
mol2chemfig Documentation

Version 1.5

November 25, 2019

Abstract

mol2chemfig is a Python program that generates TEX graphics of chemical structures provided in
molfile or SMILES format. Its output is written in the syntax of the chemfig package, which in
turn is based on TiKZ. Thus, both these packages are required in order to compile mol2chemfig’s
output. The program is available a) through a web interface, b) for local installation, and c) as a command
line-driven thin client. The thin client is a Lua script that is designed to work with the Lua interpreted
embedded in LuaTeX, which is part of all recent TeXLive versions.

Contents

1 A few examples 1

2 Installation 2
2.1 LATEX requirements . 3

2.2 Local installation . 3

2.3 Installing the Lua web client . 3

2.4 ConTeXt compatibility . 3

3 chemfig version compatibility 4

4 Getting help 4

5 Tutorial 6
5.1 Input modes . 6

5.2 Output destination and formats . 7

5.3 Adding and deleting hydrogens . 9

5.4 Bond lengths . 10

5.5 Tweaking the appearance of bonds . 10

5.6 Recalculating coordinates . 12

5.7 Working with sub-molecules . 12

5.8 Using generated code in composite figures . 15

6 Invoking mol2chemfig from within LATEX 18

1

7 chemfig settings used in this document 19

8 Conclusion 19

9 Acknowledgments 19

1 A few examples

The following is a SMILES representation of caffeine, contained in the file caffeine.smi:

CN1C=NC2=C1C(=O)N(C(=O)N2C)C

We can turn this into chemfig code with the following command:1

mol2chemfig -zw caffeine.smi > caffeine-smi.tex

This writes the following chemfig code to the target file:

\chemfig{-[:138]N-[:84]=ˆ[:156]N-[:228]=ˆ[:300](-[:12])-[:240](%
=[:300]O)-[:180]N(-[:240])-[:120](=[:180]O)-[:60]N(-)-[:120]}

If we load this file with \input{caffeine-smi.tex}, we get the following result2

N

N

O

N

O

N

which is almost what we want. We adjust the rotation of the molecule and also tweak its appearance a little:

mol2chemfig -zwom -a -30 caffeine.smi > caffeine-smi2.tex

With these modifications, the structure looks as follows:

CH3

N

N

O

N
CH3

O N

CH3

Small molecules like caffeine are fairly easy to create with chemfig alone. Hand-written chemfig
code will look cleaner and more concise than the code generated by mol2chemfig. For example, here
is the hand-coded chemfig version for caffeine that will produce the exact same graphic as the last
mol2chemfig command:

1The examples in this document assume that you have installed the local version of mol2chemfig. If you installed the web
client version, you must use mol2chemfig.lua wherever the listed example commands use mol2chemfig.

2The appearance of the chemical formulas in this document has been tweaked using some settings that are provided by the
chemfig package. The settings used here are listed in Section 7.

2

\chemfig{H_3C-[:30]N**6(-(=O)-(**5(-N(-CH_3)--N-))--N(-CH_3)-(=O)-)}

In particular, the syntax for specifying rings and ring substituents in chemfig is remarkably powerful
and elegant. With a little practice, molecules such as this one can be hand-written with little effort, and
I sincerely recommend that you learn this skill. However, if you need to depict many small molecules,
or fairly large ones, a tool like mol2chemfig will come in handy. Take, for example, the lipopeptide
antibiotic daptomycin, which we in this case load from a molfile:

mol2chemfig -wf daptomycin.mol > daptomycin.tex

O

H
N

NH O

N
H

NH2

O

O

H
N

O

OH

O

N
H

O NH

O

N
H

NH2

O

H
N

OH

O

O

N
H

O

NH

OH

O

ONH

O

H
N

OH

O

NH

OH O

O

N
H

OO

O

NH2

This molecule might take a little longer to code by hand . . .

2 Installation

There are three ways to run mol2chemfig:

1. You can use the web interface at http://chimpsky.uwaterloo.ca/mol2chemfig/

2. You can install the entire program locally and run it from the command line. This requires that you
also install Python and the indigo cheminformatics library.

3. You can install a web client version of mol2chemfig that is operated from the command line. This
is a little program written entirely in Lua, which can be run by the texlua executable that is part of
TeXLive.

2.1 LATEX requirements

In order to use the code generated by mol2chemfig in your documents, you need

1. TiKZ, a large and powerful general graphics package.

3

http://chimpsky.uwaterloo.ca/mol2chemfig/

2. chemfig, which defines the code format used by mol2chemfig and uses TiKZ to render it to
molecule graphics.

3. The mol2chemfig.sty package. This is a fairly small package that defines some auxiliary macros
for mol2chemfig.

Version 1.3 of chemfig changed its interface for setting options; e.g. \setatomsep{16pt} has
been replaced by \setchemfig{atom sep=16pt}. The current version of the mol2chemfig
package has been brought up to date with this change. I will leave an old version of the mol2chemfig
package up on my website (see web interface, above), which you can use in case you have to or want
to use an older version of chemfig.

TiKZ and chemfig are available through TeXLive. Note that the mol2chemfig package will load the
chemfig package for you, which in turn loads TiKZ. Therefore, in your documents, it is sufficient to
include the clause \usepackage{mol2chemfig} in order to load all three of them.

2.2 Local installation

For the full local install of mol2chemfig, you need a Python base installation, and additionally the
indigo cheminformatics tool kit. On at least some Linux distributions, indigo is available through
the package manager. On other systems, manual download (http://lifescience.opensource.
epam.com/indigo/index.html) and installation may be required.

Once you have the prerequisites installed and working, download the mol2chemfig Python code from
CTAN or from http://chimpsky.uwaterloo.ca/mol2chemfig, unzip in a convenient location
and follow the included instructions.

2.3 Installing the Lua web client

This is a Lua script that lets you use the mol2chemfig from the command line, but without having to
install any additional libraries. For instructions, please see the instructions in the included README file
that is within the lua subdirectory contained within the mol2chemfig download.

2.4 ConTeXt compatibility

Currently not available. Volunteers for porting welcome.

3 chemfig version compatibility

Earlier versions of chemfig used a series of named macros to adjust various parameters, for example
\setatomsep{...} to set the regular distance between two atoms in a rendered molecule. In recent
versions of the package, these macros have been replaced with a unified key-value interface that employs a
single macro, e.g.: \setchemfig{atom sep=...}. There is at least one transitional chemfig version
(1.34, which I happen to have installed as of this writing) that understands both.

The mol2chemfig.sty version that accompanies this documentation works only with chemfig ver-
sions which use the \setchemfig{...} interface. If your chemfig version is old and does not have this
macro, then you can download a matching, older version from the mol2chemfig home page. If you have
installed the mol2chemfig program or the Lua client locally, you don’t need to downgrade those; the
required change only affects the mol2chemfig LaTeX package.

4

http://lifescience.opensource.epam.com/indigo/index.html
http://lifescience.opensource.epam.com/indigo/index.html
http://chimpsky.uwaterloo.ca/mol2chemfig
http://chimpsky.uwaterloo.ca/mol2chemfig/download

4 Getting help

When you type mol2chemfig -h or just mol2chemfig, you will see a brief description of the program,
as well as a list of all available options:

mol2chemfig v. 1.5, by Eric Brefo-Mensah and Michael Palmer
mol2chemfig generates chemfig code from molfiles. Usage example:

mol2chemfig --angle=45 --aromatic-circles somefile.mol

Options:
-h, --help Print help message and exit (Default:

False)

-b, --version Print program version and exit (Default:
False)

-i, --input How to interpret the argument. With ’file’,
mol2chemfig expects a filename. With
’direct’, the argument is intrepreted
directly; don’t forget to put quotes around
it. With ’pubchem’, the argument is treated
as an identifier for the PubChem database.
(Default: file)

-z, --terse Remove all whitespace and comments from the
output. If you can still read it
afterwards, Bill Gates wants your resume
(Default: False)

-r, --strict Abide by Indigo’s chemical structure
validation. If true, mol2chemfig will fail
if Indigo reports that something is wrong
with the molecule, like a carbon with five
bonds. If false, mol2chemfig will ignore
such errors (Default: True)

-d, --indent Number of spaces to use for indenting
molecule branches in generated code.
Without effect when ’terse’ option is
passed. Affects only the generated tex
code, not the rendered molecule (Default:
4)

-u, --recalculate-coordinates Discard existing coordinate and calculate
new ones from covalent structure. For
smiles input, this is performed implicitly
(Default: False)

-a, --angle Rotate molecule counterclockwise by this
angle (Default: 0.0)

-v, --relative-angles Use relative bond angles (Default: False)

5

-p, --flip Flip the structure horizontally (Default:
False)

-q, --flop Flip the structure vertically (Default:
False)

-c, --show-carbons Show element symbol for carbon atoms
(Default: False)

-m, --show-methyls Show element symbols for methyl groups
(implied if show-carbons is True) (Default:
False)

-y, --hydrogens How to deal with explicit hydrogen atoms.
One of ’keep’, ’add’ or ’delete’. Note that
’add’ will also trigger calculation of new
coordinates for the entire molecule. Option
’keep’ does nothing (Default: keep)

-o, --aromatic-circles Draw circles instead of double bonds inside
aromatic rings (Default: False)

-f, --fancy-bonds Draw fancier double and triple bonds
(Default: False)

-g, --markers Give each atom and each bond a unique
marker that can be used for attaching
electron movement arrows. With value ’a’,
atom 2 will be labeled @{a2}, and its bond
to atom 5 @{a2-5}. (Default: None)

-n, --atom-numbers Show the molfile number of each atom next
to it. When this option is set, charges and
implicit hydrogens will not be shown
(Default: False)

-s, --bond-scale How to scale the lengths of bonds (one of
’keep’, ’scale’, or ’normalize’) (Default:
normalize)

-t, --bond-stretch Used as scaling factor (with --bond-
scale=scale) or average (with --bond-
scale=normalize) for bond lengths (Default:
1.0)

-w, --wrap-chemfig Wrap generated code into \chemfig{...}
command (Default: False)

-l, --submol-name If a name is given, wrap generated code
into chemfig \definesubmol{name}{...}
command (Default: None)

-e, --entry-atom Number of first atom to be rendered.

6

Relevant only if generated code is to be
used as sub-molecule (Default: None)

-x, --exit-atom Number of last atom to be rendered.
Relevant only if generated code is to be
used as sub-molecule (Default: None)

-k, --cross-bond Specify bonds that should be drawn on top
of others they cross over. Give the start
and the end atoms. Example for one bond:
--cross-bond=5-6 Example for two bonds:
--crossbond=4-8,12-13 (Default: None)

5 Tutorial

In the following, we will work through a series of examples to illustrate the use of some of mol2chemfig’s
options. With all but the most basic examples, it will be assumed that you are familiar with chemfig and
its syntax. If you aren’t, you can still use mol2chemfig, but you will not be able to manually enhance the
chemfig output that it generates—your loss.

5.1 Input modes

By default, if you type mol2chemfig myinput, mol2chemfig expects myinput to be the name of a
file that contains a molecule’s description in either molfile or SMILES format. These are widely used file
formats that can be exported from any chemical drawing program that I am aware of. If you want myinput
to be treated verbatim, rather than as a file name, you say:

mol2chemfig --input=direct ’C1=CC=C(C=C1)O’

or, shorter:

mol2chemfig -i direct ’C1=CC=C(C=C1)O’

When passing a smiles string as in this example, don’t forget to put quotes around it; without them, the shell
will try to expand it and likely cause an error.

There is also the input format ’pubchem’, which makes mol2chemfig expect a numerical identifier for
the pubchem database:

mol2chemfig -i pubchem 996

This retrieves the SDF file for compound no. 996 (which happens to be phenol) from the PubChem database
and uses it as input. The SDF format is a superset of the molfile format and is understood by the program
as well. Obviously, you have to be online for this input mode to work.

7

5.2 Output destination and formats

By default, mol2chemfig simply writes to the terminal (stdout). Use output redirection to send the output
to a file instead:

mol2chemfig -i direct ’C1=CC=C(C=C1)O’ > phenol-smi.tex

This writes the following chemfig code to the file:

HO% 7
-[,,2]% 4

=ˆ[:300]% 3
-% 2

=ˆ[:60]% 1
-[:120]% 6

=ˆ[:180]% 5
(

-[:240]% -> 4
)

If we input this code directly, we will not produce a graphic; instead, we will just see the code itself,
only without the line breaks. To produce a graphic, the code must be enclosed in a \chemfig{...}

macro. This could be done manually by copying and pasting. It is usually more convenient to use the -w or
--wrap-chemfig option:

mol2chemfig -w -i direct ’C1=CC=C(C=C1)O’ > phenol-smi-wrapped.tex

which will produce

\chemfig{
HO% 7

-[,,2]% 4
=ˆ[:300]% 3

-% 2
=ˆ[:60]% 1
-[:120]% 6

=ˆ[:180]% 5
(

-[:240]% -> 4
)

}

This file can then be used with \input{phenol-smi-wrapped} directly:

HO

Note that the following will not work:

\chemfig{\input{phenol-smi.tex}}

8

This is because the \chemfig{...} command puts TEX into an altogether different frame of mind, in
which many other commands, including \input, no longer work as usual.

In addition to the option --wrap-chemfig or -w, there is also the option --submol-name or -l, which
will wrap the generated code into a \definesubmol macro:

mol2chemfig -l phenol -i direct ’C1=CC=C(C=C1)O’ > phenol-as-submol.tex

This produces

\definesubmol{phenol}{
HO% 7

-[,,2]% 4
=ˆ[:300]% 3

-% 2
=ˆ[:60]% 1
-[:120]% 6

=ˆ[:180]% 5
(

-[:240]% -> 4
)

}

The \definesubmol macro is implemented by chemfig and defines a named shortcut for a molecule
or fragment. This is useful if you want to integrate the generated code into larger, manually assembled
structures or drawings. We will revisit this topic below.

In the file listings above, each atom appears on a separate line and is annotated by a comment with its
number. The % -> in the last line indicates that this bond does not create a new atom but instead connects
back to atom number 4 to close a ring.

The formatting and annotation in the code example above is useful if you want to manually edit the generated
code. If this is not required, you can create more compact output with option --terse or -z:

mol2chemfig -zw -i direct ’C1=CC=C(C=C1)O’ > phenol-smi-terse.tex

The generated code is equivalent, but with comments and whitespace stripped out:

\chemfig{HO-[,,2]=ˆ[:300]-=ˆ[:60]-[:120]=ˆ[:180](-[:240])}

5.3 Adding and deleting hydrogens

The next example renders an SDF file for doxorubicin, downloaded from PubChem3

mol2chemfig -w doxorubicin.sdf > doxo-raw.tex

This gives us
3We could also just have used the -i pubchem option, but since we are going to reuse the file, a local copy is handy.

9

O

H

H
O

H

O

H

H

H

O

H

O
H

H

H

H

H

H
H

N
H H

H

O
H

H

H H

O
H

O
H

O

O
H

H

H

O H

H
H

Yikes. Let’s remove the explicit hydrogens with option --hydrogens=delete or -y delete:

mol2chemfig -w -y delete doxorubicin.sdf > doxo-stripped.tex

This gives

HOOH

O

OO

NH2

OH

OH

OH O

O

O

It is also possible to add hydrogens to a structure that does not supply them; for example:

mol2chemfig -y add -w -i direct ’C1=CC=C(C=C1)O’ > phenol-with-hydrogens.tex

produces

H

HH

O

H

H H

By default, mol2chemfig neither removes nor adds hydrogens. Note also that adding hydrogens will
trigger coordinate recalculation (see section 5.6).

5.4 Bond lengths

You will have noticed that, in the above doxorubicin example, the removal of the hydrogens was accompa-
nied by a reduction in length of the remaining bonds. This happened because, by default, mol2chemfig

10

scales all bond lengths such that the most frequently occurring bond length is set equal to 1. In the unstripped
version, the most frequent bonds were those to the explicit hydrogens. These were very short, which caused
all other bonds to be unduly extended. Stripping the hydrogens restored a more proportioned appearance.

There are two mechanisms with which we can explicitly change the bond lengths:

1. Within mol2chemfig, you can use the --bond-scale or -s option, usually in combination with
the --bond-stretch or -t option.

2. Within chemfig, you can set the unit bond length with e.g. \setchemfig{atom sep=16pt}.
This sets the length of a bond whose length is equals 1 (the default) inside the \chemfig macro.

The \setchemfig approach is straightforward; in this document, \setchemfig{atom sep=16pt} has
been used throughout. The two mol2chemfig options need a bit more explaining. The --bond-scale
or -s option defines mol2chemfig’s overall behavior:

• With a setting of --bond-scale=keep, mol2chemfig will leave the bond lengths entirely alone;
the --bond-stretch option will have no effect in this case.

• With --bond-scale=normalize, which is the default, all bonds will be scaled such that the most
frequently occurring bond length is set to the value of the --bond-stretch option, which defaults
to 1.

• With --bond-scale=scale, the value of --bond-stretch will be used as a multiplier to the
native length of each bond, as contained in the input file; no normalization will occur in this case.

Thus, the meaning of the --bond-stretch option depends on the setting of the --bond-scale option.

5.5 Tweaking the appearance of bonds

The plain command

mol2chemfig -w morphine.mol > morphine.tex

produces

HO OHO

N

which can be improved. First, we may want to give the double (and, if present, triple) bonds a more well-
proportioned look. To do so, use option --fancy-bonds or -f:

mol2chemfig -f -w morphine.mol > morphine-f.tex

which gives

11

HO OHO

N

Note that the look of the double bonds involves some TiKZ trickery; in the generated code, the double
bonds are no longer represented by = symbols but instead by something like -[:120,,,,drh].

Next, the molecule contains two bonds that cross each other, and we would like to draw the vertical one
in the foreground. To specify this bond, we need the numbers of the adjoining atoms. We first can let
mol2chemfig print the atom numbers:

mol2chemfig -n -w morphine.mol > morphine-n.tex

which gives

16O

13

12

11 8

7 10

1 6

5

4

O17

3

29

14

O
15

19

20

18

N

21

The bond that we are looking at connects atoms 19 and 20. We now can use the -k or --crossbond option
to put it in the foreground:

mol2chemfig -k 19-20 -wf morphine.mol > morphine-k.tex

which gives us

HO OHO

N

To draw crossing bonds, atom numbers and proportioned double or triple bonds, mol2chemfig relies on
several custom macros and TiKZ styles defined in the mol2chemfig.sty package. Accordingly, the
generated code becomes a bit more verbose and less chemfig-like.

5.6 Recalculating coordinates

Molecules specified in SMILES format don’t have any coordinates attached to them, so mol2chemfig
needs to calculate them; this is performed automatically. Input in molfile format comes with coordinates
attached, and mol2chemfig uses these by default. However, we can explicitly request mol2chemfig to

12

discard these coordinates and calculate new ones with the --recalculate-coordinates or -u option.
When applied to the daptomycin example from section 1,

mol2chemfig -u -wf daptomycin.mol > daptomycin-u.tex

this gives us

O NH

NH

O

N
H

NH2

O

O

N
H

O

OH

O

H
N

O

NH

ON
H

NH2

O

N
H

OH

O
O

N
H

O

NH
OH

O

O

NH

O
H
N

OH
O H

N

OH O

O

H
N

O

O

O

NH2

5.7 Working with sub-molecules

The chemfig package supplies a nifty mechanism to assemble larger molecules from predefined fragments,
or sub-molecules. The following (hand-coded) example builds aspirin from two sub-molecules:

\definesubmol{acetyl}{(=[::60]O)-[::-60]H_3C}
\definesubmol{benzoate}{*6(-=-=-(-(=[::60]O)-[::-60]OH)=)}%

\chemfig{
{\color{red}O} % the oxygen in the middle

(-[:210]!{acetyl}) % treat one submol as a branch,
-[:-30]!{benzoate} % the other one as the main chain

}

O

O

CH3

O OH

As a more advanced example, let us piece together the structure of Sodium Green, a fluorescent sodium
indicator dye (the figure below was ripped from an information sheet by the supplier, Molecular Probes).

13

The molecule contains two moieties of dichlorofluorescein, attached to a crown ether via a linker. We start
with dichlorofluorescein as one submol and the crown ether-cum-linkers as the other.

mol2chemfig -l dcf1 dichlorofluorescein.mol > dcf-submol1.tex
mol2chemfig -l ce1 crown-ether.mol > ce-submol1.tex

Now, we put the two pieces together, starting with the bridging carbonyl group:

\input{dcf-submol1} % load generated submolecules ...
\input{ce-submol1}

\chemfig{ % and stitch them together
{\color{red}C}
(=[:45]O)
(-[:180,6]!{dcf1})

-[:-90]!{ce1}
}

which gives us the following fabulous result:

C

O

O

O−

O

O− O

O

O

NH2 N

O O

NO

O

NH2

O

What went wrong here? Submol expansion is essentially string substitution. When the submol is filled
in, the connection to the preceding part of the molecule is made by whichever atom happens to have been
rendered first, and the last rendered atom of the submol connects to the subsequent parts of the structure.
Thus, we need to tell mol2chemfig the order in which to render the atoms. To identify the atoms that we
want to join, we display all atom numbers in the structure.

14

mol2chemfig -n -l dcf2 dichlorofluorescein.mol > dcf-submol2.tex
mol2chemfig -n -l ce2 crown-ether.mol > ce-submol2.tex

O15

14

13

1812

9

8

16

20

21

22

23

24

25

O27

O26

5

4

3

17

2

19O 1

6

7

O
10

11

9
8

O

6

5

43

O
10

11

212N

1

N7

13

14

15

O

16 17

18

O
19

20

21N

2437

O
25

2322

26

27

33

O34

31

30 N32

2928

O
35

36

For dichlorofluorescein, we need to connect to atom 22. For the crown ether, we want to enter at atom 12
coming from the left, and leave at atom 32 on the right. To render the sub-molecules accordingly, we use
the --entry-atom or -e as well as the --exit-atom or -x options:

mol2chemfig -e 22 -l dcf3 dichlorofluorescein.mol > dcf-submol3.tex
mol2chemfig -e 12 -x 32 -l ce3 crown-ether.mol > ce-submol3.tex

We put the whole molecule together:

\input{dcf-submol3}
\input{ce-submol3}

\chemfig{
{\color{red}C}
(=[:225]O)
(-[:90]!{dcf3})

-!{ce3}
-{\color{blue}C}

(=[:-45]O)
-[:90]!{dcf3}

}

This produces

C

O

O−

O

O− O O

H2N

O

O

N

O O

NO

O

O

NH2 C

O

O−

O

O− O O

15

which is what we want . . . well, almost; the entry and exit amine groups of the crown ether submol now
each have one surplus hydrogen. This problem cannot be fixed using mol2chemfig but requires editing
of the generated code by hand.

5.8 Using generated code in composite figures

The mol2chemfig package loads chemfig, which in turn loads the general purpose graphics pack-
age TikZ. Through the latter package, we have access to the tikzpicture environment. Here is a
tikzpicture that depicts two resonance structures of alanine bound to pyridoxal phosphate:

N
H+

OP

O−

O−

O
O−

NH+

−
C

O

O−

N
H

OP

O−

O−

O
O−

NH+

O

O−

The code for this graphic is

\input{plp}
\input{plp2}

\begin{center}
\begin{tikzpicture}%
[>=stealth, help lines/.style={very thin,draw=black!25}, x=1cm, y=1cm]

% draw grid of help lines
\draw[help lines] (0,0) grid (12,4);

% place both structures
\node[anchor=south west, inner sep=10pt] at (0,0) (plp) {\chemfig{!{plp}}};
\node[anchor=south west, inner sep=10pt] at (7,0) (plp2) {\chemfig{!{plp2}}};

\draw[<->] (plp) -- (plp2);

\end{tikzpicture}
\end{center}

The two structures were placed on the canvas using TiKZ nodes. The TiKZ nodes cannot contain \input

macros. Therefore, as a workaround, we first render the structures as submol definitions with

mol2chemfig -f --submol-name plp plp.mol > plp.tex
mol2chemfig -f --submol-name plp2 plp2.mol > plp2.tex

and then reference those definitions from within the \chemfig macros inside the nodes.

Reactions such as the mesomeric transitions within pyridoxal phosphate should also show some electron
pushing. The chemfig package offers a mechanism for naming atoms and bonds in molecules; these

16

names can then be used to attach push arrows. We can ask mol2chemfig to generate atom and bond
names for us, using the --markers or -g option:

mol2chemfig -f -l mp -g mp -a 270 mp.mol > mp.tex

This option adds a unique identifier to each atom and to each bond. The option value (mp in our example) is
used as a prefix; this allows to unambiguously reference atoms in multiple molecules in the same drawing.
In our example, atom 3 will be given the marker @{mp3} for atom 3. The bond between atoms 3 and 4 will
be labeled with @{mp3-4}; in bond markers, the smaller atom number always comes first. The generated
code now starts to get a wee bit tough on the eyeballs:

\definesubmol{mp}{
@{mp17}%

-[@{mp14-17}:180]@{mp14}%
-[@{mp14-15}:120,,,,dlh]@{mp15}%

-[@{mp11-15}:180]@{mp11}%

. . .

In order to attach drawing elements to the nodes defined in the mol2chemfig-rendered structures, we
need to use a separate tikzpicture environment, with the optional arguments [remember picture,

overlay]. Inside this environment, we can use arbitrary TiKZ commands to decorate our rendered struc-
tures. Here is an example:

\input{mp}

\begin{center}
\begin{tikzpicture}% first picture contains mol2chemfig structure
[>=stealth, help lines/.style={very thin,draw=black!25}, x=1cm, y=1cm]

\draw[help lines] (0,0) grid (6,3);
\node[anchor=south west, inner sep=10pt] at (1,0) {\chemfig{!{mp}}};
\end{tikzpicture}

\begin{tikzpicture}[remember picture,overlay] % overlaid picture
% places draws relative to nodes defined in the mol2chemfig structure

% The mcfpusharrow tikz style is defined in the mol2chemfig package.
\draw[mcfpusharrow](mp12-13) to [out=60,in=60,looseness=4] (mp11-12);
\draw[mcfpusharrow](mp2-3) to [out=105,in=105,looseness=5] (mp3);

% attach some arbitrary shapes to the molecule
\draw[semithick,blue,fill=red](mp17) -- ++(0.5,0.5)

node[circle,fill=yellow,inner
sep=1pt,draw=blue]{\scriptsize\textsf{blob}};

\end{tikzpicture}
\end{center}

which gives

17

blob

One important thing to note is that, when the overlay mechanism is used, the document has to be processed
twice by pdftex—otherwise, the overlaid elements tend to get misaligned.

The \draw commands used in the example for the electron push arrows employed the mcfpusharrow

TiKZ style that is defined by the mol2chemfig package. You can adjust this style to your own tastes with
the \tikzset macro; see the TiKZ documentation for details.

If the push-arrows are the only drawing element you need, you can avoid the need for explicitly creat-
ing an overlaid second tikzpicture environment by using macros predefined by either chemfig and
mol2chemfig. The next example illustrates the use of the \mcfpush macro defined by mol2chemfig.

\input{mp}

\colorlet{mcfpusharrowcolor}{red}
\colorlet{mcfbgcolor}{yellow}
\begin{center}
\begin{tikzpicture}[help lines, x=1cm, y=1cm]

\draw[help lines] (0,0) grid (6,3);
\node[anchor=south west, inner sep=10pt] at (1,0) {\chemfig{!{mp}}};

\mcfpush{mp12-13}{60:1.5em}{mp11-12}{60:1.5em}
\mcfpush[-4pt][4pt]{mp2-3}{105:1.5em}{mp3}{105:1.5em}

\end{tikzpicture}
\end{center}

which gives

The arguments of the \mcfpush macro are, in order, the named anchor of the origin, the parameters of
the first control point (departure angle:distance), and the second anchor and second control point (arrival
angle:distance). Two optional arguments set the shorten <= and shorten >= lengths for the arrow in
question, which override the global values that can be adjusted using the \tikzset mechanism.

The \mcfpush macro uses the mcfpusharrow TiKZ style (see above). This style references two color
definitions, which were redefined using colorlet (supplied by package xcolor) in this example. The

18

background color (mcfbgcolor) defaults to white; you will only want to change it when drawing on a
non-white canvas. This color definition is also used when drawing crossing bonds in the foreground (see
section 5.5).

Note that, even though the the overlaid tikzpicture environment is no longer explicitly declared, the
overlay mechanism is still used internally, so the need for processing the file with TEX twice remains.

6 Invoking mol2chemfig from within LATEX

Using the --shell-escape option on Linux or its equivalents on other systems, LATEX can execute shell
commands, capture the output and insert it directly into the document. We can use this with mol2chemfig.
If you have mol2chemfig working and LATEX properly configured, the following command will insert the
structure of FMNH directly into your document, without creating a separate file:

\mcfinput{-fw examples/fmnh.mol}

HO

OH

OH

O P

O−

O−

O

N

N
H

C

N O

NH

O

Note, however, that with large documents and numerous chemical structures the overhead of running mol2chemfig
on each formula during every compilation will add up.

7 chemfig settings used in this document

Several settings are offered by chemfig to control the appearance of structures in your documents. Below
are the settings that were used in this document.

% reduce font size and use sans-serif for atoms
\renewcommand{\printatom}[1]{%
\fontsize{8pt}{10pt}\selectfont{\ensuremath{\mathsf{#1}}}}

% reduce bond dimensions to match smaller fonts
\setchemfig{
cram rectangle=false,
cram width=2.5pt,
cram dash width=0.4pt,
cram dash sep=1pt,
atom sep=16pt,
bond offset=1pt,
double bond sep=2pt

}

19

8 Conclusion

This tutorial has covered most capabilities of mol2chemfig. There are a few more options that influence
the appearance of the output; these should be pretty much self-explanatory.

I hope mol2chemfig will be useful to you. If you come across any bugs or issues, please send email to
mpalmer@uwaterloo.ca.

9 Acknowledgments

Christian Tellechea wrote the excellent chemfig package, upon which mol2chemfig is based. He
also gave valuable help concerning mol2chemfig itself; he solved several problems for me that had me
stumped. He is the author of a French book on TeX; if you read French, you should probably get a copy.

To the extent that mol2chemfig understands chemistry, it owes this to the creators of indigo. An earlier
version of mol2chemfig used rdkit; however, after some experimentation, I found that indigo was
better suited to my purpose. Nevertheless, I thank rdkit’s creator, Greg Landrum, for promptly and
thoroughly answering all my questions.

My (now former) student Eric Brefo-Mensah tested the code extensively and uncovered numerous bugs
(or rather, a whole plague of locusts). Further bugs were reported by Benjamin Abel, Philipp Bisson, and
Vincent Liegeois.

20

	A few examples
	Installation
	LaTeX requirements
	Local installation
	Installing the Lua web client
	ConTeXt compatibility

	chemfig version compatibility
	Getting help
	Tutorial
	Input modes
	Output destination and formats
	Adding and deleting hydrogens
	Bond lengths
	Tweaking the appearance of bonds
	Recalculating coordinates
	Working with sub-molecules
	Using generated code in composite figures

	Invoking mol2chemfig from within LaTeX
	chemfig settings used in this document
	Conclusion
	Acknowledgments

