1. Introduction 1
2. The character set i 17
3. Input and output 25
4. String handling 38
5. On-line and off-line printing 54
6. Reporting errors 76
7. Arithmetic with scaled dimensions 103
7b. Random numbers i 114
8. Packed data 132
9. Dynamic memory allocation 137
10. Data structures for boxes and their friends 155
11. Memory layout i 187
12. Displaying boxesc.ouiiiiiiiii i 199
13. Destroying boxesc.iiiiiiiiiii i 225
14. Copying boXesttt 229
15. The command codes, 233
16. The semanticnest i 237
17. The table of equivalents 246
18. The hash table 282
19. Saving and restoring equivalents 298
20. Token LiStsot 319
21. Introduction to the syntactic routines 327
22. Input stacks and states i 330
23. Maintaining the input stacks L. 351
24. Getting the next token i 362
25. Expanding the next token 396
26. Basic scanning subroutines L. 436
27. Building token lists 499
28. Conditional processing i, 522
29. File nameso . 546
30. Font metric data i 574
31. Device-independent file format 619
32. Shipping pages out ... 628
32b. pdfTEX output low-level subroutines (equivalents) 682
33. Packaging 683
34. Data structures for math mode 722
35. Subroutines for math mode 741
36. Typesetting math formulas, 762
37. Alignment 816
38. Breaking paragraphs into lines 861
39. Breaking paragraphs into lines, continued 910
40. Pre-hyphenation i i 939
41. Post-hyphenation i 953
42. Hyphenation i 973
43. Initializing the hyphenation tables 996
44. Breaking vertical lists into pages 1021
45. The page builder i 1034
46. The chief executive i 1083
47. Building boxes and lists oL 1109
48. Building math lists i 1190
49. Mode-independent processing 1262
50. Dumping and undumping the tables 1353
51. The main programc.ccoeuiiinieinninnenn.. 1384
52. Debugging 1392
53. EXtensionsiiiii 1394
53a. The extended features of e-TEX 1451
54. System-dependent changes, 1678

101
125
135
142
146
149
159
162
174
186
212
225
233
242
261
268
292
293
305
315
332
360
377
397
410
417
428
434
444
450
467
483
207
529
554
564
569
071
994
667

61 XgTEX PART 1: INTRODUCTION 3

March 14, 2024 at 18:52

1. Introduction. This is XHIEX, a program derived from and extending the capabilities of TEX, a
document compiler intended to produce typesetting of high quality. The Pascal program that follows is the
definition of TEX82, a standard version of TEX that is designed to be highly portable so that identical output
will be obtainable on a great variety of computers.

The main purpose of the following program is to explain the algorithms of TEX as clearly as possible. As
a result, the program will not necessarily be very efficient when a particular Pascal compiler has translated
it into a particular machine language. However, the program has been written so that it can be tuned to run
efficiently in a wide variety of operating environments by making comparatively few changes. Such flexibility
is possible because the documentation that follows is written in the WEB language, which is at a higher level
than Pascal; the preprocessing step that converts WEB to Pascal is able to introduce most of the necessary
refinements. Semi-automatic translation to other languages is also feasible, because the program below does
not make extensive use of features that are peculiar to Pascal.

A large piece of software like TEX has inherent complexity that cannot be reduced below a certain level of
difficulty, although each individual part is fairly simple by itself. The WEB language is intended to make the
algorithms as readable as possible, by reflecting the way the individual program pieces fit together and by
providing the cross-references that connect different parts. Detailed comments about what is going on, and
about why things were done in certain ways, have been liberally sprinkled throughout the program. These
comments explain features of the implementation, but they rarely attempt to explain the TEX language
itself, since the reader is supposed to be familiar with The TEXbook.

4 PART 1: INTRODUCTION XATEX §2

2. The present implementation has a long ancestry, beginning in the summer of 1977, when Michael F.
Plass and Frank M. Liang designed and coded a prototype based on some specifications that the author had
made in May of that year. This original protoTEX included macro definitions and elementary manipulations
on boxes and glue, but it did not have line-breaking, page-breaking, mathematical formulas, alignment
routines, error recovery, or the present semantic nest; furthermore, it used character lists instead of token
lists, so that a control sequence like \halign was represented by a list of seven characters. A complete version
of TEX was designed and coded by the author in late 1977 and early 1978; that program, like its prototype,
was written in the SAIL language, for which an excellent debugging system was available. Preliminary plans
to convert the SAIL code into a form somewhat like the present “web” were developed by Luis Trabb Pardo
and the author at the beginning of 1979, and a complete implementation was created by Ignacio A. Zabala
in 1979 and 1980. The TEX82 program, which was written by the author during the latter part of 1981
and the early part of 1982, also incorporates ideas from the 1979 implementation of TEX in MESA that
was written by Leonidas Guibas, Robert Sedgewick, and Douglas Wyatt at the Xerox Palo Alto Research
Center. Several hundred refinements were introduced into TEX82 based on the experiences gained with the
original implementations, so that essentially every part of the system has been substantially improved. After
the appearance of “Version 0” in September 1982, this program benefited greatly from the comments of
many other people, notably David R. Fuchs and Howard W. Trickey. A final revision in September 1989
extended the input character set to eight-bit codes and introduced the ability to hyphenate words from
different languages, based on some ideas of Michael J. Ferguson.

No doubt there still is plenty of room for improvement, but the author is firmly committed to keeping
TEX82 “frozen” from now on; stability and reliability are to be its main virtues.

On the other hand, the WEB description can be extended without changing the core of TEX82 itself, and
the program has been designed so that such extensions are not extremely difficult to make. The banner
string defined here should be changed whenever TEX undergoes any modifications, so that it will be clear
which version of TEX might be the guilty party when a problem arises.

This program contains code for various features extending TEX, therefore this program is called ‘XHITEX’
and not ‘TEX’; the official name ‘TEX’ by itself is reserved for software systems that are fully compatible
with each other. A special test suite called the “TRIP test” is available for helping to determine whether
a particular implementation deserves to be known as ‘TEX’ [cf. Stanford Computer Science report CS1027,
November 1984].

A similar test suite called the “e-TRIP test” is available for helping to determine whether a particular
implementation deserves to be known as ‘c-TEX’.

«

define eTeX version =2 { \eTeXversion }

define eTeX revision =".6" { \eTeXrevision }

define eTeX version_string = ~-2.6~ { current e-TEX version }
define XeTeX version =0 { \XeTeXversion }

define XeTeX revision = ".999996" { \XeTeXrevision }

define XeTeX version_string = “-0.999996 " { current X{IEX version }

define XeTeX _banner = “This is XeTeX, Version ,3.141592653°, eTeX version_string,
XeTeX version_string { printed when XHTEX starts }

define banner = “This_isTeX, Version;3.141592653 " {printed when TEX starts }
define TEX = XETEX {change program name into XETEX }

define TeXXeT_code =0 {the TEX--XET feature is optional }

define XeTeX_dash_break-code =1 {non-zero to enable breaks after en- and em-dashes }

define XeTeX upwards_code =2 {non-zero if the main vertical list is being built upwards }

define XeTeX use_glyph-metrics_.code =3 {non-zero to use exact glyph height/depth }

define XeTeX inter_char_tokens_code =4 {non-zero to enable \XeTeXinterchartokens insertion }
define XeTeX_input_normalization_code =5 {normalization mode:, 1 for NFC, 2 for NFD, else none }

define XeTeX_default_input_mode_code = 6 {input mode for newly opened files }
define XeTeX input_mode_auto =0

62 XgTEX PART 1: INTRODUCTION 5

define XeTeX input_mode_utf8 =1

define XeTeX_input_mode_utfi6be = 2
define XeTeX input_mode_utf16le = 3
define XeTeX_input-mode_raw = 4

define XeTeX_input-mode_icu-mapping = 5

define XeTeX _default_input_encoding_code =7 { str_number of encoding name if mode = ICU }

define XeTeX tracing_fonts_code =8 {non-zero to log native fonts used }

define XeTeX_interword_space_shaping-code =9 { controls shaping of space chars in context when
using native fonts; set to 1 for contextual adjustment of space width only, and 2 for full
cross-space shaping (e.g. multi-word ligatures) }

define XeTeX_generate_actual_text_code = 10 { controls output of /ActualText for native-word nodes }

define XeTeX_hyphenatable_length_code = 11 { sets maximum hyphenatable word length }

define eTeX states = 12 {number of e-TEX state variables in eqtb }

3. Different Pascals have slightly different conventions, and the present program expresses TEX in terms
of the Pascal that was available to the author in 1982. Constructions that apply to this particular compiler,
which we shall call Pascal-H, should help the reader see how to make an appropriate interface for other
systems if necessary. (Pascal-H is Charles Hedrick’s modification of a compiler for the DECsystem-10 that
was originally developed at the University of Hamburg; cf. Software—Practice and Experience 6 (1976), 29—
42. The TEX program below is intended to be adaptable, without extensive changes, to most other versions
of Pascal, so it does not fully use the admirable features of Pascal-H. Indeed, a conscious effort has been
made here to avoid using several idiosyncratic features of standard Pascal itself, so that most of the code
can be translated mechanically into other high-level languages. For example, the ‘with’ and ‘new’ features
are not used, nor are pointer types, set types, or enumerated scalar types; there are no ‘var’ parameters,
except in the case of files — e-TEX, however, does use ‘var’ parameters for the reverse function; there are
no tag fields on variant records; there are no assignments real < integer; no procedures are declared local
to other procedures.)

The portions of this program that involve system-dependent code, where changes might be necessary
because of differences between Pascal compilers and/or differences between operating systems, can be
identified by looking at the sections whose numbers are listed under ‘system dependencies’ in the index.
Furthermore, the index entries for ‘dirty Pascal’ list all places where the restrictions of Pascal have not been
followed perfectly, for one reason or another.

Incidentally, Pascal’s standard round function can be problematical, because it disagrees with the IEEE
floating-point standard. Many implementors have therefore chosen to substitute their own home-grown
rounding procedure.

6 PART 1: INTRODUCTION XATEX 4

4. The program begins with a normal Pascal program heading, whose components will be filled in later,
using the conventions of WEB. For example, the portion of the program called ¢{ Global variables 13)’ below
will be replaced by a sequence of variable declarations that starts in §13 of this documentation. In this way,
we are able to define each individual global variable when we are prepared to understand what it means; we
do not have to define all of the globals at once. Cross references in §13, where it says “See also sections 20,
26, ...,” also make it possible to look at the set of all global variables, if desired. Similar remarks apply to
the other portions of the program heading.

Actually the heading shown here is not quite normal: The program line does not mention any output
file, because Pascal-H would ask the TEX user to specify a file name if output were specified here.

define mitype = t@&y@&p@&e {this is a WEB coding trick: }
format mitype = type {‘mtype’ will be equivalent to ‘type’}
format type = true {but ‘type’ will not be treated as a reserved word }

(Compiler directives 9)
program TEX; {all file names are defined dynamically }
label (Labels in the outer block 6)
const (Constants in the outer block 11)
mtype (Types in the outer block 18)
var (Global variables 13)

procedure initialize; { this procedure gets things started properly }
var (Local variables for initialization 19)
begin (Initialize whatever TEX might access 8)
end;

(Basic printing procedures 57)

(Error handling procedures 82)

5. The overall TEX program begins with the heading just shown, after which comes a bunch of procedure
declarations and function declarations. Finally we will get to the main program, which begins with the
comment ‘start_here’. If you want to skip down to the main program now, you can look up ‘start_here’
in the index. But the author suggests that the best way to understand this program is to follow pretty
much the order of TEX’s components as they appear in the WEB description you are now reading, since the
present ordering is intended to combine the advantages of the “bottom up” and “top down” approaches to
the problem of understanding a somewhat complicated system.

6. Three labels must be declared in the main program, so we give them symbolic names.
define start_of TEX =1 {go here when TEX’s variables are initialized }
define end_of TEX = 9998 {go here to close files and terminate gracefully }
define final_end = 9999 { this label marks the ending of the program }
(Labels in the outer block 6) =
start_of TEX, end_of-TEX, final_end; {key control points }

This code is used in section 4.

87 XHTEX PART 1: INTRODUCTION 7

7. Some of the code below is intended to be used only when diagnosing the strange behavior that sometimes
occurs when TEX is being installed or when system wizards are fooling around with TEX without quite
knowing what they are doing. Such code will not normally be compiled; it is delimited by the codewords
‘debug ... gubed’, with apologies to people who wish to preserve the purity of English.

Similarly, there is some conditional code delimited by ‘stat ... tats’ that is intended for use when statistics
are to be kept about TEX’s memory usage. The stat ... tats code also implements diagnostic information
for \tracingparagraphs, \tracingpages, and \tracingrestores.

define debug = @{ {change this to ‘debug =’ when debugging }
define gubed =@} {change this to ‘gubed =’ when debugging }
format debug = begin

format gubed = end

define stat = @{ {change this to ‘stat =’ when gathering usage statistics }
define tats = @} {change this to ‘tats =’ when gathering usage statistics }
format stat = begin

format tats = end

8. This program has two important variations: (1) There is a long and slow version called INITEX, which
does the extra calculations needed to initialize TEX’s internal tables; and (2) there is a shorter and faster
production version, which cuts the initialization to a bare minimum. Parts of the program that are needed
in (1) but not in (2) are delimited by the codewords ‘init ... tini’.

define init = {change this to ‘init = @{’ in the production version }

define tini = {change this to ‘tini = @}’ in the production version }

format init = begin
format tini = end

(Initialize whatever TEX might access 8) =
(Set initial values of key variables 23)
init (Initialize table entries (done by INITEX only) 189) tini

This code is used in section 4.

9. If the first character of a Pascal comment is a dollar sign, Pascal-H treats the comment as a list of
“compiler directives” that will affect the translation of this program into machine language. The directives
shown below specify full checking and inclusion of the Pascal debugger when TEX is being debugged, but
they cause range checking and other redundant code to be eliminated when the production system is being
generated. Arithmetic overflow will be detected in all cases.

(Compiler directives 9) =
@{e&$C—, A+, D—@} {no range check, catch arithmetic overflow, no debug overhead }
debug 0{0&$C+, D+0} gubed {but turn everything on when debugging }

This code is used in section 4.

8 PART 1: INTRODUCTION XHTEX §10

10. This TEX implementation conforms to the rules of the Pascal User Manual published by Jensen and
Wirth in 1975, except where system-dependent code is necessary to make a useful system program, and
except in another respect where such conformity would unnecessarily obscure the meaning and clutter up
the code: We assume that case statements may include a default case that applies if no matching label is
found. Thus, we shall use constructions like

case z of

1: (code for x =1);

3: (code for z = 3);

othercases (code for z # 1 and x # 3)
endcases

since most Pascal compilers have plugged this hole in the language by incorporating some sort of default
mechanism. For example, the Pascal-H compiler allows ‘others:’ as a default label, and other Pascals
allow syntaxes like ‘else’ or ‘otherwise’ or ‘otherwise:’; etc. The definitions of othercases and endcases
should be changed to agree with local conventions. Note that no semicolon appears before endcases in this
program, so the definition of endcases should include a semicolon if the compiler wants one. (Of course,
if no default mechanism is available, the case statements of TEX will have to be laboriously extended by
listing all remaining cases. People who are stuck with such Pascals have, in fact, done this, successfully but
not happily!)

define othercases = others: { default for cases not listed explicitly }

define endcases = end {follows the default case in an extended case statement }

format othercases = else

format endcases = end

611 XyIpX PART 1: INTRODUCTION 9

11. The following parameters can be changed at compile time to extend or reduce TEX’s capacity. They
may have different values in INITEX and in production versions of TEX.

(Constants in the outer block 11) =

mem_max = 30000;
{ greatest index in TEX’s internal mem array; must be strictly less than maz_halfword; must be
equal to mem_top in INITEX, otherwise > mem_top }

mem_min = 0; {smallest index in TEX’s internal mem array; must be min_halfword or more; must be
equal to mem_bot in INITEX, otherwise < mem_bot }

buf-size = 500; { maximum number of characters simultaneously present in current lines of open files
and in control sequences between \csname and \endcsname; must not exceed maz_halfword }

error_line = 72; { width of context lines on terminal error messages }

half_error_line = 42; { width of first lines of contexts in terminal error messages; should be between 30
and error_line — 15}

maz_print_line = 79; { width of longest text lines output; should be at least 60 }

stack_size = 200; { maximum number of simultaneous input sources }

max_in_open = 6;
{ maximum number of input files and error insertions that can be going on simultaneously }

font_maz = 75; {maximum internal font number; must not exceed maz_quarterword and must be at
most font_base + 256 }

font_mem_size = 20000; { number of words of font_info for all fonts }

param_size = 60; { maximum number of simultaneous macro parameters }

nest_size = 40; { maximum number of semantic levels simultaneously active }

maz_strings = 3000; {maximum number of strings; must not exceed maz_halfword }

string-vacancies = 8000; { the minimum number of characters that should be available for the user’s
control sequences and font names, after TEX’s own error messages are stored }

pool_size = 32000; {maximum number of characters in strings, including all error messages and help
texts, and the names of all fonts and control sequences; must exceed string_vacancies by the total
length of TEX’s own strings, which is currently about 23000 }

save_size = 600; {space for saving values outside of current group; must be at most maz_halfword }

trie_size = 8000; {space for hyphenation patterns; should be larger for INITEX than it is in production
versions of TEX }

trie_op_size = 500; { space for “opcodes” in the hyphenation patterns }

dvi_buf_size = 800; {size of the output buffer; must be a multiple of 8 }

file_name_size = 40; {file names shouldn’t be longer than this }

pool,name = "TeXformats:TEX.POOL_ L uouoosoooooooso |‘;
{ string of length file_name_size; tells where the string pool appears }

This code is used in section 4.

10 PART 1: INTRODUCTION XHTEX §12

12. Like the preceding parameters, the following quantities can be changed at compile time to extend or
reduce TEX’s capacity. But if they are changed, it is necessary to rerun the initialization program INITEX
to generate new tables for the production TEX program. One can’t simply make helter-skelter changes to
the following constants, since certain rather complex initialization numbers are computed from them. They
are defined here using WEB macros, instead of being put into Pascal’s const list, in order to emphasize this
distinction.

define mem_bot =0
{ smallest index in the mem array dumped by INITEX; must not be less than mem_min }

define mem_top = 30000 {largest index in the mem array dumped by INITEX; must be substantially
larger than mem_bot and not greater than mem_maz }

define font_base =0 {smallest internal font number; must not be less than min_quarterword }

define hash_size = 2100 { maximum number of control sequences; it should be at most about
(mem_max — mem_min)/10 }

define hash_prime = 1777 { a prime number equal to about 85% of hash_size }

define hyph_size = 307 {another prime; the number of \hyphenation exceptions }

define biggest_char = 65535 { the largest allowed character number; must be < maz_quarterword, this
refers to UTF16 codepoints that we store in strings, etc; actual character codes can exceed
this range, up to biggest_usv }

define too_big_char = 65536 { biggest_char + 1}

define biggest_usv = "10FFFF { the largest Unicode Scalar Value }

define too_big_-usv = "110000 { biggest_usv + 1}

define number_usvs = "110000 { biggest_usv + 1}

define special_char = "110001 { biggest_usv + 2 }

define biggest_-reg = 255 { the largest allowed register number; must be < maz_quarterword }

define number_regs = 256 { biggest_reg + 1}

define font_biggest = 255 { the real biggest font }

define number_fonts = font_biggest — font_base + 2

define number_math_families = 256

define number_math_fonts = number_math_families + number_math_families + number_math_families

define math_font_biggest = number_math_fonts — 1

define text_size =0 {size code for the largest size in a family }

define script_size = number_math_families {size code for the medium size in a family }

define script_script_size = number_math_families + number_math_families
{size code for the smallest size in a family }

define biggest_lang = 255 { the largest hyphenation language }

define too_big_lang = 256 { biggest_lang + 1}

define hyphenatable_length_limit = 4095
{ hard limit for hyphenatable length; runtime value is maz_hyphenatable_length }

13. In case somebody has inadvertently made bad settings of the “constants,” TEX checks them using a
global variable called bad.
This is the first of many sections of TEX where global variables are defined.

(Global variables 13) =

bad: integer; {is some “constant” wrong? }

See also sections 20, 26, 30, 32, 39, 50, 54, 61, 77, 80, 83, 100, 108, 114, 121, 137, 138, 139, 140, 146, 181, 190, 199, 207, 239,
272, 279, 282, 283, 301, 316, 327, 331, 334, 335, 338, 339, 340, 363, 391, 397, 416, 421, 422, 444, 472, 481, 515, 524, 528,
547, 548, 555, 562, 567, 574, 584, 585, 590, 628, 631, 641, 652, 682, 685, 686, 695, 703, 726, 762, 767, 812, 818, 862, 869,
871, 873, 876, 881, 887, 895, 920, 940, 953, 959, 961, 975, 980, 997, 1001, 1004, 1025, 1034, 1036, 1043, 1086, 1128, 1320,
1335, 1353, 1359, 1385, 1396, 1400, 1429, 1449, 1462, 1470, 1515, 1561, 1584, 1625, 1627, 1646, 1653, 1669, and 1670.

This code is used in section 4.

614 XyIpX PART 1: INTRODUCTION 11

14. Later on we will say ‘if mem_-maz > maz_halfword then bad < 14’, or something similar. (We can’t
do that until maz_halfword has been defined.)

(Check the “constant” values for consistency 14) =
bad + 0;
if (half-error_line < 30) V (half-error_line > error_line — 15) then bad « 1;
if maz_print_line < 60 then bad < 2;
if dvi_buf_size mod 8 # 0 then bad <« 3;
if mem_bot + 1100 > mem_top then bad < 4;
if hash_prime > hash_size then bad «+ 5;
if max_in_open > 128 then bad < 6;
if mem_top < 256 4 11 then bad < 7; {we will want null_list > 255}
See also sections 133, 320, 557, and 1303.

This code is used in section 1386.

15. Labels are given symbolic names by the following definitions, so that occasional goto statements
will be meaningful. We insert the label ‘exit’ just before the ‘end’ of a procedure in which we have used
the ‘return’ statement defined below; the label ‘restart’ is occasionally used at the very beginning of a
procedure; and the label ‘reswitch’ is occasionally used just prior to a case statement in which some cases
change the conditions and we wish to branch to the newly applicable case. Loops that are set up with the
loop construction defined below are commonly exited by going to ‘done’ or to ‘found’ or to ‘not_found’, and
they are sometimes repeated by going to ‘continue’. If two or more parts of a subroutine start differently
but end up the same, the shared code may be gathered together at ‘common_ending’.

Incidentally, this program never declares a label that isn’t actually used, because some fussy Pascal
compilers will complain about redundant labels.

define exit =10 {go here to leave a procedure }

define restart =20 {go here to start a procedure again }

define reswitch =21 { go here to start a case statement again }

define continue =22 {go here to resume a loop }

define done =30 {go here to exit a loop }

define done! =31 {like done, when there is more than one loop }

define done2 =32 {for exiting the second loop in a long block }

define done3 =33 {for exiting the third loop in a very long block }

define donej =34 {for exiting the fourth loop in an extremely long block }
define done5 =35 {for exiting the fifth loop in an immense block }

define done6 = 36 {for exiting the sixth loop in a block }

define found =40 {go here when you’ve found it }

define found! =41 {like found, when there’s more than one per routine }
define found2 =42 {like found, when there’s more than two per routine }
define not_found = 45 {go here when you’ve found nothing }

define not_found! =46 {like not_found, when there’s more than one }
define not_found2 =47 {like not_found, when there’s more than two }
define not_found3 =48 {like not_found, when there’s more than three }
define not_foundj =49 {like not_found, when there’s more than four }
define common_ending = 50 {go here when you want to merge with another branch }

12 PART 1: INTRODUCTION XHTEX 816

16. Here are some macros for common programming idioms.

define incr(#) =# <« #+ 1 {increase a variable by unity }

define decr(#) =#+ #—1 {decrease a variable by unity }

define negate(#) = # + —# {change the sign of a variable }

define loop = while true do {repeat over and over until a goto happens }
format loop = zclause {WEB’s xclause acts like ‘while true do’}

define do_nothing = {empty statement }

define return = goto erit {terminate a procedure call }

format return = nil

define empty =0 {symbolic name for a null constant }

617 XoIpX PART 2: THE CHARACTER SET 13

17. The character set. In order to make TEX readily portable to a wide variety of computers, all of its
input text is converted to an internal eight-bit code that includes standard ASCII, the “American Standard
Code for Information Interchange.” This conversion is done immediately when each character is read in.
Conversely, characters are converted from ASCII to the user’s external representation just before they are
output to a text file.

Such an internal code is relevant to users of TEX primarily because it governs the positions of characters
in the fonts. For example, the character ‘A’ has ASCII code 65 = ‘101, and when TEX typesets this letter
it specifies character number 65 in the current font. If that font actually has ‘A’ in a different position,
TEX doesn’t know what the real position is; the program that does the actual printing from TEX’s device-
independent files is responsible for converting from ASCII to a particular font encoding.

TEX’s internal code also defines the value of constants that begin with a reverse apostrophe; and it provides
an index to the \catcode, \mathcode, \uccode, \1lccode, and \delcode tables.

18. Characters of text that have been converted to TEX’s internal form are said to be of type ASCII_code,
which is a subrange of the integers. For xetex, we rename ASCII_code as UTF16_code. But we also have a
new type UTF8_code, used when we construct filenames to pass to the system libraries.

define ASCII_code = UTF16_code
define packed_ASCII_code = packed_UTF16_code

(Types in the outer block 18) =
ASCII code =0 .. biggest_char; {16-bit numbers }
UTF8_code =0 .. 255; {8-bit numbers }
UnicodeScalar = 0 .. biggest_usv; { Unicode scalars }
See also sections 25, 38, 105, 113, 135, 174, 238, 299, 330, 583, 630, 974, 979, and 1488.

This code is used in section 4.

19. The original Pascal compiler was designed in the late 60s, when six-bit character sets were common, so
it did not make provision for lowercase letters. Nowadays, of course, we need to deal with both capital and
small letters in a convenient way, especially in a program for typesetting; so the present specification of TEX
has been written under the assumption that the Pascal compiler and run-time system permit the use of text
files with more than 64 distinguishable characters. More precisely, we assume that the character set contains
at least the letters and symbols associated with ASCII codes 40 through “176; all of these characters are
now available on most computer terminals.

Since we are dealing with more characters than were present in the first Pascal compilers, we have to
decide what to call the associated data type. Some Pascals use the original name char for the characters in
text files, even though there now are more than 64 such characters, while other Pascals consider char to be
a 64-element subrange of a larger data type that has some other name.

In order to accommodate this difference, we shall use the name text_char to stand for the data type of
the characters that are converted to and from ASCII_code when they are input and output. We shall also
assume that text_char consists of the elements chr(first-text_char) through chr(last_text_char), inclusive.
The following definitions should be adjusted if necessary.

define text_char = char {the data type of characters in text files }

define first_text_char =0 {ordinal number of the smallest element of text_char }

define last_text_char = biggest_char {ordinal number of the largest element of text_char }

(Local variables for initialization 19) =
it integer;
See also sections 188 and 981.

This code is used in section 4.

14 PART 2: THE CHARACTER SET XHTEX §20

20. The TEX processor converts between ASCII code and the user’s external character set by means of
arrays zord and zchr that are analogous to Pascal’s ord and chr functions.

{ Global variables 13) +=
xchr: array [ASCIL code] of text_char; {specifies conversion of output characters }

21. Since we are assuming that our Pascal system is able to read and write the visible characters of
standard ASCII (although not necessarily using the ASCII codes to represent them), the following assignment
statements initialize the standard part of the zchr array properly, without needing any system-dependent
changes. On the other hand, it is possible to implement TEX with less complete character sets, and in such
cases it will be necessary to change something here.

22. Some of the ASCII codes without visible characters have been given symbolic names in this program
because they are used with a special meaning.

define null_code = 0 { ASCII code that might disappear }
define carriage_return = 15 { ASCII code used at end of line }
define invalid_code = 177 { ASCII code that many systems prohibit in text files }

23. The ASCII code is “standard” only to a certain extent, since many computer installations have found it
advantageous to have ready access to more than 94 printing characters. Appendix C of The TEXbook gives a
complete specification of the intended correspondence between characters and TEX’s internal representation.

If TEX is being used on a garden-variety Pascal for which only standard ASCII codes will appear in the
input and output files, it doesn’t really matter what codes are specified in zchr[0 .. “37], but the safest
policy is to blank everything out by using the code shown below.

However, other settings of zchr will make TEX more friendly on computers that have an extended character
set, so that users can type things like ‘#’ instead of ‘\ne’. People with extended character sets can assign
codes arbitrarily, giving an zchr equivalent to whatever characters the users of TEX are allowed to have
in their input files. It is best to make the codes correspond to the intended interpretations as shown in
Appendix C whenever possible; but this is not necessary. For example, in countries with an alphabet of
more than 26 letters, it is usually best to map the additional letters into codes less than /0. To get the

most “permissive” character set, change “|,” on the right of these assignment statements to chr (7).

(Set initial values of key variables 23) =
for i < 0to 37 do xchrli] + "u;
for i < 177 to 377 do zchr|i] < "u7;
See also sections 24, 62, 78, 81, 84, 101, 122, 191, 241, 280, 284, 302, 317, 398, 417, 473, 516, 525, 556, 586, 591, 629, 632, 642,
687, 696, 704, 727, 819, 941, 982, 1044, 1087, 1321, 1336, 1354, 1397, 1412, 1516, 1562, 1628, 1647, and 1671.

This code is used in section 8.

24. The following system-independent code makes the zord array contain a suitable inverse to the infor-
mation in xzchr. Note that if zchr[i] = xchr[j] where i < j < “177, the value of zord [zchr[i]] will turn out
to be j or more; hence, standard ASCII code numbers will be used instead of codes below 40 in case there
is a coincidence.

(Set initial values of key variables 23) +=
for i + 0to 176 do xzord[zchr[i]] + i;

625 XyIEX PART 3: INPUT AND OUTPUT 15

25. Input and output. The bane of portability is the fact that different operating systems treat input
and output quite differently, perhaps because computer scientists have not given sufficient attention to this
problem. People have felt somehow that input and output are not part of “real” programming. Well, it is
true that some kinds of programming are more fun than others. With existing input/output conventions
being so diverse and so messy, the only sources of joy in such parts of the code are the rare occasions when
one can find a way to make the program a little less bad than it might have been. We have two choices,
either to attack I/O now and get it over with, or to postpone I/O until near the end. Neither prospect is
very attractive, so let’s get it over with.

The basic operations we need to do are (1) inputting and outputting of text, to or from a file or the user’s
terminal; (2) inputting and outputting of eight-bit bytes, to or from a file; (3) instructing the operating system
to initiate (“open”) or to terminate (“close”) input or output from a specified file; (4) testing whether the
end of an input file has been reached.

TEX needs to deal with two kinds of files. We shall use the term alpha_file for a file that contains textual
data, and the term byte_file for a file that contains eight-bit binary information. These two types turn out
to be the same on many computers, but sometimes there is a significant distinction, so we shall be careful
to distinguish between them. Standard protocols for transferring such files from computer to computer, via
high-speed networks, are now becoming available to more and more communities of users.

The program actually makes use also of a third kind of file, called a word_file, when dumping and reloading
base information for its own initialization. We shall define a word file later; but it will be possible for us to
specify simple operations on word files before they are defined.

(Types in the outer block 18) +=
eight_bits = 0 .. 255; { unsigned one-byte quantity }
alpha_file = packed file of text_char; {files that contain textual data }
byte_file = packed file of eight_bits; {files that contain binary data }

26. Most of what we need to do with respect to input and output can be handled by the I/0O facilities
that are standard in Pascal, i.e., the routines called get, put, eof , and so on. But standard Pascal does not
allow file variables to be associated with file names that are determined at run time, so it cannot be used
to implement TEX; some sort of extension to Pascal’s ordinary reset and rewrite is crucial for our purposes.
We shall assume that name_of_file is a variable of an appropriate type such that the Pascal run-time system
being used to implement TEX can open a file whose external name is specified by name_of-file.

(Global variables 13) +=
name_of-file: packed array [1 .. file_name_size] of char;
{ on some systems this may be a record variable }
name_of-file16: array [1 .. file_name_size] of UTF16_code;
{ but sometimes we need a UTF16 version of the name }
name_length: 0 .. file_name_size;
{ this many characters are actually relevant in name_of_file (the rest are blank) }
name_length16: 0 .. file_name_size;

16 PART 3: INPUT AND OUTPUT XHTEX §27

27. The Pascal-H compiler with which the present version of TEX was prepared has extended the rules of
Pascal in a very convenient way. To open file f, we can write

reset(f,name, "/07) for input;
rewrite(f, name, "/07) for output.

The ‘name’ parameter, which is of type ‘packed array [(any)] of char’, stands for the name of the external
file that is being opened for input or output. Blank spaces that might appear in name are ignored.

The ‘/0’ parameter tells the operating system not to issue its own error messages if something goes wrong.
If a file of the specified name cannot be found, or if such a file cannot be opened for some other reason (e.g.,
someone may already be trying to write the same file), we will have erstat (f) # 0 after an unsuccessful reset
or rewrite. This allows TEX to undertake appropriate corrective action.

TEX’s file-opening procedures return false if no file identified by name_of-file could be opened.

define reset_OK (#) = erstat(#) =0
define rewrite_OK (#) = erstat(#) =0

function a_open_in(var f : alpha_file): boolean; {open a text file for input }
begin reset(f, name_of_file, */07); a_open_in + reset_ OK (f);
end;

function a_open_out(var f : alpha_file): boolean; {open a text file for output }
begin rewrite (f, name_of_file, */07); a_open_out < rewrite_OK (f);
end;

function b_open_in(var f : byte_file): boolean; {open a binary file for input }
begin reset(f, name_of-file, */07); b_open_in < reset_.OK (f);
end;

function b_open_out(var f : byte_file): boolean; {open a binary file for output }
begin rewrite (f, name_of-file, */07); b_open_out + rewrite_OK (f);
end;

function w_open_in(var f : word_file): boolean; {open a word file for input }
begin reset(f, name_of-file, "/07); w_open_in + reset_OK (f);
end;

function w_open_out(var f : word_file): boolean; {open a word file for output }
begin rewrite(f, name_of_file, */07); w_open_out < rewrite_OK (f);
end;

28. Files can be closed with the Pascal-H routine close (f)’, which should be used when all input or output
with respect to f has been completed. This makes f available to be opened again, if desired; and if f was
used for output, the close operation makes the corresponding external file appear on the user’s area, ready
to be read.

These procedures should not generate error messages if a file is being closed before it has been successfully
opened.

procedure a_close(var f : alpha_file); {close a text file }
begin close(f);
end;

procedure b_close(var f : byte_file); {close a binary file }
begin close(f);
end;

procedure w_close(var f : word_file); {close a word file }
begin close(f);
end;

629 XyIEX PART 3: INPUT AND OUTPUT 17

29. Binary input and output are done with Pascal’s ordinary get and put procedures, so we don’t have to
make any other special arrangements for binary I/0O. Text output is also easy to do with standard Pascal
routines. The treatment of text input is more difficult, however, because of the necessary translation to
ASCII_code values. TEX’s conventions should be efficient, and they should blend nicely with the user’s
operating environment.

30. Input from text files is read one line at a time, using a routine called input_In. This function is defined
in terms of global variables called buffer, first, and last that will be described in detail later; for now, it
suffices for us to know that buffer is an array of ASCII_code values, and that first and last are indices into
this array representing the beginning and ending of a line of text.

(Global variables 13) +=

buffer: array [0 .. buf-size] of ASCII_code; {lines of characters being read }
first: 0 .. buf-size; {the first unused position in buffer }

last: 0 .. buf-size; {end of the line just input to buffer }

maz-buf_stack: 0 .. buf-size; {largest index used in buffer }

18 PART 3: INPUT AND OUTPUT XHTEX 631

31. The input_ln function brings the next line of input from the specified file into available positions of
the buffer array and returns the value true, unless the file has already been entirely read, in which case it
returns false and sets last < first. In general, the ASCII_code numbers that represent the next line of the
file are input into buffer [first], buffer[first + 1], ..., buffer[last — 1]; and the global variable last is set equal
to first plus the length of the line. Trailing blanks are removed from the line; thus, either last = first (in
which case the line was entirely blank) or buffer[last — 1] # "".

An overflow error is given, however, if the normal actions of input_ln would make last > buf_size; this is
done so that other parts of TEX can safely look at the contents of buffer[last + 1] without overstepping the
bounds of the buffer array. Upon entry to input_in, the condition first < buf size will always hold, so that
there is always room for an “empty” line.

The variable maz_buf_stack, which is used to keep track of how large the buf size parameter must be to
accommodate the present job, is also kept up to date by input_in.

If the bypass_eoln parameter is true, input_In will do a get before looking at the first character of the line;
this skips over an eoln that was in f1. The procedure does not do a get when it reaches the end of the line;
therefore it can be used to acquire input from the user’s terminal as well as from ordinary text files.

Standard Pascal says that a file should have eoln immediately before eof, but TEX needs only a weaker
restriction: If eof occurs in the middle of a line, the system function eoln should return a true result (even
though f1 will be undefined).

Since the inner loop of input_ln is part of TEX’s “inner loop”—each character of input comes in at this
place—it is wise to reduce system overhead by making use of special routines that read in an entire array of
characters at once, if such routines are available. The following code uses standard Pascal to illustrate what
needs to be done, but finer tuning is often possible at well-developed Pascal sites.

function input_ln(var f : alpha_file; bypass_eoln : boolean): boolean;
{inputs the next line or returns false }
var last_-nonblank: 0 .. buf-size; {last with trailing blanks removed }
begin if bypass_eoln then
if —eof (f) then get(f); {input the first character of the line into f1}
last < first; {cf. Matthew 19:30 }
if eof (f) then input_ln < false
else begin last_nonblank < first;
while —eoln(f) do
begin if last > maz_buf_stack then
begin maz_buf stack « last + 1;
if maz_buf_stack = buf_size then (Report overflow of the input buffer, and abort 35);
end;
buffer(last] < zord[f1]; get(f); incr(last);
if buffer[last — 1] # "," then last_nonblank < last;
end;
last < last_nonblank; input_ln < true;
end;
end;

)

32. The user’s terminal acts essentially like other files of text, except that it is used both for input and
for output. When the terminal is considered an input file, the file variable is called term_in, and when it is
considered an output file the file variable is term_out.

(Global variables 13) +=
term_in: alpha-file; {the terminal as an input file }
term_out: alpha_file; {the terminal as an output file }

633 XyIpX PART 3: INPUT AND OUTPUT 19

33. Here is how to open the terminal files in Pascal-H. The ‘/I’ switch suppresses the first get.

define t_open_in = reset(term_in, "TTY: ", "/0/1°) {open the terminal for text input }
define t_open_out = rewrite (term_out, "TTY: ", "/0°) {open the terminal for text output }

34. Sometimes it is necessary to synchronize the input/output mixture that happens on the user’s terminal,
and three system-dependent procedures are used for this purpose. The first of these, update_terminal, is
called when we want to make sure that everything we have output to the terminal so far has actually left the
computer’s internal buffers and been sent. The second, clear_terminal, is called when we wish to cancel any
input that the user may have typed ahead (since we are about to issue an unexpected error message). The
third, wake_up_terminal, is supposed to revive the terminal if the user has disabled it by some instruction
to the operating system. The following macros show how these operations can be specified in Pascal-H:

define update_terminal = break (term_out) {empty the terminal output buffer }
define clear_terminal = break_in(term_in, true) { clear the terminal input buffer }
define wake_up_terminal = do_nothing { cancel the user’s cancellation of output }

35. We need a special routine to read the first line of TEX input from the user’s terminal. This line is
different because it is read before we have opened the transcript file; there is sort of a “chicken and egg”
problem here. If the user types ‘\input paper’ on the first line, or if some macro invoked by that line does
such an \input, the transcript file will be named ‘paper.log’; but if no \input commands are performed
during the first line of terminal input, the transcript file will acquire its default name ‘texput.log’. (The
transcript file will not contain error messages generated by the first line before the first \input command.)

The first line is even more special if we are lucky enough to have an operating system that treats TEX
differently from a run-of-the-mill Pascal object program. It’s nice to let the user start running a TEX job by
typing a command line like ‘tex paper’; in such a case, TEX will operate as if the first line of input were
‘paper’, i.e., the first line will consist of the remainder of the command line, after the part that invoked TEX.

The first line is special also because it may be read before TEX has input a format file. In such cases,
normal error messages cannot yet be given. The following code uses concepts that will be explained later.
(If the Pascal compiler does not support non-local goto, the statement ‘goto final_end’ should be replaced
by something that quietly terminates the program.)

(Report overflow of the input buffer, and abort 35) =
if format_ident = 0 then
begin write_ln(term_out, “Buffer size_ exceeded!); goto final_end;
end
else begin cur_input.loc_field < first; cur_input.limit_field < last — 1;
overflow ("buffer,size", buf_size);
end

This code is used in sections 31 and 1567.

20 PART 3: INPUT AND OUTPUT XHTEX §36

36. Different systems have different ways to get started. But regardless of what conventions are adopted,
the routine that initializes the terminal should satisfy the following specifications:

1) It should open file term_in for input from the terminal. (The file term_out will already be open for
output to the terminal.)

2) If the user has given a command line, this line should be considered the first line of terminal input.
Otherwise the user should be prompted with ‘*#*’, and the first line of input should be whatever is
typed in response.

3) The first line of input, which might or might not be a command line, should appear in locations first
to last — 1 of the buffer array.

4) The global variable loc should be set so that the character to be read next by TEX is in buffer|[loc].
This character should not be blank, and we should have loc < last.

(It may be necessary to prompt the user several times before a non-blank line comes in. The prompt is ‘**’
instead of the later ‘*’ because the meaning is slightly different: ‘\input’ need not be typed immediately
after ‘xx*.)

define loc = cur_input.loc_field {location of first unread character in buffer }

37. The following program does the required initialization without retrieving a possible command line. It
should be clear how to modify this routine to deal with command lines, if the system permits them.

function init_terminal: boolean; { gets the terminal input started }
label exit;
begin t_open_in;
loop begin wake_up_terminal; write(term_out, “**"); update_terminal;
if —input_ln(term_in, true) then {this shouldn’t happen }
begin write_In(term_out); write(term_out, ~ ! End o0f_ file on the terminal..._why?");
init_terminal < false; return;
end;
loc + first;
while (loc < last) A (buffer[loc] = ",") do incr(loc);
if loc < last then
begin init_terminal < true; return; {return unless the line was all blank }
end;
write,ln(term,out7 "Please type the name 0f jyour input file. ’);
end;
exrit: end;

638 XyIpX PART 4: STRING HANDLING 21

38. String handling. Control sequence names and diagnostic messages are variable-length strings of
eight-bit characters. Since Pascal does not have a well-developed string mechanism, TEX does all of its string
processing by homegrown methods.

Elaborate facilities for dynamic strings are not needed, so all of the necessary operations can be handled
with a simple data structure. The array str_pool contains all of the (eight-bit) ASCII codes in all of the
strings, and the array str_start contains indices of the starting points of each string. Strings are referred
to by integer numbers, so that string number s comprises the characters str_pool[j] for str_start_macro|s] <
j < str_start-macro[s + 1]. Additional integer variables pool_ptr and str_ptr indicate the number of entries
used so far in str_pool and str_start, respectively; locations str_pool [pool_ptr] and str_start_macro[str_ptr] are
ready for the next string to be allocated.

String numbers 0 to 255 are reserved for strings that correspond to single ASCII characters. This is in
accordance with the conventions of WEB, which converts single-character strings into the ASCII code number
of the single character involved, while it converts other strings into integers and builds a string pool file.
Thus, when the string constant "." appears in the program below, WEB converts it into the integer 46,
which is the ASCII code for a period, while WEB will convert a string like "hello" into some integer greater
than 255. String number 46 will presumably be the single character ‘.’; but some ASCII codes have no
standard visible representation, and TEX sometimes needs to be able to print an arbitrary ASCII character,
so the first 256 strings are used to specify exactly what should be printed for each of the 256 possibilities.

Elements of the str_pool array must be ASCII codes that can actually be printed; i.e., they must have an
xchr equivalent in the local character set. (This restriction applies only to preloaded strings, not to those
generated dynamically by the user.)

Some Pascal compilers won’t pack integers into a single byte unless the integers lie in the range —128 .. 127.
To accommodate such systems we access the string pool only via macros that can easily be redefined.

define si(#) =# {convert from ASCII_code to packed_ASCII code }
define so(#) =# {convert from packed_ASCII_code to ASCII code }
define str_start_macro(#) = str_start[(#) — too_big_char]

(Types in the outer block 18) +=
pool_pointer =0 .. pool_size; {for variables that point into str_pool }
stronumber = 0 .. maz_strings; {for variables that point into str_start }
packed_ASCII_code = 0 .. biggest_char; {elements of str_pool array }

39. (Global variables 13) +=

str_pool: packed array [pool_pointer]| of packed_ASCII_code; {the characters }
str_start: array [str_number] of pool_pointer; {the starting pointers }
pool_ptr: pool_pointer; {first unused position in str_pool }

str_ptr: str_number; {number of the current string being created }
init_pool_ptr: pool_pointer; {the starting value of pool_ptr }

init_str_ptr: str_number; {the starting value of str_ptr }

40. Several of the elementary string operations are performed using WEB macros instead of Pascal pro-
cedures, because many of the operations are done quite frequently and we want to avoid the overhead of
procedure calls. For example, here is a simple macro that computes the length of a string.

function length (s : str_number): integer; {the number of characters in string number s }
begin if (s > “10000) then length « str_start_macro(s + 1) — str_start_macro(s)
else if (s > "20) A (s < "7F) then length <1
else if (s < "7F) then length < 3
else if (s < "100) then length < 4
else length + 8
end;

22 PART 4: STRING HANDLING XHTEX 841

41. The length of the current string is called cur_length:
define cur_length = (pool_ptr — str_start-macro (str_ptr))

42. Strings are created by appending character codes to str_pool. The append_char macro, defined here,
does not check to see if the value of pool_ptr has gotten too high; this test is supposed to be made before
append_char is used. There is also a flush_char macro, which erases the last character appended.

To test if there is room to append ! more characters to str_pool, we shall write str_room (1), which aborts
TEX and gives an apologetic error message if there isn’t enough room.

define append_char(#) = {put ASCILcode # at the end of str_pool }
begin if (si(#) > "FFFF) then
begin str_pool[pool_ptr] < si((# — "10000) div "400 + "D800); incr (pool_ptr);
str_pool [pool_ptr] < si((#) mod "400 + "DCO0); incr(pool_ptr);

end
else begin str_pool[pool_ptr] < si(#); incr(pool_ptr);
end;
end
define flush_char = decr(pool_ptr) {forget the last character in the pool }
define str_room(#) = {make sure that the pool hasn’t overflowed }
begin if pool_ptr 4+ # > pool_size then overflow ("pool,size", pool_size — init_pool_ptr);
end

43. Once a sequence of characters has been appended to str_pool, it officially becomes a string when the
function make_string is called. This function returns the identification number of the new string as its value.

function make_string: str-number; {current string enters the pool }
begin if str_ptr = maz_strings then overflow ("number of strings", maz_strings — init_str_ptr);
incr(str_ptr); str_start-macro(str_ptr) < pool_ptr; make_string < str_ptr — 1,
end;

b

44. To destroy the most recently made string, we say flush_string.

define flush_string =
begin decr (str_ptr); pool_ptr < str_start-macro (str_ptr);
end

procedure append_str(s : str-number); { append an existing string to the current string }
var i: integer; j: pool_pointer;
begin i < length(s); str-room(i); j < str_start_macro(s);
while (i > 0) do
begin append_char (str_pool[j]); incr(j); decr(i);
end;
end;

645 XoTpX PART 4: STRING HANDLING 23

45. The following subroutine compares string s with another string of the same length that appears in
buffer starting at position k; the result is true if and only if the strings are equal. Empirical tests indicate
that str_eq_buf is used in such a way that it tends to return ¢rue about 80 percent of the time.

function str_eq_buf (s : str_number; k : integer): boolean; { test equality of strings }
label not_found; {loop exit }
var j: pool_pointer; {running index }
result: boolean; {result of comparison }
begin j < str_start_-macro(s);
while j < str_start-macro(s + 1) do
begin if buffer[k] > “10000 then
if so(str_pool[j]) # "D800 + (buffer[k] — “10000) div “400 then
begin result < false; goto not_found;
end
else if so(str_pool[j + 1]) # "DCOO + (buffer[k] — "10000) mod "400 then
begin result < false; goto not_found;
end
else incr(j)
else if so(str_pool[j]) # buffer[k] then
begin result < false; goto not_found;
end;
incr(j); incr(k);
end;
result < true;
not_found: str_eq_buf < result;
end;

24 PART 4: STRING HANDLING XHTEX 846

46. Here is a similar routine, but it compares two strings in the string pool, and it does not assume that
they have the same length.

function str_eq_str(s,t : str_number): boolean; {test equality of strings }
label not_found; {loop exit }
var j,k: pool_pointer; {running indices }
result: boolean; {result of comparison }
begin result < false;
if length(s) # length(t) then goto not_found;
if (length(s) =1) then
begin if s < 65536 then
begin if ¢t < 65536 then
begin if s # t then goto not_found;
end
else begin if s # str_pool[str_start_macro(t)] then goto not_found;
end;
end
else begin if ¢ < 65536 then
begin if str_pool[str_start-macro(s)] # t then goto not_found;
end
else begin if str_pool[str_start_macro(s)] # str_pool[str_start_macro(t)] then goto not_found;
end;
end;
end
else begin j « str_start-macro(s); k «+ str_start-macro(t);
while j < str_start-macro(s + 1) do
begin if str_pool[j] # str_pool[k] then goto not_found;
incr(4); incr(k);
end;
end;
result < true;
not_found: str_eq_str < result;
end;
47. The initial values of str_pool, str_start, pool_ptr, and str_ptr are computed by the INITEX program,
based in part on the information that WEB has output while processing TEX.

init function get_strings_started: boolean;
{ initializes the string pool, but returns false if something goes wrong }

label done, exit;
var m,n: text_char; { characters input from pool_file }

g: stronumber; { garbage }

a: integer; {accumulator for check sum }

¢: boolean; { check sum has been checked }
begin pool_ptr < 0; str_ptr < 0; str_start[0] + 0; { Make the first 256 strings 48);
(Read the other strings from the TEX.POOL file and return true, or give an error message and return

false 51);
exrit: end;

tini

648 XyTEX PART 4: STRING HANDLING 25

48. The first 65536 strings will consist of a single character only. But we don’t actually make them; they're
simulated on the fly.

(Make the first 256 strings 48) =
begin str_ptr < too_big_char; str_start_macro(str_ptr) < pool_ptr;
end

This code is used in section 47.

49. The first 128 strings will contain 95 standard ASCII characters, and the other 33 characters will be
printed in three-symbol form like ‘~~A’ unless a system-dependent change is made here. Installations that
have an extended character set, where for example xchr['32] = “#°, would like string ‘32 to be the single
character “32 instead of the three characters 156, 136, '132 (~~Z). On the other hand, even people with
an extended character set will want to represent string 15 by ~~M, since ‘15 is carriage_return; the idea is
to produce visible strings instead of tabs or line-feeds or carriage-returns or bell-rings or characters that are
treated anomalously in text files.

Unprintable characters of codes 128-255 are, similarly, rendered ~~80—""ff.

The boolean expression defined here should be true unless TEX internal code number & corresponds to a
non-troublesome visible symbol in the local character set. An appropriate formula for the extended character
set recommended in The TEXbook would, for example, be ‘k € [0, 10 .. 12,14, °15,°33, 177 .. "877] .
If character k cannot be printed, and k& < 200, then character k + 100 or k — 100 must be printable;
moreover, ASCII codes [/ .. 46,760 .. 71,7136, 141 .. "146, 160 .. "171] must be printable. Thus, at
least 80 printable characters are needed.

50. When the WEB system program called TANGLE processes the TEX.WEB description that you are now
reading, it outputs the Pascal program TEX.PAS and also a string pool file called TEX.POOL. The INITEX
program reads the latter file, where each string appears as a two-digit decimal length followed by the string
itself, and the information is recorded in TEX’s string memory.

(Global variables 13) +=
init pool_file: alpha_file; {the string-pool file output by TANGLE }
tini

51. define bad_pool(#) =
begin wake_up_terminal; write_In(term_out,#); a_close(pool_file); get_strings_started < false;
return;
end

(Read the other strings from the TEX.POOL file and return true, or give an error message and return
false 51) =

name_of-file <— pool_-name; { we needn’t set name_length }

if a_open_in(pool_file) then
begin ¢ + false;
repeat (Read one string, but return false if the string memory space is getting too tight for

comfort 52);

until c;
a_close(pool_file); get_strings_started < true;
end

else bad_pool(~' I can” "t read TEX.POOL.)

This code is used in section 47.

26 PART 4: STRING HANDLING XHTEX §52

52. (Read one string, but return false if the string memory space is getting too tight for comfort 52) =
begin if eof (pool_file) then bad_pool (!, TEX.POOL_has no check,sum.);
read (pool_file, m,n); {read two digits of string length }
if m = "*~ then (Check the pool check sum 53)
else begin if (zord[m| < "0") V (zord[m] > "9") V (zord[n] < "0") V (zord[n] > "9") then
bad_pool ("' TEX.POOL_line doesn” "t begin with, two digits.");
I + zord[m] % 10 + zord[n] — "0" % 11; { compute the length }
if pool_ptr + 1+ string_vacancies > pool_size then bad_pool (' You have to_ increase POOLSIZE.);
for k< 1tol do
begin if eoln(pool_file) then m < “,~ else read (pool_file, m);
append_char (zord[m]);
end;
read_In (pool_file); g < make_string;
end;
end

This code is used in section 51.

53. The WEB operation @$ denotes the value that should be at the end of this TEX.POOL file; any other
value means that the wrong pool file has been loaded.

(Check the pool check sum 53) =
begin a + 0; k + 1;
loop begin if (zord[n] < "0") V (zord[n] > "9") then
bad_pool (~ ' ,TEX.POOL,check, sum doesn” "t _have nine digits.");
a < 10 % a + zord[n] — "0";
if £k =9 then goto done;
incr (k); read (pool_file,n);
end;
done: if a # @$ then bad_pool (' TEX.POOL_doesn” "t match; TANGLE_me again.");
c < true;
end

This code is used in section 52.

654 XoTpX PART 5: ON-LINE AND OFF-LINE PRINTING 27

54. On-line and off-line printing. Messages that are sent to a user’s terminal and to the transcript-
log file are produced by several ‘print’ procedures. These procedures will direct their output to a variety of
places, based on the setting of the global variable selector, which has the following possible values:

term_and_log, the normal setting, prints on the terminal and on the transcript file.

log_only, prints only on the transcript file.

term_only, prints only on the terminal.

no_print, doesn’t print at all. This is used only in rare cases before the transcript file is open.

pseudo, puts output into a cyclic buffer that is used by the show_context routine; when we get to that routine
we shall discuss the reasoning behind this curious mode.

new_string, appends the output to the current string in the string pool.

0 to 15, prints on one of the sixteen files for \write output.

The symbolic names ‘term_and_log’, etc., have been assigned numeric codes that satisfy the convenient
relations no_print + 1 = term_only, no_print + 2 = log_only, term_only + 2 = log_only + 1 = term_and_log.

Three additional global variables, tally and term_offset and file_offset, record the number of characters
that have been printed since they were most recently cleared to zero. We use tally to record the length of
(possibly very long) stretches of printing; term_offset and file_offset, on the other hand, keep track of how
many characters have appeared so far on the current line that has been output to the terminal or to the
transcript file, respectively.

define no_print =16 { selector setting that makes data disappear }
define term_only = 17 { printing is destined for the terminal only }
define log_only =18 {printing is destined for the transcript file only }
define term_and_log =19 {normal selector setting }

define pseudo =20 {special selector setting for show_context }
define new_string =21 {printing is deflected to the string pool }
define maz_selector = 21 { highest selector setting }

(Global variables 13) +=

log_file: alpha_file; {transcript of TEX session }

selector: 0 .. max_selector; {where to print a message }

dig: array [0..22] of 0..15; {digitsin a number being output }

tally: integer; {the number of characters recently printed }

term_offset: 0 .. max_print_line; {the number of characters on the current terminal line }
file_offset: 0 .. maz_print_line; {the number of characters on the current file line }
trick_buf: array [0 .. error_line] of ASCII_code; { circular buffer for pseudoprinting }
trick_count: integer; { threshold for pseudoprinting, explained later }

first_count: integer; {another variable for pseudoprinting }

55. (Initialize the output routines 55) =
selector < term_only; tally < 0; term_offset < 0; file_offset + O;
See also sections 65, 563, and 568.

This code is used in section 1386.

56. Macro abbreviations for output to the terminal and to the log file are defined here for convenience.
Some systems need special conventions for terminal output, and it is possible to adhere to those conventions
by changing wterm, wterm_ln, and wterm_cr in this section.

define wterm (#) = write (term_out, #)
define wterm_ln(#) = write_In(term_out, #)
define wterm_cr = write_ln(term_out)
define wlog(#) = write(log_file, #)

define wlog_In(#) = write_In(log_file, #)
define wlog_cr = write_ln(log_file)

28 PART 5: ON-LINE AND OFF-LINE PRINTING XHTEX 857

57. To end a line of text output, we call print_In.

(Basic printing procedures 57) =
procedure print_In; {prints an end-of-line }
begin case selector of
term_and_log: begin wterm_cr; wlog_cr; term_offset < 0; file_offset < 0;

end;

log_only: begin wlog_cr; file_offset < 0;
end;

term_only: begin wterm_cr; term_offset < 0;
end;

no_print, pseudo , new_string: do_nothing;
othercases write_ln(write_file|[selector])
endcases;
end; {tally is not affected }
See also sections 58, 59, 63, 66, 67, 68, 69, 292, 293, 553, 741, 1415, and 1633.

This code is used in section 4.

658 XyIEX PART 5: ON-LINE AND OFF-LINE PRINTING 29

58. The print_raw_char procedure sends one character to the desired destination, using the zchr array to
map it into an external character compatible with input_In. All printing comes through print_in, print_char
or print_visible_char. When printing a multi-byte character, the boolean parameter incr_offset is set false
except for the very last byte, to avoid calling print_in in the middle of such character.

(Basic printing procedures 57) +=
procedure print_raw_char(s : ASCII_code; incr_offset : boolean); { prints a single character }
label exit; {label is not used but nonetheless kept (for other changes?) }
begin case selector of
term_and_log: begin wterm (zchr|[s]); wlog(zchr]s]);
if incr_offset then
begin incr(term_offset); incr(file_offset);
end;
if term_offset = maz_print_line then
begin wterm_cr; term_offset < 0;
end;
if file_offset = maz_print_line then
begin wlog_cr; file_offset < 0;
end;
end;
log-only: begin wlog (zchr[s]);
if incr_offset then incr(file_offset);
if file_offset = maz_print_line then print_in;
end;
term_only: begin wterm (zchr|s]);
if incr_offset then incr(term_offset);
if term_offset = maz_print_line then print_in;
end;
no_print: do_nothing;
pseudo: if tally < trick_count then trick_buf[tally mod error_line] + s;
new_string: begin if pool_ptr < pool_size then append_char(s);
end; {we drop characters if the string space is full }
othercases write (write_file [selector], zchrs])
endcases;
incr (tally);
exit: end;

30 PART 5: ON-LINE AND OFF-LINE PRINTING XHTEX §59

59. The print_char procedure sends one character to the desired destination. Control sequence names, file
names and string constructed with \string might contain ASCII_code values that can’t be printed using
print_raw_char. These characters will be printed in three- or four-symbol form like ‘*~A’ or ‘~~e4’, unless
the -8bit option is enabled. Output that goes to the terminal and/or log file is treated differently when it
comes to determining whether a character is printable.

define print_visible_char (#) = print_raw_char (#, true)
define print_lc_hex (#) =1 + #;
if | < 10 then print_visible_char(l 4+ "0") else print_visible_char(l — 10 + "a")

(Basic printing procedures 57) +=
procedure print_char(s : integer); { prints a single character }
label exit;
var . small_number;
begin if (selector > pseudo) A (—doing_special) then
{ “printing” to a new string, encode as UTF-16 rather than UTF-8 }
begin if s > “10000 then
begin print_visible_char("D800 + (s — “10000) div "400);
print_visible_char ("DCOO0 + (s — "10000) mod "400);
end
else print_visible_char(s);
return;
end;
if (Character s is the current new-line character 270) then
if selector < pseudo then
begin print_in; return;
end;
if (s < 32) A (eight_bit_p = 0) A (—doing_special) then {control char: ~~X}
begin print_visible_char("~"); print_visible_char("~"); print_visible_char (s + 64);
end
else if s < 127 then { printable ASCII }
print_visible_char (s)
else if (s =127) then { DEL }
begin if (eight_bit_p = 0) A (—doing_special) then
begin print_visible_char("~"); print_visible_char("~"); print_visible_char("?")
end
else print_visible_char(s)
end
else if (s < "A0) A (eight_bit_p = 0) A (—doing_special) then {CI1 controls: ~"xx }
begin print_visible_char("~"); print_visible_char("~"); print_-lc_hex((s mod "100) div "10);
print_lc_hezx (s mod "10);
end
else if selector = pseudo then print_visible_char(s)
{ Don’t UTF8-encode text in t¢rick_buf, we’ll handle that when printing error context. }
else begin { char > 128: encode as UTF8 }
if s < "800 then
begin print_raw_char("C0 4+ s div "40, false); print_raw_char(“80 + s mod "40, true);
end
else if s < "10000 then
begin print_raw_char("E0 + (s div "1000), false);
print_raw_char(”80 + (s mod "1000) div “40, false);
print_raw_char ("80 4+ (s mod "40), true);
end
else begin print_raw_char("FO 4 (s div "40000), false);

659 XuTEX PART 5: ON-LINE AND OFF-LINE PRINTING

print_raw_char ("80 4+ (s mod "40000) div "1000, false);
print_raw_char("80 4+ (s mod "1000) div “40, false);
print_raw_char ("80 + (s mod "40), true);
end
end;
exit: end;

60. define native_room(#) =

while native_text_size < native_len + # do
begin native_text_size < native_text_size + 128;
native_text < zrealloc(native_text , native_text_size x sizeof (UTF16_code));
end

define append_native(#) =
begin native_text [native_len] < #; incr(native_len);
end

61. (Global variables 13) +=

doing_special: boolean;

native_text: TUTF16_code; { buffer for collecting native-font strings }
native_text_size: integer; { size of buffer }

native_len: integer;

save_native_len: integer;

62. (Set initial values of key variables 23) +=
doing_special < false; native_text_size < 128;
native_text < zmalloc(native_text_size x sizeof (UTF16_code));

31

32 PART 5: ON-LINE AND OFF-LINE PRINTING XHTEX 863

63. An entire string is output by calling print. Note that if we are outputting the single standard ASCII
character c, we could call print("c"), since "c" = 99 is the number of a single-character string, as explained
above. But print_char("c") is quicker, so TEX goes directly to the print_char routine when it knows that
this is safe. (The present implementation assumes that it is always safe to print a visible ASCII character.)

(Basic printing procedures 57) +=
procedure print(s : integer); {prints string s}
label ezit;
var j: pool_pointer; { current character code position }
nl: integer; {new-line character to restore }
begin if s > str_ptr then s+ "?7?" {this can’t happen }
else if s < biggest_char then
if s <0then s+« "?77?" {can’t happen }
else begin if selector > pseudo then
begin print_char(s); return; {internal strings are not expanded }
end;
if ((Character s is the current new-line character 270)) then
if selector < pseudo then
begin print_Iln; return;
end;
nl + new_line_char; new_line_char < —1; print_char(s); new_line_char < nl; return;
end;
j « str_start_macro(s);
while j < str_start-macro(s + 1) do
begin if (so(str_pool[j]) > "D800) A (so(str_pool[j]) < "DBFF) A (j +1 <
str_start-macro (s + 1)) A (so(str_pool[j + 1]) > “DCO0) A (so(str_pool[j + 1]) < "DFFF) then
begin print_char(”10000 + (so(str_pool[j]) — "D800) x “400 + so (str_pool[j + 1]) — "DCO0); j «+ j + 2;
end
else begin print_char(so(str_pool[j])); incr(j);
end;
end;
exit: end;

64. Old versions of TEX needed a procedure called slow_print whose function is now subsumed by print
and the new functionality of print_char and print_visible_char. We retain the old name slow_print here as a
possible aid to future software archaeologists.

define slow_print = print

65. Here is the very first thing that TEX prints: a headline that identifies the version number and format
package. The term_offset variable is temporarily incorrect, but the discrepancy is not serious since we assume
that this part of the program is system dependent.

(Initialize the output routines 55) +=
wterm (banner);
if format_ident = 0 then wterm_ln(",(no format preloaded) °)
else begin slow_print(format_ident); print_ln;
end;
update_terminal;

666 XoTEX PART 5: ON-LINE AND OFF-LINE PRINTING 33

66. The procedure print_nl is like print, but it makes sure that the string appears at the beginning of a
new line.

(Basic printing procedures 57) +=

procedure print_nl(s: str_number); {prints string s at beginning of line }
begin if ((term_offset > 0) A (odd (selector))) V ((file-offset > 0) A (selector > log_only)) then print_in;
print(s);
end;

67. The procedure print_esc prints a string that is preceded by the user’s escape character (which is usually
a backslash).

(Basic printing procedures 57) +=
procedure print_esc(s : stronumber); { prints escape character, then s}
var c: integer; {the escape character code }
begin (Set variable ¢ to the current escape character 269);
if ¢ > 0 then
if ¢ < biggest_usv then print_char(c);
slow_print (s);
end;

68. An array of digits in the range 0 .. 15 is printed by print_the_digs.
(Basic printing procedures 57) +=
procedure print_the_digs(k : eight_bits); {prints dig[k — 1]... dig[0] }
begin while £ > 0 do
begin decr (k);
if dig[k] < 10 then print_char("0" + dig[k])
else print_char("A" — 10 + dig[k]);
end;
end;

69. The following procedure, which prints out the decimal representation of a given integer n, has been
written carefully so that it works properly if n = 0 or if (—n) would cause overflow. It does not apply mod or
div to negative arguments, since such operations are not implemented consistently by all Pascal compilers.

(Basic printing procedures 57) +=
procedure print_int(n : integer); {prints an integer in decimal form }
var k: 0..23; {index to current digit; we assume that |n| < 1023}
m: integer; {used to negate n in possibly dangerous cases }
begin k + 0;
if n < 0 then
begin print_char("-");
if n > —100000000 then negate(n)
else begin m < —1 —n; n+ mdiv 10; m < (mmod 10) + 1; k + 1;
if m <10 then dig[0] < m
else begin dig[0] + 0; incr(n);
end;
end;
end;
repeat dig[k] <~ nmod 10; n < ndiv 10; incr(k);
until n =0;
print_the_digs (k);
end;

b

34 PART 5: ON-LINE AND OFF-LINE PRINTING XHTEX §70

70. Here is a trivial procedure to print two digits; it is usually called with a parameter in the range
0<n<99.

procedure print_two(n : integer); { prints two least significant digits }
begin n + abs(n) mod 100; print_char("0" + (n div 10)); print_char("0" + (n mod 10));
end;

71. Hexadecimal printing of nonnegative integers is accomplished by print_hex.

procedure print_hex(n : integer); {prints a positive integer in hexadecimal form }

var k: 0..22; {index to current digit; we assume that 0 <n < 1622}

begin k < 0; print_char("""");

repeat dig[k] < nmod 16; n < ndiv 16; incr(k);

until n = 0;

print_the_digs (k);

end;
72. Old versions of TEX needed a procedure called print_ASCII whose function is now subsumed by print.
We retain the old name here as a possible aid to future software archaeologists.

define print_ASCII = print

73. Roman numerals are produced by the print_roman_int routine. Readers who like puzzles might enjoy
trying to figure out how this tricky code works; therefore no explanation will be given. Notice that 1990
yields mcmxc, not mxm.

procedure print_roman_int(n : integer);
label ezit;
var j,k: pool_pointer; {mysterious indices into str_pool }
u, v: nonnegative_integer; { mysterious numbers }
begin j < str_start_macro("m2d5¢215x2v5i"); v < 1000;
loop begin while n > v do
begin print_char(so(str_pool[j])); n < n — v;
end;
if n <0 then return; {nonpositive input produces no output }
k<« j+2; u+ vdiv (so(str_pool[k — 1]) — "0");
if str_pool[k — 1] = si("2") then
begin k <+ k+2; u + udiv (so(str_pool[k — 1]) — "0");
end;
if n+wu > v then
begin print_char (so(str_pool[k])); n + n + u;
end
else begin j + j+2; v < v div (so(str_pool[j — 1]) — "0");
end;
end;
exit: end;

74. The print subroutine will not print a string that is still being created. The following procedure will.

procedure print_current_string; {prints a yet-unmade string }
var j: pool_pointer; {points to current character code }
begin j < str_start_macro (str_ptr);
while j < pool_ptr do
begin print_char(so(str_pool[j])); incr(j);
end;
end;

875 XoIpX PART 5: ON-LINE AND OFF-LINE PRINTING 35

75. Here is a procedure that asks the user to type a line of input, assuming that the selector setting is
either term_only or term_and_log. The input is placed into locations first through last — 1 of the buffer
array, and echoed on the transcript file if appropriate.
This procedure is never called when interaction < scroll_mode.
define prompt_input(#) =
begin wake_up_terminal; print(#); term_input;
end {prints a string and gets a line of input }
procedure term_input; {gets a line from the terminal }
var k: 0 .. buf size; {index into buffer }
begin update_terminal; {now the user sees the prompt for sure }
if —input_ln(term_in, true) then fatal_error("End of file on the terminal!");
term_offset < 0; {the user’s line ended with (return) }
decr(selector); {prepare to echo the input }
if last # first then
for k « first to last — 1 do print(buffer[k]);
print_ln; incr(selector); {restore previous status }
end;

36 PART 6: REPORTING ERRORS XHTEX 876
76. Reporting errors. When something anomalous is detected, TEX typically does something like this:

print_err (" SomethinguanomalOus._,hasubeenudetected");
help8 ("This_is the first line of my offer to help.")
("This_is_the second line. I m_ trying to")

("explain, the best_ way for you, to_proceed.");

error;

A two-line help message would be given using help2, etc.; these informal helps should use simple vocabulary
that complements the words used in the official error message that was printed. (Outside the U.S.A., the
help messages should preferably be translated into the local vernacular. Each line of help is at most 60
characters long, in the present implementation, so that maz_print_line will not be exceeded.)

The print_err procedure supplies a ‘!’ before the official message, and makes sure that the terminal is
awake if a stop is going to occur. The error procedure supplies a .’ after the official message, then it shows
the location of the error; and if interaction = error_stop_mode, it also enters into a dialog with the user,
during which time the help message may be printed.

77. The global variable interaction has four settings, representing increasing amounts of user interaction:

define batch-mode =0 {omits all stops and omits terminal output }
define nonstop-mode =1 {omits all stops }
define scroll_mode =2 { omits error stops }
define error_stop-mode = 3 {stops at every opportunity to interact }
define print_err(#) =
begin if interaction = error_stop_mode then wake_up_terminal;
print_nl ("',"); print(#);
end
{ Global variables 13) +=
interaction: batch-mode .. error_stop-mode; { current level of interaction }

78. (Set initial values of key variables 23) 4+=
interaction < error_stop_mode;

79. TgX is careful not to call error when the print selector setting might be unusual. The only possible
values of selector at the time of error messages are

no_print (when interaction = batch_mode and log_file not yet open);
term_only (when interaction > batch-mode and log_file not yet open);
log-only (when interaction = batch-mode and log_file is open);
term_and_log (when interaction > batch-mode and log_file is open).

(Initialize the print selector based on interaction 79) =
if interaction = batch_mode then selector < no_print else selector < term_only

This code is used in sections 1319 and 1391.

680 XyIEX PART 6: REPORTING ERRORS 37

80. A global variable deletions_allowed is set false if the get_next routine is active when error is called; this
ensures that get_nexrt and related routines like get_token will never be called recursively. A similar interlock
is provided by set_box_allowed .

The global variable history records the worst level of error that has been detected. It has four possible
values: spotless, warning_issued, error_message_issued, and fatal_error_stop.

Another global variable, error_count, is increased by one when an error occurs without an interactive
dialog, and it is reset to zero at the end of every paragraph. If error_count reaches 100, TEX decides that
there is no point in continuing further.

define spotless =0 { history value when nothing has been amiss yet }

define warning_issued =1 { history value when begin_diagnostic has been called }
define error_message_issued =2 { history value when error has been called }
define fatal_error_stop =3 { history value when termination was premature }

(Global variables 13) +=

deletions_allowed: boolean; {is it safe for error to call get_token? }

set_box_allowed: boolean; {is it safe to do a \setbox assignment? }

history: spotless .. fatal_error_stop; {has the source input been clean so far? }
error_count: —1 ..100; {the number of scrolled errors since the last paragraph ended }

81. The value of history is initially fatal_error_stop, but it will be changed to spotless if TEX survives the
initialization process.

(Set initial values of key variables 23) +=
deletions_allowed <+ true; set_box_allowed < true; error_count < 0; { history is initialized elsewhere }

82. Since errors can be detected almost anywhere in TEX, we want to declare the error procedures near
the beginning of the program. But the error procedures in turn use some other procedures, which need to
be declared forward before we get to error itself.

It is possible for error to be called recursively if some error arises when get_token is being used to delete
a token, and/or if some fatal error occurs while TEX is trying to fix a non-fatal one. But such recursion is
never more than two levels deep.

(Error handling procedures 82) =

procedure normalize_selector; forward;
procedure get_token; forward;

procedure term_input; forward;

procedure show_context; forward;
procedure begin_file_reading; forward;
procedure open_log_file; forward;

procedure close_files_and_terminate; forward;
procedure clear_for_error_prompt; forward;
procedure give_err_help; forward;

debug procedure debug_help; forward; gubed
See also sections 85, 86, 97, 98, 99, and 1455.

This code is used in section 4.

38 PART 6: REPORTING ERRORS

XFTEX

§33

83. Individual lines of help are recorded in the array help_line, which contains entries in positions O ..

(help_ptr — 1). They should be printed in reverse order, i.e., with help_line[0] appearing last.

define
define
define
define
define
define
define
define
define
define
define
define
define

hip1 (#) = help_line[0] +
hip2 (#) = help_line[1] +
hip3 (#) = help_line[2] +
hip4 (#) = help_line[3] +
hip5 (#) = help_line[4] +
[5

hip6 (#) = help_line[5] +

#; end
#; hipl
#; hip2
#; hip3
#; hip4
#; hips

help0 = help_ptr < 0 {sometimes there might be no help }

helpl = begin help_ptr
help2 = begin help_ptr
help3 = begin help_ptr
help4 = begin help_ptr
help5 = begin help_ptr
help6 = begin help_ptr

(Global variables 13) +=

help_line:

array [0..5] of str_number;

«— 1; hip1
<~ 2; hlp2
— 3; hip3
<~ 4; hlp4
<~ 5; hips
<~ 6; hip6

{ use this with one help line }

{ use this with two help lines }
{ use this with three help lines }
{ use this with four help lines }
{ use this with five help lines }

{ use this with six help lines }

{ helps for the next error }

help_ptr: 0 ..6; {the number of help lines present }

use_err_help: boolean;

{'should the err_help list be shown? }

84. (Set initial values of key variables 23) +=
help_ptr < 0; use_err_help + false;

85. The jump_out procedure just cuts across all active procedure levels and goes to end_of TEX. This
is the only nontrivial goto statement in the whole program. It is used when there is no recovery from a
particular error.

Some Pascal compilers do not implement non-local goto statements. In such cases the body of jump_out
should simply be ‘close_files_and_terminate;’ followed by a call on some system procedure that quietly
terminates the program.

(Error handling procedures 82) +=
procedure jump_out;
begin goto end_of TEX;

end;

86. Here now is the general error routine.

(Error handling procedures 82) +=

procedure error,

label continue, exit;

var c¢: UnicodeScalar;

{ completes the job of error reporting }

{what the user types }

s1,82,83,s4: integer; {used to save global variables when deleting tokens }
begin if history < error_message_issued then history < error_message_issued;
print_char("."); show_context;
if interaction = error_stop_mode then (Get user’s advice and return 87);
incr (error_count);
if error_count = 100 then

begin print_nl(" (That_makes 100 errors; please, try_again.)"); history < fatal_error_stop;
Jump-

end;

(Put help message on the transcript file 94);
exrit: end;

out;

687 XyIpX PART 6: REPORTING ERRORS 39

87. (Get user’s advice and return 87) =
loop begin continue: if interaction # error_stop_mode then return;
clear_for_error_prompt; prompt_input ("?,");
if last = first then return;
¢ < buffer|first];

if ¢ > "a" then ¢+ c+ "A" — "a"; {convert to uppercase }
(Interpret code ¢ and return if done 88);
end

This code is used in section 86.

88. It is desirable to provide an ‘E’ option here that gives the user an easy way to return from TEX to
the system editor, with the offending line ready to be edited. But such an extension requires some system
wizardry, so the present implementation simply types out the name of the file that should be edited and the
relevant line number.

There is a secret ‘D’ option available when the debugging routines haven’t been commented out.

(Interpret code ¢ and return if done 88) =
case c of
nou mn wou wgn mgn wgn wgn wyn wgn wgn. if deletions_allowed then
(Delete ¢ — "0" tokens and goto continue 92);
debug "D": begin debug_help; goto continue; end; gubed
"E": if base_ptr > 0 then
if input_stack[base_ptr].name_field > 256 then
begin print_nl("You want toedit file"); slow_print(input_stack[base_ptr].name_field);
print("Latyline"); print-int(line); interaction < scroll-mode; jump_out;
end;
"H": (Print the help information and goto continue 93);
"I": (Introduce new material from the terminal and return 91);
"Q","R","S": (Change the interaction level and return 90);
"X": begin interaction < scroll_mode; jump_out;
end;
othercases do_nothing
endcases;
(Print the menu of available options 89)

This code is used in section 87.

89. (Print the menu of available options 89) =
begin print("Type,<return> to proceed, S to,scroll future error messages,");
print_nl ("R_to_run without stopping, Q to run quietly,");
print_nl("I_to_ insert something, ");
if base_ptr > 0 then
if input_stack [base_ptr]|.name_field > 256 then print("E to edit your file,");
if deletions_allowed then
pm’nt,nl(" 1y0ry. . .yor 9 toyignore the next1,to 9 tokens of input, ");
print_nl ("H_for help, X to,quit.");
end

This code is used in section 88.

40 PART 6: REPORTING ERRORS XHTEX §90

90. Here the author of TEX apologizes for making use of the numerical relation between "Q", "R", "S",
and the desired interaction settings batch_mode, nonstop_mode, scroll_mode.

(Change the interaction level and return 90) =

begin error_count < 0; interaction < batch-mode + ¢ — "Q"; print("0K,_entering ");
case c of
"Q": begin print_esc("batchmode"); decr(selector);

end;

"R": print_esc("nonstopmode");

"S": print_esc("scrollmode");

end; {there are no other cases }

print("..."); print_In; update_terminal; return;
end

This code is used in section 88.

91. When the following code is executed, buffer|[(first +1) .. (last —1)] may contain the material inserted
by the user; otherwise another prompt will be given. In order to understand this part of the program fully,
you need to be familiar with TEX’s input stacks.

(Introduce new material from the terminal and return 91) =
begin begin_file_reading; {enter a new syntactic level for terminal input }
{now state = mid_line, so an initial blank space will count as a blank }
if last > first +1 then
begin loc + first + 1; buffer[first] < "";
end
else begin prompt_input ("insert>"); loc < first;
end;
first < last; cur_input.limit_field < last —1; {no end_line_char ends this line }
return;
end

This code is used in section 88.

92. We allow deletion of up to 99 tokens at a time.

(Delete ¢ — "0" tokens and goto continue 92) =
begin s1 < cur_tok; s2 < cur_cmd; s3 < cur_chr; s4 < align_state; align_state < 1000000;
OK _to_interrupt < false;
if (last > first + 1) A (buffer[first +1] > "0") A (buffer[first + 1] < "9") then
¢ + ¢ 10 + buffer|[first + 1] — "0" % 11
else c+c—"0";
while ¢ > 0 do
begin get_token; {one-level recursive call of error is possible }
decr(c);
end;
cur_tok < s1; cur_cmd < $2; cur_chr < s3; align_state < s4; OK_to_interrupt < true;
help2("I_have just deleted some text,_ as you asked.")
("You,,can, now delete more, or,insert, or whatever."); show_contexrt; goto continue;
end

This code is used in section 88.

693 XuIpX PART 6: REPORTING ERRORS 41

93. (Print the help information and goto continue 93) =
begin if use_err_help then
begin give_err_help; use_err_help < false;
end
else begin if help_ptr = 0 then help2("Sorry, I don t know how to help in this situation.")
("Maybe_you,should, try asking a human?");
repeat decr(help_ptr); print(help_line[help_ptr]); print_ln;
until help_ptr = 0;
end;
help/ ("Sorry, I already, gave what help I could...")
("Maybe_you,should, try asking a human?")
("An._lerrorumightuhave_,occurredubeforequnoticed._lanyuproblems . ")
(" “*If_ all else fails, read the instructions. ~ ");
goto continue;
end

This code is used in section 88.

94. (Put help message on the transcript file 94) =
if interaction > batch-mode then decr(selector); {avoid terminal output }
if use_err_help then
begin print_ln; give_err_help;
end
else while help_ptr > 0 do
begin decr (help_ptr); print_nl(help_line[help_ptr]);
end;
print_in;
if interaction > batch-mode then incr(selector); {re-enable terminal output }
print_In

This code is used in section 86.

95. A dozen or so error messages end with a parenthesized integer, so we save a teeny bit of program space
by declaring the following procedure:

procedure int_error(n : integer);
begin print(",("); print_int(n); print_char(")"); error;
end;

96. In anomalous cases, the print selector might be in an unknown state; the following subroutine is called
to fix things just enough to keep running a bit longer.

procedure normalize_selector;
begin if log_opened then selector < term_and_log
else selector < term_only;
if job_name = 0 then open_log._file;
if interaction = batch_mode then decr(selector);
end;

42 PART 6: REPORTING ERRORS XHTEX 897

97. The following procedure prints TEX’s last words before dying.

define succumb =
begin if interaction = error_stop_mode then interaction < scroll_mode;
{ no more interaction }
if log_opened then error;
debug if interaction > batch-mode then debug_help;
gubed
history < fatal_error_stop; jump_out; {irrecoverable error }
end

(Error handling procedures 82) +=

procedure fatal_error(s: str-number); { prints s, and that’s it }
begin normalize_selector;
print_err ("Emergency_stop"); helpl(s); succumb;
end;

)

98. Here is the most dreaded error message.

(Error handling procedures 82) +=

procedure overflow(s : str-number; n : integer); {stop due to finiteness }
begin normalize_selector; print_err("TeX capacity_ exceeded, sorry,["); print(s); print_char("=");
print_int(n); print_char("1"); help2("If you really absolutely need more capacity,")
("you._,can._,ask._,auwizardutouenlarge._,me. "); succumb;
end;

99. The program might sometime run completely amok, at which point there is no choice but to stop. If
no previous error has been detected, that’s bad news; a message is printed that is really intended for the
TEX maintenance person instead of the user (unless the user has been particularly diabolical). The index
entries for ‘this can’t happen’ may help to pinpoint the problem.

(Error handling procedures 82) +=
procedure confusion (s : str_number); { consistency check violated; s tells where }
begin normalize_selector;
if history < error_message_issued then
begin print_err("This,can "t happen, ("); print(s); print-char(")");
help1 ("I “m_ broken. Please_ show_ this to someone who,can, fix can f ix");
end
else begin print_err("I can "t go on meeting you like this");
help2 ("Oneuofuyourufauxupasuseemsutouhaveuwoundedumeudeeply. .. ")
("in fact, I m barely conscious. Please_ fix it and try_again.");
end;
succumb;
end;
100. Users occasionally want to interrupt TEX while it’s running. If the Pascal runtime system allows
this, one can implement a routine that sets the global variable interrupt to some nonzero value when such
an interrupt is signalled. Otherwise there is probably at least a way to make interrupt nonzero using the
Pascal debugger.
define check_interrupt =
begin if interrupt # 0 then pause_for_instructions;
end
{ Global variables 13) +=
interrupt: integer; {should TEX pause for instructions? }
OK _to_interrupt: boolean; {should interrupts be observed? }

6101 XyIpx PART 6: REPORTING ERRORS 43

101. (Set initial values of key variables 23) +=
interrupt < 0; OK_to_interrupt < true;

102. When an interrupt has been detected, the program goes into its highest interaction level and lets the
user have nearly the full flexibility of the error routine. TEX checks for interrupts only at times when it is
safe to do this.

procedure pause_for_instructions;

begin if OK_to_interrupt then
begin interaction < error_stop_mode;
if (selector = log-only) V (selector = no_print) then incr(selector);
print_err("Interruption"); help3("You rang?")
("Tryutouinsert an instruction for me,(e.g., " I\showlists~),")
("unlessyyou,just want to,quit by typing , X ."); deletions_allowed < false; error;
deletions_allowed < true; interrupt < 0;
end;

end;

)

44 PART 7: ARITHMETIC WITH SCALED DIMENSIONS XATEX §103

103. Arithmetic with scaled dimensions. The principal computations performed by TEX are done
entirely in terms of integers less than 23! in magnitude; and divisions are done only when both dividend
and divisor are nonnegative. Thus, the arithmetic specified in this program can be carried out in exactly
the same way on a wide variety of computers, including some small ones. Why? Because the arithmetic
calculations need to be spelled out precisely in order to guarantee that TEX will produce identical output
on different machines. If some quantities were rounded differently in different implementations, we would
find that line breaks and even page breaks might occur in different places. Hence the arithmetic of TEX has
been designed with care, and systems that claim to be implementations of TEX82 should follow precisely the
calculations as they appear in the present program.

(Actually there are three places where TEX uses div with a possibly negative numerator. These are
harmless; see div in the index. Also if the user sets the \time or the \year to a negative value, some
diagnostic information will involve negative-numerator division. The same remarks apply for mod as well
as for div.)

104. Here is a routine that calculates half of an integer, using an unambiguous convention with respect to
signed odd numbers.
function half (z : integer): integer;

begin if odd(z) then half < (z+ 1) div 2

else half < x div 2;

end;

105. Fixed-point arithmetic is done on scaled integers that are multiples of 2716, In other words, a binary
point is assumed to be sixteen bit positions from the right end of a binary computer word.

define unity = 200000 {25, represents 1.00000 }
define two = 400000 {27, represents 2.00000 }

(Types in the outer block 18) +=
scaled = integer; {this type is used for scaled integers }
nonnegative_integer = 0 .. 17777777777; {0 <z <231}
small_number = 0 .. hyphenatable_length_limit; {this type is self-explanatory }

106. The following function is used to create a scaled integer from a given decimal fraction (.dods ... dg—1),
where 0 < k < 17. The digit d; is given in dig[i], and the calculation produces a correctly rounded result.

function round_decimals(k : small_number): scaled; {converts a decimal fraction }
var a: integer; {the accumulator }
begin a + 0;
while k£ > 0 do
begin decr(k); a + (a + dig[k] * two) div 10;
end;
round_decimals < (a + 1) div 2;
end;

)

6107 XyIpX PART 7: ARITHMETIC WITH SCALED DIMENSIONS 45

107. Conversely, here is a procedure analogous to print_int. If the output of this procedure is subsequently
read by TEX and converted by the round_decimals routine above, it turns out that the original value will
be reproduced exactly; the “simplest” such decimal number is output, but there is always at least one digit
following the decimal point.

The invariant relation in the repeat loop is that a sequence of decimal digits yet to be printed will yield
the original number if and only if they form a fraction f in the range s — 6 < 10-2!6f < 5. We can stop if
and only if f = 0 satisfies this condition; the loop will terminate before s can possibly become zero.

procedure print_scaled (s : scaled); { prints scaled real, rounded to five digits }
var delta: scaled; {amount of allowable inaccuracy }
begin if s < 0 then
begin print_char("-"); negate(s); { print the sign, if negative }
end;
print_int (s div unity); {print the integer part }
print_char("."); s < 10 % (s mod unity) + 5; delta + 10;
repeat if delta > unity then s« s+ 100000 — 50000; {round the last digit }
print_char ("0" + (s div unity)); s < 10 * (s mod unity); delta < delta = 10;
until s < delta;
end;

108. Physical sizes that a TEX user specifies for portions of documents are represented internally as scaled
points. Thus, if we define an ‘sp’ (scaled point) as a unit equal to 2716 printer’s points, every dimension
inside of TEX is an integer number of sp. There are exactly 4,736,286.72 sp per inch. Users are not allowed
to specify dimensions larger than 23° — 1 sp, which is a distance of about 18.892 feet (5.7583 meters); two
such quantities can be added without overflow on a 32-bit computer.

The present implementation of TEX does not check for overflow when dimensions are added or subtracted.
This could be done by inserting a few dozen tests of the form ‘if x > 10000000000 then report_overflow’,
but the chance of overflow is so remote that such tests do not seem worthwhile.

TEX needs to do only a few arithmetic operations on scaled quantities, other than addition and subtraction,
and the following subroutines do most of the work. A single computation might use several subroutine calls,
and it is desirable to avoid producing multiple error messages in case of arithmetic overflow; so the routines
set the global variable arith_error to true instead of reporting errors directly to the user. Another global
variable, remainder, holds the remainder after a division.

(Global variables 13) +=
arith_error: boolean; {has arithmetic overflow occurred recently? }
remainder: scaled; {amount subtracted to get an exact division }

109. The first arithmetical subroutine we need computes nx + y, where x and y are scaled and n is an
integer. We will also use it to multiply integers.

define nz_plus_y (#) = mult_and_add (#, “T777777777)
define mult_integers (#) = mult_and_add (#,0, "17777777777)

function mult_and_add(n : integer; x,y, maz_answer : scaled): scaled;
begin if n < 0 then
begin negate (z); negate(n);
end;
if n =0 then mult_and_add <y
else if ((z < (maz_answer —y)div n) A (—z < (maz_answer +y) div n)) then mult_and_add < nxx+y
else begin arith_error < true; mult_and_add < 0;
end;
end;

46 PART 7: ARITHMETIC WITH SCALED DIMENSIONS XATEX §110

110. We also need to divide scaled dimensions by integers.

function z_over_n(z : scaled; n : integer): scaled;
var negative: boolean; {should remainder be negated? }
begin negative < false;
if n =0 then
begin arith_error < true; x_over_n < 0; remainder < x;
end
else begin if n < 0 then
begin negate (z); negate(n); negative + true;
end;
if £ > 0 then
begin x_over_n < x div n; remainder < xr mod n;

end
else begin z_over_-n + —((—z) div n); remainder + —((—z) mod n);
end;
end;
if negative then negate(remainder);

end;

111. Then comes the multiplication of a scaled number by a fraction n/d, where n and d are nonnegative
integers < 216 and d is positive. It would be too dangerous to multiply by n and then divide by d, in separate
operations, since overflow might well occur; and it would be too inaccurate to divide by d and then multiply
by n. Hence this subroutine simulates 1.5-precision arithmetic.

function zn_over_d(x : scaled; n,d : integer): scaled;
var positive: boolean; {was x> 07}
t,u,v: nonnegative_integer; {intermediate quantities }
begin if z > 0 then positive < true
else begin negate (z); positive < false;
end;
t + (zmod “100000) x n; u « (x div "100000) x n + (t div "100000);
v < (umod d) * "100000 + (t mod "100000);
if udiv d > 100000 then arith_error < true
else u + 100000 (udiv d) + (v div d);
if positive then
begin zn_over_d < u; remainder < v mod d;
end
else begin zn_over-d < —u; remainder <+ —(v mod d);
end;
end;

6112 XyIpx PART 7: ARITHMETIC WITH SCALED DIMENSIONS 47

112. The next subroutine is used to compute the “badness” of glue, when a total ¢ is supposed to be made
from amounts that sum to s. According to The TEXbook, the badness of this situation is 100(¢/s)?; however,
badness is simply a heuristic, so we need not squeeze out the last drop of accuracy when computing it. All
we really want is an approximation that has similar properties.

The actual method used to compute the badness is easier to read from the program than to describe
in words. It produces an integer value that is a reasonably close approximation to 100(t/s)3, and all
implementations of TEX should use precisely this method. Any badness of 23 or more is treated as infinitely
bad, and represented by 10000.

It is not difficult to prove that

badness(t + 1,s) > badness(t,s) > badness(t,s + 1).

The badness function defined here is capable of computing at most 1095 distinct values, but that is plenty.
define inf-bad = 10000 {infinitely bad value }

function badness(t, s : scaled): halfword; { compute badness, given t > 0}
var r: integer; {approximation to at/s, where o ~ 100218}
begin if ¢t = 0 then badness < 0
else if s < 0 then badness + inf bad
else begin if ¢ < 7230584 then r < (t*297)divs {2973 =99.94 x 218}
else if s > 1663497 then r < tdiv (s div 297)
else r < t;
if 7 > 1290 then badness < inf-bad {12903 < 231 < 12913}
else badness < (r*r*r+ 400000) div "1000000;
end; {that was r3/2!8 rounded to the nearest integer }
end;

113. When TEX “packages” a list into a box, it needs to calculate the proportionality ratio by which the
glue inside the box should stretch or shrink. This calculation does not affect TEX’s decision making, so the
precise details of rounding, etc., in the glue calculation are not of critical importance for the consistency of
results on different computers.

We shall use the type glue_ratio for such proportionality ratios. A glue ratio should take the same amount
of memory as an integer (usually 32 bits) if it is to blend smoothly with TEX’s other data structures. Thus
glue_ratio should be equivalent to short_real in some implementations of Pascal. Alternatively, it is possible
to deal with glue ratios using nothing but fixed-point arithmetic; see TUGboat 3,1 (March 1982), 10-27.
(But the routines cited there must be modified to allow negative glue ratios.)

define set_glue_ratio_zero(#) = # < 0.0 {store the representation of zero ratio }
define set_glue_ratio_one(#) = # < 1.0 {store the representation of unit ratio }
define float(#) =# {convert from glue_ratio to type real }

define unfloat(#) =# {convert from real to type glue_ratio }

define float_constant (#) = #.0 { convert integer constant to real }

(Types in the outer block 18) +=
glue_ratio = real; { one-word representation of a glue expansion factor }

48 PART 7B: RANDOM NUMBERS XATEX 6114

114. Random numbers.

This section is (almost) straight from MetaPost. T had to change the types (use integer instead of fraction),
but that should not have any influence on the actual calculations (the original comments refer to quantities
like fraction_four (23°), and that is the same as the numeric representation of mazxdimen).

I've copied the low-level variables and routines that are needed, but only those (e.g. m_log), not the
accompanying ones like m_exp. Most of the following low-level numeric routines are only needed within the
calculation of norm_rand. I’ve been forced to rename make_fraction to make_frac because TeX already has
a routine by that name with a wholly different function (it creates a fraction_noad for math typesetting) —
Taco

And now let’s complete our collection of numeric utility routines by considering random number generation.
METAPOST generates pseudo-random numbers with the additive scheme recommended in Section 3.6 of The
Art of Computer Programming; however, the results are random fractions between 0 and fraction_one — 1,
inclusive.

There’s an auxiliary array randoms that contains 55 pseudo-random fractions. Using the recurrence
Zp = (Tp_55 — Tp—_31) mod 228 we generate batches of 55 new z,,’s at a time by calling new_randoms. The
global variable j_random tells which element has most recently been consumed.

{ Global variables 13) +=

randoms: array [0 .. 54] of integer; {the last 55 random values generated }
j-random: 0 ..54; {the number of unused randoms }

random_seed: scaled; {the default random seed }

115. A small bit of metafont is needed.

define fraction_half = ‘1000000000 {2%7, represents 0.50000000 }

define fraction_one = ‘2000000000 {228, represents 1.00000000 }

define fraction_four = ‘10000000000 {23°, represents 4.00000000 }

define el_gordo = ‘17777777777 {23! — 1, the largest value that METAPOST likes }
define halfp (#) = (#) div 2

define double(#) =# + #+# {multiply a variable by two }

6116 XyIpX PART 7B: RANDOM NUMBERS 49

116. The make_frac routine produces the fraction equivalent of p/q, given integers p and g¢; it computes
the integer f = [2%p/q + %j, when p and q are positive. If p and ¢ are both of the same scaled type ¢, the
“type relation” make_frac(t,t) = fraction is valid; and it’s also possible to use the subroutine “backwards,”
using the relation make_frac(t, fraction) = t between scaled types.

If the result would have magnitude 23! or more, make_frac sets arith_error < true. Most of METAPOST’s
internal computations have been designed to avoid this sort of error.

If this subroutine were programmed in assembly language on a typical machine, we could simply compute
(228 x p) div ¢, since a double-precision product can often be input to a fixed-point division instruction. But
when we are restricted to Pascal arithmetic it is necessary either to resort to multiple-precision maneuvering
or to use a simple but slow iteration. The multiple-precision technique would be about three times faster
than the code adopted here, but it would be comparatively long and tricky, involving about sixteen additional
multiplications and divisions.

This operation is part of METAPOST’s “inner loop”; indeed, it will consume nearly 10% of the running
time (exclusive of input and output) if the code below is left unchanged. A machine-dependent recoding will
therefore make METAPOST run faster. The present implementation is highly portable, but slow; it avoids
multiplication and division except in the initial stage. System wizards should be careful to replace it with a
routine that is guaranteed to produce identical results in all cases.

As noted below, a few more routines should also be replaced by machine-dependent code, for efficiency. But
when a procedure is not part of the “inner loop,” such changes aren’t advisable; simplicity and robustness
are preferable to trickery, unless the cost is too high.

function make_frac(p, q : integer): integer;
var f: integer; {the fraction bits, with a leading 1 bit }
n: integer; {the integer part of |p/q| }
negative: boolean; {should the result be negated? }
be_careful: integer; {disables certain compiler optimizations }
begin if p > 0 then negative < false
else begin negate(p); negative < true;
end;
if ¢ <0 then
begin debug if ¢ =0 then confusion("/"); gubed
negate(q); negative < —negative;
end;
n < pdiv ¢; p + pmod q;
if n > 8 then
begin arith_error < true;
if negative then make_frac < —el_gordo else make_frac < el_gordo;
end
else begin n < (n — 1) * fraction_one; (Compute f = [228(1+p/q) + 1] 117);
if negative then make_frac < —(f + n) else make_frac + f + n;
end;
end;

50 PART 7B: RANDOM NUMBERS XATEX 8117

117. The repeat loop here preserves the following invariant relations between f, p, and ¢: (i) 0 < p < g;
(ii) fqg+ p = 2¥(q + po), where k is an integer and py is the original value of p.

Notice that the computation specifies (p—q)+p instead of (p+p) —g, because the latter could overflow. Let
us hope that optimizing compilers do not miss this point; a special variable be_careful is used to emphasize
the necessary order of computation. Optimizing compilers should keep be_careful in a register, not store it
in memory.

(Compute f = |228(1+p/q) + 5| 117) =

f< L

repeat be_careful < p — q; p < be_careful + p;

if p>0then f+ f+f+1
else begin double(f); p <+ p+g;
end;

until f > fraction_one;

be_careful < p — q;

if be_careful +p > 0 then incr(f)

This code is used in section 116.

118.
function take_frac(q : integer; f : integer): integer;
var p: integer; {the fraction so far }
negative: boolean; {should the result be negated? }
n: integer; {additional multiple of ¢ }
be_careful: integer; {disables certain compiler optimizations }
begin (Reduce to the case that f > 0 and ¢ > 0 119);
if f < fraction_one then n < 0
else begin n < f div fraction_one; f <+ f mod fraction_one;
if g < el_gordo div n then n + nx*q
else begin arith_error < true; n < el_gordo;
end;
end;
f « f + fraction_one; (Compute p = [¢f/2% + 1| —q 120);
be_careful < n — el_gordo;
if be_careful +p > 0 then
begin arith_error < true; n < el_gordo — p;
end;
if negative then take_frac < —(n + p)
else take_frac < n + p;
end;

119. (Reduce to the case that f > 0 and ¢ > 0 119) =
if f > 0 then negative < false
else begin negate(f); negative + true;
end;
if ¢ < 0 then
begin negate(q); negative < —negative;
end;

This code is used in section 118.

6120 XyIpX PART 7B: RANDOM NUMBERS 51

120. The invariant relations in this case are (i) [(¢f + p)/2"] = [¢f0/2%® + 1], where k is an integer and
fo is the original value of f; (ii) 2% < f < 2k+1.
(Compute p = |qf/226 + 1] — ¢ 120) =
p < fraction_half; {that’s 227; the invariants hold now with k = 28}
if q < fraction_four then
repeat if odd(f) then p <« halfp(p + q) else p « halfp(p);
f < halfp(f);
until f=1
else repeat if odd(f) then p <+ p+ halfp(q¢ — p) else p + halfp(p);
J < halfp (f);
until f=1

This code is used in section 118.

121. The subroutines for logarithm and exponential involve two tables. The first is simple: two_to_the[k]
equals 2F. The second involves a bit more calculation, which the author claims to have done correctly:
spec_log[k] is 2°7 times In(1/(1 —27%)) =27% 4+ $272F 4 1273k 4 ... 'rounded to the nearest integer.

(Global variables 13) +=

two_to_the: array [0 ..30] of integer; {powers of two }

spec_log: array [1..28] of integer; {special logarithms }

122. (Set initial values of key variables 23) +=
two_to_the[0] < 1;
for k < 1to 30 do two_to_the[k] + 2 * two_to_the[k — 1];
spec_log[1] « 93032640; spec_log[2] < 38612034; spec_log[3] < 17922280; spec_log[4] + 8662214,
spec_log[5] + 4261238; spec_log[6] < 2113709; spec_log[7] < 1052693; spec_log[8] + 525315;
spec_log[9] + 262400; spec_log[10] + 131136; spec_log[11] < 65552; spec_log[12] < 32772;
spec-log[13] < 16385;
for k < 14 to 27 do spec_log[k] + two_to_the[27 — k];
spec_log[28] + 1;

123.

function m_log (z : integer): integer;
var y, z: integer; {auxiliary registers }
k: integer; {iteration counter }
begin if z <0 then (Handle non-positive logarithm 125)
else begin y <+ 1302456956 + 4 — 100; {14 x 2271n2 ~ 1302456956.421063 }
z + 27595 + 6553600; { and 216 x .421063 ~ 27595 }
while z < fraction_four do
begin double(x); y + y — 93032639; z « z — 48782;
end; {2%7In2 ~ 93032639.74436163 and 2'6 x .74436163 ~ 48782 }
Yy < y+ (zdiv unity); k + 2;
while z > fraction_four + 4 do
{Increase k until x can be multiplied by a factor of 2%, and adjust y accordingly 124);
m_log < y div §;
end;
end;

52 PART 7B: RANDOM NUMBERS XATEX 8124

124. (Increase k until can be multiplied by a factor of 27%, and adjust y accordingly 124) =
begin z + ((v — 1) div two_to_the[k]) + 1; {z = [z/2¥]}
while z < fraction_four 4+ z do
begin z « halfp(z +1); k+ k+1;
end;
y y+ spec_log[k]; x + x — z;
end

This code is used in section 123.

125. (Handle non-positive logarithm 125) =
begin print_err("Logarithm of,"); print_scaled (z); print(" has been replaced by,0");
help2("Since I don "t take logs of non-positive numbers,")
("I “mzeroing, ;this one. Proceed, with fingers crossed. "); error; m_log < 0;
end

This code is used in section 123.

126. The following somewhat different subroutine tests rigorously if ab is greater than, equal to, or less
than cd, given integers (a,b,c,d). In most cases a quick decision is reached. The result is +1, 0, or —1 in
the three respective cases.

define return_sign (#) =
begin ab_vs_cd < #; return;
end
function ab_vs_cd(a,b, c,d : integer): integer;
label exit;
var ¢,r: integer; {temporary registers }
begin (Reduce to the case that a,c¢ >0, b,d > 0 127);
loop begin g < adiv d; r + cdiv b;
if ¢ # r then
if ¢ > r then return_sign(1) else return_sign(—1);
q + amod d; r < cmod b;
if r =0 then
if ¢ =0 then return_sign(0) else return_sign(1);
if ¢ =0 then return_sign(—1);
a$b; b<q; c<d; d<+r;
end; {nowa>d>0andc>b>0}
exrit: end;

§127 XgTEX PART 7B: RANDOM NUMBERS 53
127. (Reduce to the case that a,c >0, b,d > 0 127) =
if a <0 then
begin negate(a); negate(b);
end;
if ¢ <0 then
begin negate(c); negate(d);
end;
if d <0 then
begin if b > 0 then
if (a=0)Vv(b=0))A((c=0)V(d=0))then return_sign(0)
else return_sign(1);
if d =0 then
if a =0 then return_sign(0) else return_sign(—1);
g+ a; a$c c+q;, g —b; b+ —d; d+ q;
end
else if b < 0 then
begin if b < 0 then
if a > 0 then return_sign(—1);
if ¢ =0 then return_sign(0)
else return_sign(—1);
end

This code is used in section 126.

128. To consume a random integer, the program below will say ‘mext_random’ and then it will fetch
randoms [j_random).
define next_random =
if j_random = 0 then new_randoms
else decr(j_random)

procedure new_randoms;

var k: 0..54; {index into randoms }
x: integer; {accumulator }

begin for k£ <+ 0 to 23 do
begin = + randoms[k] — randoms|k + 31];
if £ <0 then z < x + fraction_one;
randoms[k] < x;
end;

for k <+ 24 to 54 do
begin z + randoms[k] — randoms|k — 24];
if £ <0 then z < x + fraction_one;
randoms[k] < x;
end;

j-random <— 54;

end;

54 PART 7B: RANDOM NUMBERS XATEX §129

129. To initialize the randoms table, we call the following routine.

procedure init_-randoms(seed : integer);
var j,jj,k: integer; {more or less random integers }
i: 0..54; {index into randoms }
begin j <+ abs(seed);
while j > fraction_one do j < halfp(j);
k<« 1;
for i < 0 to 54 do
begin jj < k; k<« j—k; j < jj;
if £ <0 then k <+ k + fraction_one;
randoms|[(i * 21) mod 55] < j;
end;
new_randoms; new-randoms; new_randoms; { “warm up” the array }
end;

130. To produce a uniform random number in the range 0 < u <z or 0 > u >z or 0 = u = x, given a
scaled value x, we proceed as shown here.

Note that the call of take_frac will produce the values 0 and = with about half the probability that it will
produce any other particular values between 0 and z, because it rounds its answers.
function unif rand(x : integer): integer;

var y: integer; {trial value }

begin next_random; y + take_frac(abs(x), randoms[j-random));

if y = abs(x) then unif-rand < 0

else if x > 0 then unif-rand <y

else unif-rand < —y;
end;

131. Finally, a normal deviate with mean zero and unit standard deviation can readily be obtained with
the ratio method (Algorithm 3.4.1R in The Art of Computer Programming).

function norm_rand: integer;
var z,u,l: integer; {what the book would call 216X, 228U and —22*1nU }
begin repeat repeat next_random; x < take_frac(112429, randoms[j-random) — fraction_half);
{216,/8/e ~ 112428.82793 }
next_random; u < randoms[j-random];
until abs(z) < u;
x + make_frac(z,u); | < 139548960 — m_log(u); {22*-121In2 ~ 139548959.6165 }
until ab_vs_cd(1024,1, x,2) > 0;
norm_rand < x;
end;

6132 XyIpxX PART 8: PACKED DATA 55

132. Packed data. In order to make efficient use of storage space, TEX bases its major data structures
on a memory_word, which contains either a (signed) integer, possibly scaled, or a (signed) glue_ratio, or a
small number of fields that are one half or one quarter of the size used for storing integers.

If x is a variable of type memory_word, it contains up to four fields that can be referred to as follows:

xz.int (an integer)

x.s¢ (a scaled integer)

z.gr (a glue_ratio)
x.hh.lh, x.hh.rh (two halfword fields)

x.hh.b0, x.hh.b1, x.hh.Th (two quarterword fields, one halfword field)
r.9qqq.b0, x.qqqq.b1, x.9qqq.b2, x.qqqq.b3 (four quarterword fields)

This is somewhat cumbersome to write, and not very readable either, but macros will be used to make the
notation shorter and more transparent. The Pascal code below gives a formal definition of memory_word and
its subsidiary types, using packed variant records. TEX makes no assumptions about the relative positions
of the fields within a word.

Since we are assuming 32-bit integers, a halfword must contain at least 16 bits, and a quarterword must
contain at least 8 bits. But it doesn’t hurt to have more bits; for example, with enough 36-bit words you
might be able to have mem_maz as large as 262142, which is eight times as much memory as anybody had
during the first four years of TEX’s existence.

N.B.: Valuable memory space will be dreadfully wasted unless TEX is compiled by a Pascal that packs
all of the memory_word variants into the space of a single integer. This means, for example, that glue_ratio
words should be short_real instead of real on some computers. Some Pascal compilers will pack an integer
whose subrange is ‘0 .. 255’ into an eight-bit field, but others insist on allocating space for an additional sign
bit; on such systems you can get 256 values into a quarterword only if the subrange is ‘—128 .. 127".

The present implementation tries to accommodate as many variations as possible, so it makes few as-
sumptions. If integers having the subrange ‘min_quarterword .. max_quarterword’ can be packed into a
quarterword, and if integers having the subrange ‘min_halfword .. maz_halfword’ can be packed into a
halfword, everything should work satisfactorily.

It is usually most efficient to have min_quarterword = min_halfword = 0, so one should try to achieve this
unless it causes a severe problem. The values defined here are recommended for most 32-bit computers.

define min_quarterword =0 {smallest allowable value in a quarterword }
define maz_quarterword = "FFFF {largest allowable value in a quarterword }
define min_halfword = —"FFFFFFF {smallest allowable value in a halfword }
define maz_halfword = "3FFFFFFF {largest allowable value in a halfword }

133. Here are the inequalities that the quarterword and halfword values must satisfy (or rather, the
inequalities that they mustn’t satisfy):

(Check the “constant” values for consistency 14) +=
init if (mem_min # mem_bot) V (mem_-maz # mem_top) then bad < 10;
tini
if (mem_min > mem_bot) V (mem_maz < mem_top) then bad + 10;
if (min_quarterword > 0) V (maz_quarterword < "TFFF) then bad < 11;
if (min_halfword > 0) V (maz_halfword < "3FFFFFFF) then bad < 12;
if (min_quarterword < min_halfword) V (max_quarterword > max_-halfword) then bad + 13;
if (mem_min < min_halfword) vV (mem_maz > maz_halfword) Vv
(mem_bot — mem_min > maz_halfword + 1) then bad + 14;
if (font_base < min_quarterword) V (font-mazx > maz_quarterword) then bad <+ 15;
if font-maxz > font_base + 256 then bad <+ 16;
if (save_size > max_halfword) V (maz_strings > maz_halfword) then bad < 17,
if buf-size > maz_halfword then bad + 18;
if maz_quarterword — min_quarterword < "FFFF then bad < 19;

56 PART 8: PACKED DATA XATEX — §134

134. The operation of adding or subtracting min_quarterword occurs quite frequently in TEX, so it is
convenient to abbreviate this operation by using the macros ¢i and go for input and output to and from
quarterword format.

The inner loop of TEX will run faster with respect to compilers that don’t optimize expressions like ‘xz + 0’
and ‘z — 0, if these macros are simplified in the obvious way when min_quarterword = 0.

define qi(#) = # + min_quarterword {to put an eight_bits item into a quarterword }
define qo(#) = # — min_quarterword {to take an eight_bits item out of a quarterword }
define hi(#) = # + min_halfword {to put a sixteen-bit item into a halfword }

define ho(#) = # — min_halfword {to take a sixteen-bit item from a halfword }

135. The reader should study the following definitions closely:
define sc = int { scaled data is equivalent to integer }

(Types in the outer block 18) +=
quarterword = min_quarterword .. maz_quarterword; {1/4 of a word }
halfword = min_halfword .. max_halfword; {1/2 of a word }
two_choices =1 ..2; {used when there are two variants in a record }
four_choices =1 ..4; {used when there are four variants in a record }
two_halves = packed record rh: halfword;
case two_choices of
1: (Ih : halfword);
2: (b0 : quarterword; bl : quarterword);
end;
four_quarters = packed record b0: quarterword;
b1: quarterword;
b2: quarterword;
b3: quarterword;
end;
memory-word = record
case four_choices of
1: (int : integer);
2: (gr : glue_ratio);
3: (hh : two_halves);
4: (qqqq : four_quarters);
end;
word_file = gzFile;

136. When debugging, we may want to print a memory_word without knowing what type it is; so we print
it in all modes.

debug procedure print-word(w : memory_word); {prints w in all ways }

begin print_int (w.int); print_char(",");

print_scaled (w.sc); print_char(",");

print_scaled (round (unity float (w.gr))); print_ln;

print_int (w.hh.lh); print_char("="); print_int(w.hh.b0); print_char(":"); print_int(w.hh.b1);
print_char(";"); print_int(w.hh.rh); print_char(",");

print_int (w.qqqq.b0); print_char(":"); print_int (w.qqqq.b1); print_char(":"); print_int(w.qqqq.b2);
print_char(":"); print_int(w.qqqq.b3);

end;

gubed

6137 XyIpX PART 9: DYNAMIC MEMORY ALLOCATION 57

137. Dynamic memory allocation. The TEX system does nearly all of its own memory allocation, so
that it can readily be transported into environments that do not have automatic facilities for strings, garbage
collection, etc., and so that it can be in control of what error messages the user receives. The dynamic storage
requirements of TEX are handled by providing a large array mem in which consecutive blocks of words are
used as nodes by the TEX routines.

Pointer variables are indices into this array, or into another array called eqtb that will be explained later.
A pointer variable might also be a special flag that lies outside the bounds of mem, so we allow pointers to
assume any halfword value. The minimum halfword value represents a null pointer. TEX does not assume
that mem[null] exists.

define pointer = halfword {a flag or a location in mem or eqtb }
define null = min_halfword { the null pointer }

(Global variables 13) +=
temp_ptr: pointer; {a pointer variable for occasional emergency use }

138. The mem array is divided into two regions that are allocated separately, but the dividing line between
these two regions is not fixed; they grow together until finding their “natural” size in a particular job.
Locations less than or equal to lo_mem_max are used for storing variable-length records consisting of two
or more words each. This region is maintained using an algorithm similar to the one described in exercise
2.5-19 of The Art of Computer Programming. However, no size field appears in the allocated nodes; the
program is responsible for knowing the relevant size when a node is freed. Locations greater than or equal
to hi_mem_min are used for storing one-word records; a conventional AVAIL stack is used for allocation in
this region.

Locations of mem between mem_bot and mem_top may be dumped as part of preloaded format files, by
the INITEX preprocessor. Production versions of TEX may extend the memory at both ends in order to
provide more space; locations between mem_min and mem_bot are always used for variable-size nodes, and
locations between mem_top and mem_max are always used for single-word nodes.

The key pointers that govern mem allocation have a prescribed order:

null < mem_min < mem_bot < lo_mem_maz < hi_mem_min < mem_top < mem_end < mem_mazx.

Empirical tests show that the present implementation of TEX tends to spend about 9% of its running time
allocating nodes, and about 6% deallocating them after their use.

{ Global variables 13) +=

mem: array [mem-min .. mem_maz] of memory_-word; {the big dynamic storage area }
lo_mem_maz: pointer; {the largest location of variable-size memory in use }
hi_mem_min: pointer; {the smallest location of one-word memory in use }

139. In order to study the memory requirements of particular applications, it is possible to prepare a
version of TEX that keeps track of current and maximum memory usage. When code between the delimiters
stat ... tats is not “commented out,” TEX will run a bit slower but it will report these statistics when
tracing_stats is sufficiently large.

(Global variables 13) +=
var_used , dyn_used: integer; {how much memory is in use }

58 PART 9: DYNAMIC MEMORY ALLOCATION XTEX §140

140. Let’s consider the one-word memory region first, since it’s the simplest. The pointer variable mem_end
holds the highest-numbered location of mem that has ever been used. The free locations of mem that occur
between hi_mem_min and mem_end, inclusive, are of type two_halves, and we write info(p) and link (p) for
the Ih and rh fields of mem[p] when it is of this type. The single-word free locations form a linked list

avail, link (avail), link (link (avail)), ...

terminated by null.

define link(#) = mem[#].hh.rh {the link field of a memory word }
define info(#) = mem[#].hh.lh {the info field of a memory word }

(Global variables 13) +=
avail: pointer; {head of the list of available one-word nodes }
mem_end: pointer; {the last one-word node used in mem }

141. If memory is exhausted, it might mean that the user has forgotten a right brace. We will define some
procedures later that try to help pinpoint the trouble.

(Declare the procedure called show_token_list 322)
(Declare the procedure called runaway 336)

142. The function get_avail returns a pointer to a new one-word node whose link field is null. However,
TEX will halt if there is no more room left.

If the available-space list is empty, i.e., if avail = null, we try first to increase mem_end. If that cannot
be done, i.e., if mem_end = mem_max, we try to decrease hi_mem_min. If that cannot be done, i.e., if
hi-mem_min = lo_mem_max + 1, we have to quit.

function get_avail: pointer; {single-word node allocation }
var p: pointer; {the new node being got }
begin p + avail; {get top location in the avail stack }
if p # null then avail « link(avail) {and pop it off }
else if mem_end < mem_maz then {or go into virgin territory }
begin incr(mem_end); p < mem_end;
end
else begin decr(hi-mem_min); p < hi_mem_min;
if hiimem_min < lo_mem_maxz then
begin runaway; {if memory is exhausted, display possible runaway text }
overflow ("main_memory size", mem_maz + 1 — mem_min); {quit; all one-word nodes are busy }
end;
end;
link (p) < null; {provide an oft-desired initialization of the new node }
stat incr(dyn_used); tats { maintain statistics }
get_avail < p;
end;

143. Conversely, a one-word node is recycled by calling free_avail. This routine is part of TEX’s “inner
loop,” so we want it to be fast.

define free_avail(#) = {single-word node liberation }
begin link (#) < avail; avail <+ #;
stat decr(dyn_used); tats
end

8144 XATEX PART 9: DYNAMIC MEMORY ALLOCATION 59

144. There’s also a fast_get_avail routine, which saves the procedure-call overhead at the expense of extra
programming. This routine is used in the places that would otherwise account for the most calls of get_avail.

define fast_get_avail (#) =
begin # < avail; {avoid get_avail if possible, to save time }
if # = null then # < get_avail
else begin avail + link(#); link(#) < null;
stat incr(dyn_used); tats
end;
end

145. The procedure flush_list(p) frees an entire linked list of one-word nodes that starts at position p.

procedure flush_list(p : pointer); {makes list of single-word nodes available }
var ¢,r: pointer; {list traversers }
begin if p # null then
begin r < p;
repeat q < r; r « link(r);
stat decr(dyn_used); tats
until r = null; {now g is the last node on the list }
link(q) + avail; avail < p;
end;
end;

146. The available-space list that keeps track of the variable-size portion of mem is a nonempty, doubly-
linked circular list of empty nodes, pointed to by the roving pointer rover.

Each empty node has size 2 or more; the first word contains the special value maz_halfword in its link
field and the size in its info field; the second word contains the two pointers for double linking.

Each nonempty node also has size 2 or more. Its first word is of type two_halves, and its link field is never
equal to max_halfword. Otherwise there is complete flexibility with respect to the contents of its other fields
and its other words.

(We require mem_maz < maz_halfword because terrible things can happen when maz_halfword appears
in the link field of a nonempty node.)

define empty_flag = maz_halfword {the link of an empty variable-size node }
define is_empty (#) = (link (#) = empty_flag) { tests for empty node }

define node_size = info {the size field in empty variable-size nodes }

define llink(#) = info(# +1) {left link in doubly-linked list of empty nodes }
define rlink (#) = link(#+ 1) {right link in doubly-linked list of empty nodes }

(Global variables 13) +=
rover: pointer; {points to some node in the list of empties }

60 PART 9: DYNAMIC MEMORY ALLOCATION XX §147

147. A call to get_-node with argument s returns a pointer to a new node of size s, which must be 2 or
more. The link field of the first word of this new node is set to null. An overflow stop occurs if no suitable
space exists.
If get_node is called with s = 230, it simply merges adjacent free areas and returns the value maz_halfword.
function get_node(s : integer): pointer; {variable-size node allocation }
label found, exit, restart;
var p: pointer; {the node currently under inspection }
q: pointer; {the node physically after node p }
r: integer; {the newly allocated node, or a candidate for this honor }
t: integer; {temporary register }
begin restart: p < rover; {start at some free node in the ring }
repeat (Try to allocate within node p and its physical successors, and goto found if allocation was
possible 149);
p < rlink(p); {move to the next node in the ring }
until p = rover; {repeat until the whole list has been traversed }
if s = 10000000000 then
begin get_node < max_halfword; return;
end;
if lo_mem_max + 2 < hi_mem_min then
if lo_mem_maz + 2 < mem_bot + mazx_halfword then
(Grow more variable-size memory and goto restart 148);
overflow ("maing memory size", mem_max + 1 — mem_min); {sorry, nothing satisfactory is left }
found: link(r) < null; {this node is now nonempty }
stat var_used < var_used + s; {maintain usage statistics }
tats
get_node < r;
exrit: end;

148. The lower part of mem grows by 1000 words at a time, unless we are very close to going under. When
it grows, we simply link a new node into the available-space list. This method of controlled growth helps to
keep the mem usage consecutive when TEX is implemented on “virtual memory” systems.

(Grow more variable-size memory and goto restart 148) =
begin if hi_mem_min — loomem_maz > 1998 then t < lo_mem_mazx + 1000
else t « loomem_max + 1+ (hi-mem_min — lo_mem_maz) div 2; {lo-mem_max +2 <t < hi_mem_min }
p < llink (rover); q < lo_mem_maz; rlink(p) < q; link(rover) < g;
if ¢ > mem_bot + max_halfword then t < mem_bot + max_halfword;
rlink (q) < rover; llink(q) < p; link(q) < empty_flag; node_size(q) < t — lo-mem_maz;
lo_mem_maz <+ t; link(lo-mem_max) < null; info(loomem_maz) < null; rover + ¢; goto restart;
end

This code is used in section 147.

6149 XyIpX PART 9: DYNAMIC MEMORY ALLOCATION 61

149. Empirical tests show that the routine in this section performs a node-merging operation about 0.75
times per allocation, on the average, after which it finds that » > p + 1 about 95% of the time.

(Try to allocate within node p and its physical successors, and goto found if allocation was possible 149) =

q + p+ node_size(p); {find the physical successor }
while is_empty(q) do {merge node p with node ¢}

begin t « rlink(q);

if ¢ = rover then rover « t;

link (t) < llink(q); rlink (llink(q)) < t;

q + q+ node_size(q);

end;
T4 q—S;
if » > p+ 1 then (Allocate from the top of node p and goto found 150);
if r = p then

if rlink(p) # p then (Allocate entire node p and goto found 151);
node_size(p) +— ¢ —p {reset the size in case it grew }

This code is used in section 147.

150. (Allocate from the top of node p and goto found 150) =
begin node_size(p) <~ r — p; {store the remaining size }
rover < p; {start searching here next time }
goto found;
end

This code is used in section 149.

151. Here we delete node p from the ring, and let rover rove around.

(Allocate entire node p and goto found 151) =
begin rover « rlink(p); t < llink(p); llink(rover) < t; rlink(t) < rover; goto found;
end

This code is used in section 149.

152. Conversely, when some variable-size node p of size s is no longer needed, the operation free_node(p, s)
will make its words available, by inserting p as a new empty node just before where rover now points.

procedure free_node(p : pointer; s : halfword); {variable-size node liberation }
var ¢: pointer; {llink(rover) }
begin node_size(p) < s; link(p) < empty_flag; q < llink(rover); llink(p) « q; rlink(p) < rover;
{'set both links }
llink (rover) < p; rlink(q) < p; {insert p into the ring }
stat var_used < var_used — s; tats { maintain statistics }
end;

62 PART 9: DYNAMIC MEMORY ALLOCATION XTEX §153

153. Just before INITEX writes out the memory, it sorts the doubly linked available space list. The list is
probably very short at such times, so a simple insertion sort is used. The smallest available location will be
pointed to by rover, the next-smallest by rlink (rover), etc.

init procedure sort_avail; {sorts the available variable-size nodes by location }
var p,q,r: pointer; {indices into mem }
old_rover: pointer; {initial rover setting }
begin p + get_node(’10000000000); {merge adjacent free areas }
p < rlink (rover); rlink (rover) < maz_halfword; old_rover « rover;
while p # old_rover do (Sort p into the list starting at rover and advance p to rlink (p) 154);
P < Tover;
while rlink (p) # maz_halfword do
begin llink (rlink (p)) < p; p < rlink(p);
end;
rlink (p) < rover; llink (rover) < p;
end;
tini

154. The following while loop is guaranteed to terminate, since the list that starts at rover ends with
maz_halfword during the sorting procedure.

(Sort p into the list starting at rover and advance p to rlink(p) 154) =
if p < rover then
begin g + p; p « rlink(q); rlink(q) < rover; rover « g;
end
else begin ¢ < rover;
while rlink(q) < p do ¢ < rlink(q);
r « rlink(p); rlink(p) < rlink(q); rlink(q) < p; p < 7;
end

This code is used in section 153.

8155 XATEX PART 10: DATA STRUCTURES FOR BOXES AND THEIR FRIENDS 63

155. Data structures for boxes and their friends. From the computer’s standpoint, TEX’s chief
mission is to create horizontal and vertical lists. We shall now investigate how the elements of these lists are
represented internally as nodes in the dynamic memory.

A horizontal or vertical list is linked together by link fields in the first word of each node. Individual
nodes represent boxes, glue, penalties, or special things like discretionary hyphens; because of this variety,
some nodes are longer than others, and we must distinguish different kinds of nodes. We do this by putting
a ‘type’ field in the first word, together with the link and an optional ‘subtype’.

define type(#) = mem[#].hh.b0 {identifies what kind of node this is }
define subtype (#) = mem[#].hh.b1 {secondary identification in some cases }

156. A char_node, which represents a single character, is the most important kind of node because it
accounts for the vast majority of all boxes. Special precautions are therefore taken to ensure that a char_node
does not take up much memory space. Every such node is one word long, and in fact it is identifiable by this
property, since other kinds of nodes have at least two words, and they appear in mem locations less than
hi_mem_min. This makes it possible to omit the type field in a char_node, leaving us room for two bytes
that identify a font and a character within that font.

Note that the format of a char_node allows for up to 256 different fonts and up to 256 characters per font;
but most implementations will probably limit the total number of fonts to fewer than 75 per job, and most
fonts will stick to characters whose codes are less than 128 (since higher codes are more difficult to access
on most keyboards).

Extensions of TEX intended for oriental languages will need even more than 256 x 256 possible characters,
when we consider different sizes and styles of type. It is suggested that Chinese and Japanese fonts be handled
by representing such characters in two consecutive char_node entries: The first of these has font = font_base,
and its link points to the second; the second identifies the font and the character dimensions. The saving
feature about oriental characters is that most of them have the same box dimensions. The character field of
the first char_node is a “charext” that distinguishes between graphic symbols whose dimensions are identical
for typesetting purposes. (See the METAFONT manual.) Such an extension of TEX would not be difficult;
further details are left to the reader.

In order to make sure that the character code fits in a quarterword, TEX adds the quantity min_quarterword
to the actual code.

Character nodes appear only in horizontal lists, never in vertical lists.

define is_char_node(#) = (# > hi_mem_min) {does the argument point to a char_node? }
define font = type {the font code in a char_node }
define character = subtype {the character code in a char_node }

64 PART 10: DATA STRUCTURES FOR BOXES AND THEIR FRIENDS XqTEX §157

157. An hlist_node stands for a box that was made from a horizontal list. Each hlist_node is seven words
long, and contains the following fields (in addition to the mandatory type and link, which we shall not
mention explicitly when discussing the other node types): The height and width and depth are scaled
integers denoting the dimensions of the box. There is also a shift_amount field, a scaled integer indicating
how much this box should be lowered (if it appears in a horizontal list), or how much it should be moved to
the right (if it appears in a vertical list). There is a list_ptr field, which points to the beginning of the list
from which this box was fabricated; if list_ptr is null, the box is empty. Finally, there are three fields that
represent the setting of the glue: glue_set(p) is a word of type glue_ratio that represents the proportionality
constant for glue setting; glue_sign(p) is stretching or shrinking or normal depending on whether or not the
glue should stretch or shrink or remain rigid; and glue_order(p) specifies the order of infinity to which glue
setting applies (normal, fil, fill, or filll). The subtype field is not used in TEX. In e-TEX the subtype field
records the box direction mode boz_Ir.

define hlist_node =0 { type of hlist nodes }

define box_node_size =7 {number of words to allocate for a box node }
define width_offset =1 { position of width field in a box node }

define depth_offset =2 {position of depth field in a box node }

define height_offset =3 { position of height field in a box node }

define width (#) = mem[# + width_offset].sc { width of the box, in sp }

define depth(#) = mem[# + depth_offset].sc { depth of the box, in sp }

define height (#) = mem[# + height_offset].sc { height of the box, in sp }
define shift_amount (#) = mem[# + 4].sc { repositioning distance, in sp }
define list_offset =5 { position of list_ptr field in a box node }

define list_ptr(#) = link (# + list_offset) { beginning of the list inside the box }
define glue_order (#) = subtype (# + list_offset) {applicable order of infinity }
define glue_sign (#) = type(# + list_offset) { stretching or shrinking }

define normal =0 {the most common case when several cases are named }
define stretching =1 { glue setting applies to the stretch components }
define shrinking =2 { glue setting applies to the shrink components }

define glue_offset =6 { position of glue_set in a box node }

define glue_set(#) = mem[# + glue_offset].gr {a word of type glue_ratio for glue setting }

158. The new_null_box function returns a pointer to an hlist_node in which all subfields have the values
corresponding to ‘\hbox{}’. (The subtype field is set to min_quarterword, for historic reasons that are no
longer relevant.)

function new_null_box: pointer; {creates a new box node }
var p: pointer; {the new node }
begin p « get_node (box_node_size); type(p) < hlist_node; subtype(p) <— min_quarterword;
width (p) < 0; depth(p) « 0; height(p) < 0; shift_amount(p) < 0; list_ptr(p) < null;
glue_sign (p) < normal; glue_order (p) < normal; set_glue_ratio_zero(glue_set(p)); new_null_box + p;
end;

)

159. A vlist_node is like an hlist_node in all respects except that it contains a vertical list.

define vlist_.node =1 { type of vlist nodes }

8160 XATEX PART 10: DATA STRUCTURES FOR BOXES AND THEIR FRIENDS 65

160. A rule_node stands for a solid black rectangle; it has width, depth, and height fields just as in an
hlist_node. However, if any of these dimensions is —23°, the actual value will be determined by running the
rule up to the boundary of the innermost enclosing box. This is called a “running dimension.” The width is
never running in an hlist; the height and depth are never running in a vlist.

define rule_node =2 { type of rule nodes }

define rule_node_size =4 {number of words to allocate for a rule node }
define null_flag = — 10000000000 { —23°, signifies a missing item }
define is_running(#) = (# = null_flag) {tests for a running dimension }

161. A new rule node is delivered by the new_rule function. It makes all the dimensions “running,” so you
have to change the ones that are not allowed to run.

function new_rule: pointer;
var p: pointer; {the new node }
begin p + get_node(rule_node_size); type(p) < rule_node; subtype(p) < 0; {the subtype is not used }
width (p) < null_flag; depth(p) + null_flag; height(p) < null_flag; new_rule < p;
end;

162. Insertions are represented by ins_node records, where the subtype indicates the corresponding box
number. For example, ‘\insert 250’ leads to an ins_.node whose subtype is 250 + min_quarterword. The
height field of an ins_node is slightly misnamed; it actually holds the natural height plus depth of the vertical
list being inserted. The depth field holds the split_max_depth to be used in case this insertion is split, and
the split_top_ptr points to the corresponding split_top_skip. The float_cost field holds the floating_penalty
that will be used if this insertion floats to a subsequent page after a split insertion of the same class. There
is one more field, the ins_ptr, which points to the beginning of the vlist for the insertion.

define ins_node =3 { type of insertion nodes }

define ins_node_size =5 {number of words to allocate for an insertion }
define float_cost(#) = mem[# + 1].int { the floating_penalty to be used }
define ins_ptr(#) = info(# +4) {the vertical list to be inserted }
define split_top_ptr (#) = link (# +4) {the split_top_skip to be used }

163. A mark_node has a mark_ptr field that points to the reference count of a token list that contains the
user’s \mark text. In addition there is a mark_class field that contains the mark class.

define mark_node =4 {type of a mark node }

define small_node_size =2 {number of words to allocate for most node types }
define mark_ptr(#) = link(#+ 1) {head of the token list for a mark }

define mark_class(#) = info(# +1) {the mark class }

164. An adjust_-node, which occurs only in horizontal lists, specifies material that will be moved out into
the surrounding vertical list; i.e., it is used to implement TEX’s ‘\vadjust’ operation. The adjust_ptr field
points to the vlist containing this material.

define adjust_-node =5 { type of an adjust node }
define adjust_pre = subtype { if subtype # 0 it is pre-adjustment }
{ append_list is used to append a list to tail }

define append_list (#) =

begin link (tail) < link (#); append_list_end
define append_list_end (#) = tail + #;

end
define adjust_ptr(#) = mem[# + 1].int { vertical list to be moved out of horizontal list }

66 PART 10: DATA STRUCTURES FOR BOXES AND THEIR FRIENDS XATEX 8165

165. A ligature_node, which occurs only in horizontal lists, specifies a character that was fabricated from
the interaction of two or more actual characters. The second word of the node, which is called the lig_char
word, contains font and character fields just as in a char_node. The characters that generated the ligature
have not been forgotten, since they are needed for diagnostic messages and for hyphenation; the lig_ptr field
points to a linked list of character nodes for all original characters that have been deleted. (This list might
be empty if the characters that generated the ligature were retained in other nodes.)

The subtype field is 0, plus 2 and/or 1 if the original source of the ligature included implicit left and/or
right boundaries.

define ligature_node =6 { type of a ligature node }
define lig_char(#) =#+1 {the word where the ligature is to be found }
define lig_ptr(#) = link (lig-char (#)) { the list of characters }

166. The new_ligature function creates a ligature node having given contents of the font, character, and
lig_ptr fields. We also have a new_lig_item function, which returns a two-word node having a given character
field. Such nodes are used for temporary processing as ligatures are being created.

function new_ligature(f,c: quarterword; q : pointer): pointer;
var p: pointer; {the new node }
begin p + get_node(small_-node_size); type(p) + ligature_node; font(lig-char(p)) < f;
character (lig_char (p)) < ¢; lig_ptr(p) < q; subtype(p) < 0; new_ligature < p;
end;

function new_lig_item (c : quarterword): pointer;
var p: pointer; {the new node}
begin p « get-node(small_node_size); character(p) < c¢; lig-ptr(p) < null; new_lig_item < p;
end;

167. A disc_node, which occurs only in horizontal lists, specifies a “discretionary” line break. If such a
break occurs at node p, the text that starts at pre_break (p) will precede the break, the text that starts at
post_break (p) will follow the break, and text that appears in the next replace_count (p) nodes will be ignored.
For example, an ordinary discretionary hyphen, indicated by ‘\-’, yields a disc_node with pre_break pointing
to a char_node containing a hyphen, post_break = null, and replace_count = 0. All three of the discretionary
texts must be lists that consist entirely of character, kern, box, rule, and ligature nodes.

If pre_break (p) = null, the ex_hyphen_penalty will be charged for this break. Otherwise the hyphen_penalty
will be charged. The texts will actually be substituted into the list by the line-breaking algorithm if it decides
to make the break, and the discretionary node will disappear at that time; thus, the output routine sees only
discretionaries that were not chosen.

define disc.node =7 { type of a discretionary node }

define replace_count = subtype {how many subsequent nodes to replace }
define pre_break = llink {text that precedes a discretionary break }
define post_break = rlink {text that follows a discretionary break }

function new_disc: pointer; {creates an empty disc_node }
var p: pointer; {the new node }
begin p + get_node(small_node_size); type(p) < disc_node; replace_count(p) < 0; pre_break (p) + null;
post_break (p) < null; new_disc + p;
end;

6168 XyIpX PART 10: DATA STRUCTURES FOR BOXES AND THEIR FRIENDS 67

168. A whatsit_node is a wild card reserved for extensions to TEX. The subtype field in its first word says
what ‘whatsit’ it is, and implicitly determines the node size (which must be 2 or more) and the format of the
remaining words. When a whatsit_node is encountered in a list, special actions are invoked; knowledgeable
people who are careful not to mess up the rest of TEX are able to make TEX do new things by adding code
at the end of the program. For example, there might be a ‘TgpXnicolor’ extension to specify different colors
of ink, and the whatsit node might contain the desired parameters.

The present implementation of TEX treats the features associated with ‘\write’ and ‘\special’ as if they
were extensions, in order to illustrate how such routines might be coded. We shall defer further discussion
of extensions until the end of this program.

define whatsit-node = 8 { type of special extension nodes }

68 PART 10: DATA STRUCTURES FOR BOXES AND THEIR FRIENDS XATEX §169

169. To support “native” fonts, we build native_word_nodes, which are variable size whatsits. These have
the same width, depth, and height fields as a box_node, at offsets 1-3, and then a word containing a size field
for the node, a font number, a length, and a glyph count. Then there is a field containing a C pointer to a
glyph info array; this and the glyph count are set by set_native_metrics. Copying and freeing of these nodes
needs to take account of this! This is followed by 2 * length bytes, for the actual characters of the string (in
UTF-16).

So native_node_size, which does not include any space for the actual text, is 6.

0-3 whatsits subtypes are used for open, write, close, special; 4 is language; pdfTEX uses up through
30-something, so we use subtypes starting from 40.

There are also glyph_nodes; these are like native_word_nodes in having width, depth, and height fields, but
then they contain a glyph ID rather than size and length fields, and there’s no subsidiary C pointer.

define native_word_node = 40 { subtype of whatsits that hold native_font words }
define native_word_node_AT =41 {a native_word_node that should output ActualText }
define is_native_word_subtype (#) = ((subtype(#) > native_word_node) A (subtype(#) <

native_word-node_AT))
define glyph_node =42 { subtype in whatsits that hold glyph numbers }