses thms with formation, introduction, and elimination
rules to check the typing of constructions. It is designed to solve goals
of the form a ∈ ?A, where a is rigid and ?A is flexible; thus it performs
type inference. The tactic can also solve goals of the form A type.

equal_tac thms uses thms with the long introduction and elimination rules
to solve goals of the form a = b ∈ A, where a is rigid. It is intended
for deriving the long rules for defined constants such as the arithmetic
operators. The tactic can also perform type-checking.

intr_tac thms uses thms with the introduction rules to break down a type.
It is designed for goals like ?a ∈ A where ?a is flexible and A rigid.
These typically arise when trying to prove a proposition A, expressed
as a type.

5.5 Rewriting tactics
rew_tac : thm list -> tactic
hyp_rew_tac : thm list -> tactic

Object-level simplification is accomplished through proof, using the CTT
equality rules and the built-in rewriting functor TSimpFun.2 The rewrites

2This should not be confused with Isabelle’s main simplifier; TSimpFun is only useful
for CTT and similar logics with type inference rules. At present it is undocumented.
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include the computation rules and other equations. The long versions of
the other rules permit rewriting of subterms and subtypes. Also used are
transitivity and the extra judgement form Reduce. Meta-level simplification
handles only definitional equality.

rew_tac thms applies thms and the computation rules as left-to-right
rewrites. It solves the goal a = b ∈ A by rewriting a to b. If b is
an unknown then it is assigned the rewritten form of a. All subgoals
are rewritten.

hyp_rew_tac thms is like rew_tac, but includes as rewrites any equations
present in the assumptions.

5.6 Tactics for logical reasoning
Interpreting propositions as types lets CTT express statements of intuition-
istic logic. However, Constructive Type Theory is not just another syntax
for first-order logic. There are fundamental differences.

Can assumptions be deleted after use? Not every occurrence of a type
represents a proposition, and Type Theory assumptions declare variables. In
first-order logic, ∨-elimination with the assumption P∨Q creates one subgoal
assuming P and another assuming Q, and P ∨ Q can be deleted safely. In
Type Theory, +-elimination with the assumption z ∈ A + B creates one
subgoal assuming x ∈ A and another assuming y ∈ B (for arbitrary x and
y). Deleting z ∈ A + B when other assumptions refer to z may render the
subgoal unprovable: arguably, meaningless.

Isabelle provides several tactics for predicate calculus reasoning in CTT:
mp_tac : int -> tactic
add_mp_tac : int -> tactic
safestep_tac : thm list -> int -> tactic
safe_tac : thm list -> int -> tactic
step_tac : thm list -> int -> tactic
pc_tac : thm list -> int -> tactic

These are loosely based on the intuitionistic proof procedures of FOL. For the
reasons discussed above, a rule that is safe for propositional reasoning may
be unsafe for type-checking; thus, some of the ‘safe’ tactics are misnamed.

mp_tac i searches in subgoal i for assumptions of the form f ∈ Π(A,B) and
a ∈ A, where A may be found by unification. It replaces f ∈ Π(A,B)
by z ∈ B(a), where z is a new parameter. The tactic can produce
multiple outcomes for each suitable pair of assumptions. In short,
mp_tac performs Modus Ponens among the assumptions.
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add_mp_tac i is like mp_tac i but retains the assumption f ∈ Π(A,B). It
avoids information loss but obviously loops if repeated.

safestep_tac thms i attacks subgoal i using formation rules and certain
other ‘safe’ rules (FE, ProdI, SumE, PlusE), calling mp_tac when ap-
propriate. It also uses thms, which are typically premises of the rule
being derived.

safe_tac thms i attempts to solve subgoal i by means of backtracking,
using safestep_tac.

step_tac thms i tries to reduce subgoal i using safestep_tac, then tries
unsafe rules. It may produce multiple outcomes.

pc_tac thms i tries to solve subgoal i by backtracking, using step_tac.

5.7 A theory of arithmetic
Arith is a theory of elementary arithmetic. It proves the properties of ad-
dition, multiplication, subtraction, division, and remainder, culminating in
the theorem

a mod b + (a/b)× b = a.
Figure 5.11 presents the definitions and some of the key theorems, including
commutative, distributive, and associative laws.

The operators #+, -, |-|, #*, mod and div stand for sum, difference,
absolute difference, product, remainder and quotient, respectively. Since
Type Theory has only primitive recursion, some of their definitions may be
obscure.

The difference a− b is computed by taking b predecessors of a, where the
predecessor function is λv . rec(v, 0, λx y . x).

The remainder a mod b counts up to a in a cyclic fashion, using 0 as the
successor of b−1. Absolute difference is used to test the equality succ(v) = b.

The quotient a/b is computed by adding one for every number x such
that 0 ≤ x ≤ a and x mod b = 0.

5.8 The examples directory
This directory contains examples and experimental proofs in CTT.

CTT/ex/typechk.ML contains simple examples of type-checking and type de-
duction.
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symbol meta-type priority description
#* [i, i] ⇒ i Left 70 multiplication
div [i, i] ⇒ i Left 70 division
mod [i, i] ⇒ i Left 70 modulus
#+ [i, i] ⇒ i Left 65 addition
- [i, i] ⇒ i Left 65 subtraction

|-| [i, i] ⇒ i Left 65 absolute difference

add_def a#+b == rec(a, b, %u v. succ(v))
diff_def a-b == rec(b, a, %u v. rec(v, 0, %x y. x))
absdiff_def a|-|b == (a-b) #+ (b-a)
mult_def a#*b == rec(a, 0, %u v. b #+ v)

mod_def a mod b ==
rec(a, 0, %u v. rec(succ(v) |-| b, 0, %x y. succ(v)))

div_def a div b ==
rec(a, 0, %u v. rec(succ(u) mod b, succ(v), %x y. v))

add_typing [| a:N; b:N |] ==> a #+ b : N
addC0 b:N ==> 0 #+ b = b : N
addC_succ [| a:N; b:N |] ==> succ(a) #+ b = succ(a #+ b) : N

add_assoc [| a:N; b:N; c:N |] ==>
(a #+ b) #+ c = a #+ (b #+ c) : N

add_commute [| a:N; b:N |] ==> a #+ b = b #+ a : N

mult_typing [| a:N; b:N |] ==> a #* b : N
multC0 b:N ==> 0 #* b = 0 : N
multC_succ [| a:N; b:N |] ==> succ(a) #* b = b #+ (a#*b) : N
mult_commute [| a:N; b:N |] ==> a #* b = b #* a : N

add_mult_dist [| a:N; b:N; c:N |] ==>
(a #+ b) #* c = (a #* c) #+ (b #* c) : N

mult_assoc [| a:N; b:N; c:N |] ==>
(a #* b) #* c = a #* (b #* c) : N

diff_typing [| a:N; b:N |] ==> a - b : N
diffC0 a:N ==> a - 0 = a : N
diff_0_eq_0 b:N ==> 0 - b = 0 : N
diff_succ_succ [| a:N; b:N |] ==> succ(a) - succ(b) = a - b : N
diff_self_eq_0 a:N ==> a - a = 0 : N
add_inverse_diff [| a:N; b:N; b-a=0 : N |] ==> b #+ (a-b) = a : N

Figure 5.11: The theory of arithmetic
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CTT/ex/elim.ML contains some examples from Martin-Löf [9], proved using
pc_tac.

CTT/ex/equal.ML contains simple examples of rewriting.

CTT/ex/synth.ML demonstrates the use of unknowns with some trivial ex-
amples of program synthesis.

5.9 Example: type inference
Type inference involves proving a goal of the form a ∈ ?A, where a is a term
and ?A is an unknown standing for its type. The type, initially unknown,
takes shape in the course of the proof. Our example is the predecessor func-
tion on the natural numbers.

Goal "lam n. rec(n, 0, %x y. x) : ?A";
Level 0
lam n. rec(n,0,%x y. x) : ?A
1. lam n. rec(n,0,%x y. x) : ?A

Since the term is a Constructive Type Theory λ-abstraction (not to be
confused with a meta-level abstraction), we apply the rule ProdI, for Π-
introduction. This instantiates ?A to a product type of unknown domain
and range.

by (resolve_tac [ProdI] 1);
Level 1
lam n. rec(n,0,%x y. x) : PROD x:?A1. ?B1(x)
1. ?A1 type
2. !!n. n : ?A1 ==> rec(n,0,%x y. x) : ?B1(n)

Subgoal 1 is too flexible. It can be solved by instantiating ?A1 to any type,
but most instantiations will invalidate subgoal 2. We therefore tackle the
latter subgoal. It asks the type of a term beginning with rec, which can be
found by N -elimination.

by (eresolve_tac [NE] 2);
Level 2
lam n. rec(n,0,%x y. x) : PROD x:N. ?C2(x,x)
1. N type
2. !!n. 0 : ?C2(n,0)
3. !!n x y. [| x : N; y : ?C2(n,x) |] ==> x : ?C2(n,succ(x))

Subgoal 1 is no longer flexible: we now know ?A1 is the type of natural
numbers. However, let us continue proving nontrivial subgoals. Subgoal 2
asks, what is the type of 0?
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by (resolve_tac [NI0] 2);
Level 3
lam n. rec(n,0,%x y. x) : N --> N
1. N type
2. !!n x y. [| x : N; y : N |] ==> x : N

The type ?A is now fully determined. It is the product type ∏
x∈N N , which

is shown as the function type N → N because there is no dependence on x.
But we must prove all the subgoals to show that the original term is validly
typed. Subgoal 2 is provable by assumption and the remaining subgoal falls
by N -formation.

by (assume_tac 2);
Level 4
lam n. rec(n,0,%x y. x) : N --> N
1. N type

by (resolve_tac [NF] 1);
Level 5
lam n. rec(n,0,%x y. x) : N --> N
No subgoals!

Calling typechk_tac can prove this theorem in one step.
Even if the original term is ill-typed, one can infer a type for it, but

unprovable subgoals will be left. As an exercise, try to prove the following
invalid goal:

Goal "lam n. rec(n, 0, %x y. tt) : ?A";

5.10 An example of logical reasoning
Logical reasoning in Type Theory involves proving a goal of the form ?a ∈ A,
where type A expresses a proposition and ?a stands for its proof term, a value
of type A. The proof term is initially unknown and takes shape during the
proof.

Our example expresses a theorem about quantifiers in a sorted logic:

∃x ∈ A . P(x) ∨ Q(x)
(∃x ∈ A . P(x)) ∨ (∃x ∈ A . Q(x))

By the propositions-as-types principle, this is encoded using Σ and + types.
A special case of it expresses a distributive law of Type Theory:

A × (B + C )

(A × B) + (A × C )
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Generalizing this from × to Σ, and making the typing conditions explicit,
yields the rule we must derive:

A type

[x ∈ A]....
B(x) type

[x ∈ A]....
C (x) type p ∈ ∑

x∈A B(x) + C (x)
?a ∈ (

∑
x∈A B(x)) + (

∑
x∈A C (x))

To begin, we bind the rule’s premises — returned by the goal command —
to the ml variable prems.

val prems = Goal
"[| A type; \

\ !!x. x:A ==> B(x) type; \
\ !!x. x:A ==> C(x) type; \
\ p: SUM x:A. B(x) + C(x) \
\ |] ==> ?a : (SUM x:A. B(x)) + (SUM x:A. C(x))";

Level 0
?a : (SUM x:A. B(x)) + (SUM x:A. C(x))
1. ?a : (SUM x:A. B(x)) + (SUM x:A. C(x))

val prems = ["A type [A type]",
"?x : A ==> B(?x) type [!!x. x : A ==> B(x) type]",
"?x : A ==> C(?x) type [!!x. x : A ==> C(x) type]",
"p : SUM x:A. B(x) + C(x) [p : SUM x:A. B(x) + C(x)]"]

: thm list

The last premise involves the sum type Σ. Since it is a premise rather than
the assumption of a goal, it cannot be found by eresolve_tac. We could
insert it (and the other atomic premise) by calling

cut_facts_tac prems 1;

A forward proof step is more straightforward here. Let us resolve the Σ-
elimination rule with the premises using RL. This inference yields one result,
which we supply to resolve_tac.

by (resolve_tac (prems RL [SumE]) 1);
Level 1
split(p,?c1) : (SUM x:A. B(x)) + (SUM x:A. C(x))
1. !!x y.

[| x : A; y : B(x) + C(x) |] ==>
?c1(x,y) : (SUM x:A. B(x)) + (SUM x:A. C(x))

The subgoal has two new parameters, x and y. In the main goal, ?a has
been instantiated with a split term. The assumption y ∈ B(x) + C (x) is
eliminated next, causing a case split and creating the parameter xa. This
inference also inserts when into the main goal.
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by (eresolve_tac [PlusE] 1);
Level 2
split(p,%x y. when(y,?c2(x,y),?d2(x,y)))
: (SUM x:A. B(x)) + (SUM x:A. C(x))
1. !!x y xa.

[| x : A; xa : B(x) |] ==>
?c2(x,y,xa) : (SUM x:A. B(x)) + (SUM x:A. C(x))

2. !!x y ya.
[| x : A; ya : C(x) |] ==>
?d2(x,y,ya) : (SUM x:A. B(x)) + (SUM x:A. C(x))

To complete the proof object for the main goal, we need to instantiate the
terms ?c2(x, y, xa) and ?d2(x, y, xa). We attack subgoal 1 by a +-introduction
rule; since the goal assumes xa ∈ B(x), we take the left injection (inl).

by (resolve_tac [PlusI_inl] 1);
Level 3
split(p,%x y. when(y,%xa. inl(?a3(x,y,xa)),?d2(x,y)))
: (SUM x:A. B(x)) + (SUM x:A. C(x))
1. !!x y xa. [| x : A; xa : B(x) |] ==> ?a3(x,y,xa) : SUM x:A. B(x)
2. !!x y xa. [| x : A; xa : B(x) |] ==> SUM x:A. C(x) type
3. !!x y ya.

[| x : A; ya : C(x) |] ==>
?d2(x,y,ya) : (SUM x:A. B(x)) + (SUM x:A. C(x))

A new subgoal 2 has appeared, to verify that∑x∈A C (x) is a type. Continuing
to work on subgoal 1, we apply the Σ-introduction rule. This instantiates
the term ?a3(x, y, xa); the main goal now contains an ordered pair, whose
components are two new unknowns.

by (resolve_tac [SumI] 1);
Level 4
split(p,%x y. when(y,%xa. inl(<?a4(x,y,xa),?b4(x,y,xa)>),?d2(x,y)))
: (SUM x:A. B(x)) + (SUM x:A. C(x))
1. !!x y xa. [| x : A; xa : B(x) |] ==> ?a4(x,y,xa) : A
2. !!x y xa. [| x : A; xa : B(x) |] ==> ?b4(x,y,xa) : B(?a4(x,y,xa))
3. !!x y xa. [| x : A; xa : B(x) |] ==> SUM x:A. C(x) type
4. !!x y ya.

[| x : A; ya : C(x) |] ==>
?d2(x,y,ya) : (SUM x:A. B(x)) + (SUM x:A. C(x))

The two new subgoals both hold by assumption. Observe how the unknowns
?a4 and ?b4 are instantiated throughout the proof state.

by (assume_tac 1);
Level 5
split(p,%x y. when(y,%xa. inl(<x,?b4(x,y,xa)>),?d2(x,y)))
: (SUM x:A. B(x)) + (SUM x:A. C(x))
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1. !!x y xa. [| x : A; xa : B(x) |] ==> ?b4(x,y,xa) : B(x)
2. !!x y xa. [| x : A; xa : B(x) |] ==> SUM x:A. C(x) type
3. !!x y ya.

[| x : A; ya : C(x) |] ==>
?d2(x,y,ya) : (SUM x:A. B(x)) + (SUM x:A. C(x))

by (assume_tac 1);
Level 6
split(p,%x y. when(y,%xa. inl(<x,xa>),?d2(x,y)))
: (SUM x:A. B(x)) + (SUM x:A. C(x))
1. !!x y xa. [| x : A; xa : B(x) |] ==> SUM x:A. C(x) type
2. !!x y ya.

[| x : A; ya : C(x) |] ==>
?d2(x,y,ya) : (SUM x:A. B(x)) + (SUM x:A. C(x))

Subgoal 1 is an example of a well-formedness subgoal [3]. Such subgoals
are usually trivial; this one yields to typechk_tac, given the current list of
premises.

by (typechk_tac prems);
Level 7
split(p,%x y. when(y,%xa. inl(<x,xa>),?d2(x,y)))
: (SUM x:A. B(x)) + (SUM x:A. C(x))
1. !!x y ya.

[| x : A; ya : C(x) |] ==>
?d2(x,y,ya) : (SUM x:A. B(x)) + (SUM x:A. C(x))

This subgoal is the other case from the +-elimination above, and can be
proved similarly. Quicker is to apply pc_tac. The main goal finally gets a
fully instantiated proof object.

by (pc_tac prems 1);
Level 8
split(p,%x y. when(y,%xa. inl(<x,xa>),%y. inr(<x,y>)))
: (SUM x:A. B(x)) + (SUM x:A. C(x))
No subgoals!

Calling pc_tac after the first Σ-elimination above also proves this theorem.

5.11 Example: deriving a currying functional
In simply-typed languages such as ml, a currying functional has the type

(A × B → C ) → (A → (B → C )).

Let us generalize this to the dependent types Σ and Π. The functional takes
a function f that maps z : Σ(A,B) to C (z); the resulting function maps
x ∈ A and y ∈ B(x) to C (〈x, y〉).
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Formally, there are three typing premises. A is a type; B is an A-indexed
family of types; C is a family of types indexed by Σ(A,B). The goal is
expressed using PROD f to ensure that the parameter corresponding to the
functional’s argument is really called f ; Isabelle echoes the type using -->
because there is no explicit dependence upon f .

val prems = Goal
"[| A type; !!x. x:A ==> B(x) type; \

\ !!z. z: (SUM x:A. B(x)) ==> C(z) type \
\ |] ==> ?a : PROD f: (PROD z : (SUM x:A . B(x)) . C(z)). \
\ (PROD x:A . PROD y:B(x) . C(<x,y>))";

Level 0
?a : (PROD z:SUM x:A. B(x). C(z)) -->

(PROD x:A. PROD y:B(x). C(<x,y>))
1. ?a : (PROD z:SUM x:A. B(x). C(z)) -->

(PROD x:A. PROD y:B(x). C(<x,y>))
val prems = ["A type [A type]",

"?x : A ==> B(?x) type [!!x. x : A ==> B(x) type]",
"?z : SUM x:A. B(x) ==> C(?z) type
[!!z. z : SUM x:A. B(x) ==> C(z) type]"] : thm list

This is a chance to demonstrate intr_tac. Here, the tactic repeatedly applies
Π-introduction and proves the rather tiresome typing conditions.

Note that ?a becomes instantiated to three nested λ-abstractions. It
would be easier to read if the bound variable names agreed with the param-
eters in the subgoal. Isabelle attempts to give parameters the same names
as corresponding bound variables in the goal, but this does not always work.
In any event, the goal is logically correct.

by (intr_tac prems);
Level 1
lam x xa xb. ?b7(x,xa,xb)
: (PROD z:SUM x:A. B(x). C(z)) --> (PROD x:A. PROD y:B(x). C(<x,y>))
1. !!f x y.

[| f : PROD z:SUM x:A. B(x). C(z); x : A; y : B(x) |] ==>
?b7(f,x,y) : C(<x,y>)

Using Π-elimination, we solve subgoal 1 by applying the function f .

by (eresolve_tac [ProdE] 1);
Level 2
lam x xa xb. x ` <xa,xb>
: (PROD z:SUM x:A. B(x). C(z)) --> (PROD x:A. PROD y:B(x). C(<x,y>))
1. !!f x y. [| x : A; y : B(x) |] ==> <x,y> : SUM x:A. B(x)

Finally, we verify that the argument’s type is suitable for the function appli-
cation. This is straightforward using introduction rules.
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by (intr_tac prems);
Level 3
lam x xa xb. x ` <xa,xb>
: (PROD z:SUM x:A. B(x). C(z)) --> (PROD x:A. PROD y:B(x). C(<x,y>))
No subgoals!

Calling pc_tac would have proved this theorem in one step; it can also prove
an example by Martin-Löf, related to ∨-elimination [9, page 58].

5.12 Example: proving the Axiom of Choice
Suppose we have a function h ∈ ∏

x∈A
∑

y∈B(x) C (x, y), which takes x ∈ A to
some y ∈ B(x) paired with some z ∈ C (x, y). Interpreting propositions as
types, this asserts that for all x ∈ A there exists y ∈ B(x) such that C (x, y).
The Axiom of Choice asserts that we can construct a function f ∈ ∏

x∈A B(x)
such that C (x, f ‘x) for all x ∈ A, where the latter property is witnessed by a
function g ∈ ∏

x∈A C (x, f ‘x).
In principle, the Axiom of Choice is simple to derive in Constructive Type

Theory. The following definitions work:
f ≡ fst ◦ h
g ≡ snd ◦ h

But a completely formal proof is hard to find. The rules can be applied
in countless ways, yielding many higher-order unifiers. The proof can get
bogged down in the details. But with a careful selection of derived rules
(recall Fig. 5.10) and the type-checking tactics, we can prove the theorem in
nine steps.

val prems = Goal
"[| A type; !!x. x:A ==> B(x) type; \

\ !!x y.[| x:A; y:B(x) |] ==> C(x,y) type \
\ |] ==> ?a : PROD h: (PROD x:A. SUM y:B(x). C(x,y)). \
\ (SUM f: (PROD x:A. B(x)). PROD x:A. C(x, f`x))";

Level 0
?a : (PROD x:A. SUM y:B(x). C(x,y)) -->

(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ` x))
1. ?a : (PROD x:A. SUM y:B(x). C(x,y)) -->

(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ` x))
val prems = ["A type [A type]",

"?x : A ==> B(?x) type [!!x. x : A ==> B(x) type]",
"[| ?x : A; ?y : B(?x) |] ==> C(?x, ?y) type
[!!x y. [| x : A; y : B(x) |] ==> C(x, y) type]"]

: thm list

First, intr_tac applies introduction rules and performs routine type-
checking. This instantiates ?a to a construction involving a λ-abstraction
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and an ordered pair. The pair’s components are themselves λ-abstractions
and there is a subgoal for each.

by (intr_tac prems);
Level 1
lam x. <lam xa. ?b7(x,xa),lam xa. ?b8(x,xa)>
: (PROD x:A. SUM y:B(x). C(x,y)) -->

(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ` x))
1. !!h x.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>
?b7(h,x) : B(x)

2. !!h x.
[| h : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>
?b8(h,x) : C(x,(lam x. ?b7(h,x)) ` x)

Subgoal 1 asks to find the choice function itself, taking x ∈ A to some
?b7(h, x) ∈ B(x). Subgoal 2 asks, given x ∈ A, for a proof object ?b8(h, x) to
witness that the choice function’s argument and result lie in the relation C .
This latter task will take up most of the proof.

by (eresolve_tac [ProdE RS SumE_fst] 1);
Level 2
lam x. <lam xa. fst(x ` xa),lam xa. ?b8(x,xa)>
: (PROD x:A. SUM y:B(x). C(x,y)) -->

(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ` x))
1. !!h x. x : A ==> x : A
2. !!h x.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>
?b8(h,x) : C(x,(lam x. fst(h ` x)) ` x)

Above, we have composed fst with the function h. Unification has deduced
that the function must be applied to x ∈ A. We have our choice function.

by (assume_tac 1);
Level 3
lam x. <lam xa. fst(x ` xa),lam xa. ?b8(x,xa)>
: (PROD x:A. SUM y:B(x). C(x,y)) -->

(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ` x))
1. !!h x.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>
?b8(h,x) : C(x,(lam x. fst(h ` x)) ` x)

Before we can compose snd with h, the arguments of C must be simplified.
The derived rule replace_type lets us replace a type by any equivalent type,
shown below as the schematic term ?A13(h, x):

by (resolve_tac [replace_type] 1);
Level 4
lam x. <lam xa. fst(x ` xa),lam xa. ?b8(x,xa)>
: (PROD x:A. SUM y:B(x). C(x,y)) -->

(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ` x))
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1. !!h x.
[| h : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>
C(x,(lam x. fst(h ` x)) ` x) = ?A13(h,x)

2. !!h x.
[| h : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>
?b8(h,x) : ?A13(h,x)

The derived rule subst_eqtyparg lets us simplify a type’s argument (by
currying, C (x) is a unary type operator):

by (resolve_tac [subst_eqtyparg] 1);
Level 5
lam x. <lam xa. fst(x ` xa),lam xa. ?b8(x,xa)>
: (PROD x:A. SUM y:B(x). C(x,y)) -->

(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ` x))
1. !!h x.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>
(lam x. fst(h ` x)) ` x = ?c14(h,x) : ?A14(h,x)

2. !!h x z.
[| h : PROD x:A. SUM y:B(x). C(x,y); x : A;

z : ?A14(h,x) |] ==>
C(x,z) type

3. !!h x.
[| h : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>
?b8(h,x) : C(x,?c14(h,x))

Subgoal 1 requires simply β-contraction, which is the rule ProdC. The term
?c14(h, x) in the last subgoal receives the contracted result.

by (resolve_tac [ProdC] 1);
Level 6
lam x. <lam xa. fst(x ` xa),lam xa. ?b8(x,xa)>
: (PROD x:A. SUM y:B(x). C(x,y)) -->

(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ` x))
1. !!h x.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>
x : ?A15(h,x)

2. !!h x xa.
[| h : PROD x:A. SUM y:B(x). C(x,y); x : A;

xa : ?A15(h,x) |] ==>
fst(h ` xa) : ?B15(h,x,xa)

3. !!h x z.
[| h : PROD x:A. SUM y:B(x). C(x,y); x : A;

z : ?B15(h,x,x) |] ==>
C(x,z) type

4. !!h x.
[| h : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>
?b8(h,x) : C(x,fst(h ` x))

Routine type-checking goals proliferate in Constructive Type Theory, but



CHAPTER 5. CONSTRUCTIVE TYPE THEORY 86

typechk_tac quickly solves them. Note the inclusion of SumE_fst along
with the premises.

by (typechk_tac (SumE_fst::prems));
Level 7
lam x. <lam xa. fst(x ` xa),lam xa. ?b8(x,xa)>
: (PROD x:A. SUM y:B(x). C(x,y)) -->

(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ` x))
1. !!h x.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>
?b8(h,x) : C(x,fst(h ` x))

We are finally ready to compose snd with h.

by (eresolve_tac [ProdE RS SumE_snd] 1);
Level 8
lam x. <lam xa. fst(x ` xa),lam xa. snd(x ` xa)>
: (PROD x:A. SUM y:B(x). C(x,y)) -->

(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ` x))
1. !!h x. x : A ==> x : A
2. !!h x. x : A ==> B(x) type
3. !!h x xa. [| x : A; xa : B(x) |] ==> C(x,xa) type

The proof object has reached its final form. We call typechk_tac to finish
the type-checking.

by (typechk_tac prems);
Level 9
lam x. <lam xa. fst(x ` xa),lam xa. snd(x ` xa)>
: (PROD x:A. SUM y:B(x). C(x,y)) -->

(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ` x))
No subgoals!

It might be instructive to compare this proof with Martin-Löf’s forward proof
of the Axiom of Choice [9, page 50].
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