
GB/T 7714 BIBTEX style

Zeping Lee∗

2026/01/15 v2.1.9

摘要
The gbt7714 package provides a BIBTEX implementation for the China’s national bib-

liography style standard GB/T 7714. It consists of .bst files for numeric and author-date
styles as well as a LATEX package which provides the citation style defined in the standard. It
is compatible with natbib and supports language detection (Chinese and English) for each
biblilography entry.

1 简介

GB/T 7714—2015 《信息与文献 参考文献著录规则》[1] （以下简称“国标”）是

中国的参考文献格式推荐标准。国内的绝大部分学术期刊、学位论文都使用了基于

该标准的格式。本宏包是国标的 BIBTEX [2] 实现，具有以下特性：

• 兼容 natbib 宏包 [3]。

• 支持“顺序编码制”和“著者-出版年制”两种风格。

• 自动识别语言并进行相应处理。

• 提供了简单的接口供用户修改样式。

• 同时提供了 2005 版的 .bst文件。

本宏包的主页：https://github.com/zepinglee/gbt7714-bibtex-s
tyle。

2 版本 v2.0的重要修改
从 v2.0版本开始（2020-03-04），用户必须在文档中使用\biblilographystyle

命令选择参考文献样式，如gbt7714-numerical或gbt7714-author-year。
在早期的版本中，选择文献样式的方法是将 numbers 或 super 等参数传递给

gbt7714，而不能使用 \bibliographystyle。这跟标准的 LaTeX 接口不一致，

所以将被弃用。
∗zepinglee AT gmail.com

1

https://github.com/zepinglee/gbt7714-bibtex-style
https://github.com/zepinglee/gbt7714-bibtex-style

3 使用方法

以下是 gbt7714 宏包的一个简单示例。

\documentclass{ctexart}
\usepackage{gbt7714}
\bibliographystyle{gbt7714-numerical}
\begin{document}

\cite{...}
...
\bibliography{bibfile}

\end{document}

按照国标的规定，参考文献的标注体系分为“顺序编码制”和“著者-出版年制”。用

户应在导言区调用宏包 gbt7714，并且使用 \bibliographystyle 命令选择参

考文献表的样式，比如：

\bibliographystyle{gbt7714-numerical} % 顺序编码制

或者

\bibliographystyle{gbt7714-author-year} % 著者 -出版年制

此外还可以使用 2005 版的格式 gbt7714-2005-numerical和 gbt7714-200
5-author-year。

注意，版本 v2.0更改了设置参考文献表样式的方法，要求直接使用\bibliographystyle，
不再使用宏包的参数，而且更改了 bst的文件名。

\citestyle{⟨citation style⟩}

可选：super, numbers, author-year。使用 \bibliography 选择参考文

献表的样式时会自动设置对应的引用样式。顺序编码制的引用标注默认使用角标式

（super），如“张三[2] 提出”。如果要使用正文模式，如“文献 [3] 中说明”，可以使用

\citestyle命令切换为数字式（numbers）。

\citestyle{numbers}

著者-出版年制通常不需要修改引用样式。

\citestyle

同一处引用多篇文献时，应当将各篇文献的 key 一同写在\cite命令中。如遇连sort&compress

续编号，默认会自动转为起讫序号并用短横线连接（见 natbib 的 compress选项）。

如果要对引用的编号进行自动排序，需要在调用 gbt7714 时加 sort&compress
参数，这些参数会传给 natbib 处理。

\usepackage[sort&compress]{gbt7714}

2

注意国标中要求 2 个或以上的连续编号用连接号，不同于 natbib 默认的 3 个或以上。

宏包中已经作了修改。

若需要标出引文的页码，可以标在\cite的可选参数中，如\cite[42]{knuth84}。
更多的引用标注方法可以参考 natbib 宏包的使用说明 [3]。

国标要求在括号外以角标的形式著录引文页码。如果要将页码置于括号内，可locator-inside-brackets

以在调用宏包时设置 locator-inside-brackets=true。

\usepackage[locator-inside-brackets=true]{gbt7714}

使用时需要注意以下几点：

• .bib数据库应使用 UTF-8 编码。

• 使用著者-出版年制参考文献表时，中文的文献必须在 key 域填写作者姓名的拼

音，才能按照拼音排序，详见第 6 节。

4 文献类型

国标中规定了 16 种参考文献类型，表 1 列举了 bib 数据库中对应的文献类型。

这些尽可能兼容 BIBTEX 和 biblatex 的标准类型，但是新增了若干文献类型（带 * 号）。

5 著录项目

由于国标中规定的著录项目多于 BIBTEX 的标准域，必须新增一些著录项目（带

* 号），这些新增的类型在设计时参考了 BibLaTeX，如 date 和 urldate。本宏包支持的

全部域如下：

author 主要责任者

title 题名

mark* 文献类型标识

medium* 载体类型标识

translator* 译者

editor 编辑

organization 组织（用于会议）

booktitle 图书题名

series 系列

journal 期刊题名

edition 版本

address 出版地

publisher 出版者

3

表 1: 全部文献类型

文献类型 标识代码 Entry Type

普通图书 M book
图书的析出文献 M incollection
会议录 C proceedings
会议录的析出文献 C inproceedings 或 conference
汇编 G collection*
报纸 N newspaper*
期刊的析出文献 J article
学位论文 D mastersthesis 或 phdthesis
报告 R techreport
标准 S standard*
专利 P patent*
数据库 DB database*
计算机程序 CP software*
电子公告 EB online*
档案 A archive*
舆图 CM map*
数据集 DS dataset*
其他 Z misc

school 学校（用于 @phdthesis）
institution 机构（用于 @techreport）
year 出版年

volume 卷

number 期（或者专利号）

pages 引文页码

date* 更新或修改日期

urldate* 引用日期

url 获取和访问路径

doi 数字对象唯一标识符

langid* 语言

key 拼音（用于排序）

不支持的 BIBTEX 标准著录项目有 annote, chapter, crossref, month, type。
本宏包默认情况下可以自动识别文献语言，并自动处理文献类型和载体类型标

识，但是在少数情况下需要用户手动指定，如：

@misc{citekey,

4

langid = {japanese},
mark = {Z},
medium = {DK},
...

}

可选的语言有 english, chinese, japanese, russian。

6 文献列表的排序

国标规定参考文献表采用著者-出版年制组织时，各篇文献首先按文种集中，然

后按著者字顺和出版年排列；中文文献可以按著者汉语拼音字顺排列，也可以按著

者的笔画笔顺排列。然而由于 BIBTEX 功能的局限性，无法自动获取著者姓名的拼音

或笔画笔顺，所以必须在 bib 数据库中的 key 域手动录入著者姓名的拼音用于排序，

如：

@book{capital,
author = {马克思 and 恩格斯 },
key = {ma3 ke4 si1 & en1 ge2 si1},
...

}

对于著者-出版年的样式，如果中文文献较多时更推荐使用 biblatex 宏包，其后

端 biber可以自动处理中文按照拼音排序，无须手动填写拼音。

7 自定义样式

BIBTEX 对自定义样式的支持比较有限，所以用户只能通过修改 bst文件来修改

文献列表的格式。本宏包提供了一些接口供用户更方便地修改。

在 bst 文件开始处的 load.config 函数中，有一组配置参数用来控制样式，

表 2 列出了每一项的默认值和功能。若变量被设为 #1 则表示该项被启用，设为 #0
则不启用。默认的值是严格遵循国标的配置。

若用户需要定制更多内容，可以学习 bst 文件的语法并修改 [4-6]，或者联系作

者。

8 相关工作

TeX 社区也有其他关于 GB/T 7714 系列参考文献标准的工作。2005 年吴凯 [7]发

布了基于 GB/T 7714—2005 的 BIBTEX 样式，支持顺序编码制和著者出版年制两种风

5

表 2: 参考文献表样式的配置参数

参数值 默认值 功能

uppercase.name #1 将著者姓名转为大写

max.num.authors #3 输出著者的最多数量

year.after.author #0 年份置于著者之后

period.after.author #0 著者和年份之间使用句点连接

italic.book.title #0 西文书籍名使用斜体

sentence.case.title #1 将西文的题名转为 sentence case
link.title #0 在题名上添加 url 的超链接

title.in.journal #1 期刊是否显示标题

show.patent.country #0 专利题名是否含国别

space.before.mark #0 文献类型标识前是否有空格

show.mark #1 显示文献类型标识

show.medium.type #1 显示载体类型标识

component.part.label "slash" 表示析出文献的符号，可选："in", "none"
italic.journal #0 西文期刊名使用斜体

link.journal #0 在期刊题名上添加 url 的超链接

show.missing.address.publisher #0 出版项缺失时显示“出版者不详”

space.before.pages #1 页码与前面的冒号之间有空格

only.start.page #0 只显示起始页码

page.range.delimiter "-" 起止页码中的连接号

show.urldate #1 显示引用日期 urldate
show.url #1 显示 url
show.doi #1 显示 DOI
show.note #0 显示 note 域的信息

end.with.period #1 结尾加句点

lowercase.word.after.colon #1 将冒号后的单词变成小写

格。李志奇 [8]发布了严格遵循 GB/T 7714—2005 的 BibLaTeX 的样式。胡海星 [9]提供

了另一个 BIBTEX 实现，还给每行 bst 代码写了 java 语言注释。沈周 [10]基于 biblatex-
caspervector [11] 进行修改，以符合国标的格式。胡振震发布了符合 GB/T 7714—2015
标准的 BibLaTeX 参考文献样式 [12]，并进行了比较完善的持续维护。

参考文献

[1] 中国国家标准化委员会. 信息与文献 参考文献著录规则: GB/T 7714—2015[S].
北京: 中国标准出版社, 2015.

[2] PATASHNIK O. BIBTEXing[M/OL]. 1988. http://mirrors.ctan.org/biblio/bibtex/base/

6

http://mirrors.ctan.org/biblio/bibtex/base/btxdoc.pdf
http://mirrors.ctan.org/biblio/bibtex/base/btxdoc.pdf

btxdoc.pdf.

[3] DALY P W. Natural sciences citations and references[M/OL]. 1999. http://mirrors.ct
an.org/macros/latex/contrib/natbib/natbib.pdf.

[4] PATASHNIK O. Designing BIBTEX styles[M/OL]. 1988. http://mirrors.ctan.org/bibli
o/bibtex/base/btxhak.pdf.

[5] MARKEY N. Tame the beast[M/OL]. 2003. http://mirrors.ctan.org/info/bibtex/tamet
hebeast/ttb_en.pdf.

[6] MITTELBACH F, GOOSSENS M, BRAAMS J, et al. The LATEX companion[M]. 2nd
ed. Reading, MA, USA: Addison-Wesley, 2004.

[7] 吴凯. 发布 GBT7714-2005.bst version1 Beta 版 [EB/OL]. 2006. CTeX 论坛（已关

闭）.

[8] 李志奇. 基于 biblatex 的符合 GBT7714—2005 的中文文献生成工具 [EB/OL].
2013. CTeX 论坛（已关闭）.

[9] 胡海星. A GB/T 7714—2005 national standard compliant BibTeX style[EB/OL].
2013. https://github.com/Haixing-Hu/GBT7714-2005-BibTeX-Style.

[10] 沈周. 基于 caspervector 改写的符合 GB/T 7714—2005 标准的参考文献格式

[EB/OL]. 2016. https://github.com/szsdk/biblatex-gbt77142005.

[11] VECTOR C T. biblatex 参考文献和引用样式: caspervector[M/OL]. 2012. http:
//mirrors.ctan.org/macros/latex/contrib/biblatex-contrib/biblatex-caspervector/doc/ca
spervector.pdf.

[12] 胡振震. 符合 GB/T 7714—2015 标准的 biblatex 参考文献样式 [M/OL]. 2016.
http://mirrors.ctan.org/macros/latex/contrib/biblatex-contrib/biblatex-gb7714-2015/bi
blatex-gb7714-2015.pdf.

7

http://mirrors.ctan.org/biblio/bibtex/base/btxdoc.pdf
http://mirrors.ctan.org/macros/latex/contrib/natbib/natbib.pdf
http://mirrors.ctan.org/macros/latex/contrib/natbib/natbib.pdf
http://mirrors.ctan.org/biblio/bibtex/base/btxhak.pdf
http://mirrors.ctan.org/biblio/bibtex/base/btxhak.pdf
http://mirrors.ctan.org/info/bibtex/tamethebeast/ttb_en.pdf
http://mirrors.ctan.org/info/bibtex/tamethebeast/ttb_en.pdf
https://github.com/Haixing-Hu/GBT7714-2005-BibTeX-Style
https://github.com/szsdk/biblatex-gbt77142005
http://mirrors.ctan.org/macros/latex/contrib/biblatex-contrib/biblatex-caspervector/doc/caspervector.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex-contrib/biblatex-caspervector/doc/caspervector.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex-contrib/biblatex-caspervector/doc/caspervector.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex-contrib/biblatex-gb7714-2015/biblatex-gb7714-2015.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex-contrib/biblatex-gb7714-2015/biblatex-gb7714-2015.pdf

A 宏包的代码实现

兼容过时的接口

1 ⟨∗package⟩
2 \newif\ifgbt@legacy@interface
3 \newif\ifgbt@mmxv
4 \newif\ifgbt@numerical
5 \newif\ifgbt@super
6 \newcommand\gbt@obsolete@option[1]{%
7 \PackageWarning{gbt7714}{The option "#1" is obsolete}%
8 }
9 \DeclareKeys[gbt7714]{

10 2015 .code = {%
11 \gbt@obsolete@option{2015}%
12 \gbt@legacy@interfacetrue
13 \gbt@mmxvtrue
14 },
15 2005 .code = {%
16 \gbt@obsolete@option{2005}%
17 \gbt@legacy@interfacetrue
18 \gbt@mmxvfalse
19 },
20 super .code = {%
21 \gbt@obsolete@option{super}%
22 \gbt@legacy@interfacetrue
23 \gbt@numericaltrue
24 \gbt@supertrue
25 },
26 numbers .code = {%
27 \gbt@obsolete@option{numbers}%
28 \gbt@legacy@interfacetrue
29 \gbt@numericaltrue
30 \gbt@superfalse
31 },
32 authoryear .code = {%
33 \gbt@obsolete@option{authoryear}%
34 \gbt@legacy@interfacetrue
35 \gbt@numericalfalse
36 },
37 }

控制引注的页码在括号内还是在括号外。

8

38 \DeclareKeys[gbt7714]{
39 locator-inside-brackets .if = @gbt@locator@inside@affixes ,
40 }
41 \SetKeys[gbt7714]{
42 locator-inside-brackets = false ,
43 }

将选项传递给 natbib
44 \DeclareUnknownKeyHandler[gbt7714]{\PassOptionsToPackage{#1}{natbib}}
45 \ProcessKeyOptions[gbt7714]

调用宏包，注意只需要 compress不需要 sort。
46 \RequirePackage{natbib}
47 \RequirePackage{url}

如果将 compress传给 natbib 容易导致 option clash。这里直接修改内部命令。

48 \def\NAT@cmprs{\@ne}

\citestyle 定义接口切换引用文献的标注法，可用\citestyle调用numerical或authoryear，
参见 natbib。
49 \renewcommand\newblock{\space}
50 \newcommand\bibstyle@super{\bibpunct{[}{]}{,}{s}{,}{,}}
51 \newcommand\bibstyle@numbers{\bibpunct{[}{]}{,}{n}{,}{,}}
52 \newcommand\bibstyle@authoryear{\bibpunct{(}{)}{;}{a}{,}{,}}
53 \newcommand\bibstyle@inline{\bibstyle@numbers}

(End of definition for \citestyle. This function is documented on page 2.)

在使用 \bibliographystyle时自动切换引用文献的标注的样式。

54 \@namedef{bibstyle@gbt7714-numerical}{\bibstyle@super}
55 \@namedef{bibstyle@gbt7714-author-year}{\bibstyle@authoryear}
56 \@namedef{bibstyle@gbt7714-2005-numerical}{\bibstyle@super}
57 \@namedef{bibstyle@gbt7714-2005-author-year}{\bibstyle@authoryear}

\cite 下面修改 natbib 的引用格式。为了减少依赖的宏包，这里直接重定义命令不使用

etoolbox 的 \patchcmd。
Super 样式的 \citep的页码也为上标。另外加上 \kern\p@去掉上标式引用

后与中文之间多余的空格，参考 tuna/thuthesis#624。
58 \renewcommand\NAT@citesuper[3]{%
59 \ifNAT@swa
60 \if*#2*\else
61 #2\NAT@spacechar
62 \fi
63 \unskip\kern\p@
64 %

9

https://github.com/tuna/thuthesis/issues/624

65 \NAT@@open
66 #1%
67 \if@gbt@locator@inside@affixes
68 \if*#3*\else
69 \NAT@cmt#3%
70 \fi
71 \NAT@@close
72 \else
73 \NAT@@close
74 \if*#3*\else
75 #3%
76 \fi
77 \fi
78 %
79 \kern\p@
80 \else
81 #1%
82 \fi
83 \endgroup
84 }

将 numbers 样式的 \citep的页码置于括号外。

85 \renewcommand\NAT@citenum[3]{%
86 \ifNAT@swa
87 \NAT@@open
88 \if*#2*\else
89 #2\NAT@spacechar
90 \fi
91 #1%
92 \if@gbt@locator@inside@affixes
93 \if*#3*\else\NAT@cmt#3\fi\NAT@@close
94 \else
95 \NAT@@close
96 \if*#3*\else
97 #3%
98 \fi
99 \fi

100 \else
101 #1%
102 \fi
103 \endgroup
104 }

10

Numerical 模式的 \citet的页码：

105 \def\NAT@citexnum[#1][#2]#3{%
106 \NAT@reset@parser
107 \NAT@sort@cites{#3}%
108 \NAT@reset@citea
109 \@cite{\def\NAT@num{-1}\let\NAT@last@yr\relax\let\NAT@nm\@empty
110 \@for\@citeb:=\NAT@cite@list\do
111 {\@safe@activestrue
112 \edef\@citeb{\expandafter\@firstofone\@citeb\@empty}%
113 \@safe@activesfalse
114 \@ifundefined{b@\@citeb\@extra@b@citeb}{%
115 {\reset@font\bfseries?}
116 \NAT@citeundefined\PackageWarning{natbib}%
117 {Citation `\@citeb' on page \thepage \space undefined}}%
118 {\let\NAT@last@num\NAT@num\let\NAT@last@nm\NAT@nm
119 \NAT@parse{\@citeb}%
120 \ifNAT@longnames\@ifundefined{bv@\@citeb\@extra@b@citeb}{%
121 \let\NAT@name=\NAT@all@names
122 \global\@namedef{bv@\@citeb\@extra@b@citeb}{}}{}%
123 \fi
124 \ifNAT@full\let\NAT@nm\NAT@all@names\else
125 \let\NAT@nm\NAT@name\fi
126 \ifNAT@swa
127 \@ifnum{\NAT@ctype>\@ne}{%
128 \@citea
129 \NAT@hyper@{\@ifnum{\NAT@ctype=\tw@}{\NAT@test{\NAT@ctype}}{\NAT@alias}}%
130 }{%
131 \@ifnum{\NAT@cmprs>\z@}{%
132 \NAT@ifcat@num\NAT@num
133 {\let\NAT@nm=\NAT@num}%
134 {\def\NAT@nm{-2}}%
135 \NAT@ifcat@num\NAT@last@num
136 {\@tempcnta=\NAT@last@num\relax}%
137 {\@tempcnta\m@ne}%
138 \@ifnum{\NAT@nm=\@tempcnta}{%
139 \@ifnum{\NAT@merge>\@ne}{}{\NAT@last@yr@mbox}%
140 }{%
141 \advance\@tempcnta by\@ne
142 \@ifnum{\NAT@nm=\@tempcnta}{%

在顺序编码制下，natbib 只有在三个以上连续文献引用才会使用连接号，这里

修改为允许两个引用使用连接号。参考 https://tex.stackexchange.com/

11

https://tex.stackexchange.com/a/86991/82731
https://tex.stackexchange.com/a/86991/82731

a/86991/82731。
143 % \ifx\NAT@last@yr\relax
144 % \def@NAT@last@yr{\@citea}%
145 % \else
146 % \def@NAT@last@yr{--\NAT@penalty}%
147 % \fi
148 \def@NAT@last@yr{-\NAT@penalty}%
149 }{%
150 \NAT@last@yr@mbox
151 }%
152 }%
153 }{%
154 \@tempswatrue
155 \@ifnum{\NAT@merge>\@ne}{\@ifnum{\NAT@last@num=\NAT@num\relax}{\@tempswafalse}{}}{}%
156 \if@tempswa\NAT@citea@mbox\fi
157 }%
158 }%
159 \NAT@def@citea
160 \else
161 \ifcase\NAT@ctype
162 \ifx\NAT@last@nm\NAT@nm \NAT@yrsep\NAT@penalty\NAT@space\else
163 \@citea \NAT@test{\@ne}\NAT@spacechar\NAT@mbox{\NAT@super@kern\NAT@@open}%
164 \fi
165 \if*#1*\else#1\NAT@spacechar\fi
166 \NAT@mbox{\NAT@hyper@{{\citenumfont{\NAT@num}}}}%
167 \NAT@def@citea@box
168 \or
169 \NAT@hyper@citea@space{\NAT@test{\NAT@ctype}}%
170 \or
171 \NAT@hyper@citea@space{\NAT@test{\NAT@ctype}}%
172 \or
173 \NAT@hyper@citea@space\NAT@alias
174 \fi
175 \fi
176 }%
177 }%
178 \@ifnum{\NAT@cmprs>\z@}{\NAT@last@yr}{}%
179 \ifNAT@swa\else

将页码放在括号外边，并且置于上标。

180 \if@gbt@locator@inside@affixes
181 \@ifnum{\NAT@ctype=\z@}{%
182 \if*#2*\else\NAT@cmt#2\fi

12

https://tex.stackexchange.com/a/86991/82731

183 }{}%
184 \NAT@mbox{\NAT@@close}%
185 \else
186 \NAT@mbox{\NAT@@close}%
187 \@ifnum{\NAT@ctype=\z@}{%
188 \if*#2*\else
189 #2%
190 \fi
191 }{}%
192 \NAT@super@kern
193 \fi
194 \fi
195 }{#1}{#2}%
196 }%

Author-year 模式的 \citep的页码：

197 \renewcommand\NAT@cite%
198 [3]{\ifNAT@swa\NAT@@open\if*#2*\else#2\NAT@spacechar\fi
199 #1%
200 \if@gbt@locator@inside@affixes
201 \if*#3*\else\NAT@cmt#3\fi\NAT@@close
202 \else
203 \NAT@@close\if*#3*\else#3\fi
204 \fi
205 \else#1\fi\endgroup}

(End of definition for \cite. This function is documented on page ??.)

Author-year 模式的 \citet的页码：

206 \def\NAT@citex%
207 [#1][#2]#3{%
208 \NAT@reset@parser
209 \NAT@sort@cites{#3}%
210 \NAT@reset@citea
211 \@cite{\let\NAT@nm\@empty\let\NAT@year\@empty
212 \@for\@citeb:=\NAT@cite@list\do
213 {\@safe@activestrue
214 \edef\@citeb{\expandafter\@firstofone\@citeb\@empty}%
215 \@safe@activesfalse
216 \@ifundefined{b@\@citeb\@extra@b@citeb}{\@citea%
217 {\reset@font\bfseries ?}\NAT@citeundefined
218 \PackageWarning{natbib}%
219 {Citation `\@citeb' on page \thepage \space undefined}\def\NAT@date{}}%
220 {\let\NAT@last@nm=\NAT@nm\let\NAT@last@yr=\NAT@year

13

221 \NAT@parse{\@citeb}%
222 \ifNAT@longnames\@ifundefined{bv@\@citeb\@extra@b@citeb}{%
223 \let\NAT@name=\NAT@all@names
224 \global\@namedef{bv@\@citeb\@extra@b@citeb}{}}{}%
225 \fi
226 \ifNAT@full\let\NAT@nm\NAT@all@names\else
227 \let\NAT@nm\NAT@name\fi
228 \ifNAT@swa\ifcase\NAT@ctype
229 \if\relax\NAT@date\relax
230 \@citea\NAT@hyper@{\NAT@nmfmt{\NAT@nm}\NAT@date}%
231 \else
232 \ifx\NAT@last@nm\NAT@nm\NAT@yrsep
233 \ifx\NAT@last@yr\NAT@year
234 \def\NAT@temp{{?}}%
235 \ifx\NAT@temp\NAT@exlab\PackageWarningNoLine{natbib}%
236 {Multiple citation on page \thepage: same authors and
237 year\MessageBreak without distinguishing extra
238 letter,\MessageBreak appears as question mark}\fi
239 \NAT@hyper@{\NAT@exlab}%
240 \else\unskip\NAT@spacechar
241 \NAT@hyper@{\NAT@date}%
242 \fi
243 \else
244 \@citea\NAT@hyper@{%
245 \NAT@nmfmt{\NAT@nm}%
246 \hyper@natlinkbreak{%
247 \NAT@aysep\NAT@spacechar}{\@citeb\@extra@b@citeb
248 }%
249 \NAT@date
250 }%
251 \fi
252 \fi
253 \or\@citea\NAT@hyper@{\NAT@nmfmt{\NAT@nm}}%
254 \or\@citea\NAT@hyper@{\NAT@date}%
255 \or\@citea\NAT@hyper@{\NAT@alias}%
256 \fi \NAT@def@citea
257 \else
258 \ifcase\NAT@ctype
259 \if\relax\NAT@date\relax
260 \@citea\NAT@hyper@{\NAT@nmfmt{\NAT@nm}}%
261 \else
262 \ifx\NAT@last@nm\NAT@nm\NAT@yrsep

14

263 \ifx\NAT@last@yr\NAT@year
264 \def\NAT@temp{{?}}%
265 \ifx\NAT@temp\NAT@exlab\PackageWarningNoLine{natbib}%
266 {Multiple citation on page \thepage: same authors and
267 year\MessageBreak without distinguishing extra
268 letter,\MessageBreak appears as question mark}\fi
269 \NAT@hyper@{\NAT@exlab}%
270 \else
271 \unskip\NAT@spacechar
272 \NAT@hyper@{\NAT@date}%
273 \fi
274 \else
275 \@citea\NAT@hyper@{%
276 \NAT@nmfmt{\NAT@nm}%
277 \hyper@natlinkbreak{\NAT@spacechar\NAT@@open\if*#1*\else#1\NAT@spacechar\fi}%
278 {\@citeb\@extra@b@citeb}%
279 \NAT@date
280 }%
281 \fi
282 \fi
283 \or\@citea\NAT@hyper@{\NAT@nmfmt{\NAT@nm}}%
284 \or\@citea\NAT@hyper@{\NAT@date}%
285 \or\@citea\NAT@hyper@{\NAT@alias}%
286 \fi
287 \if\relax\NAT@date\relax
288 \NAT@def@citea
289 \else
290 \NAT@def@citea@close
291 \fi
292 \fi
293 }}\ifNAT@swa\else

将页码放在括号外边，并且置于上标。

294 \if@gbt@locator@inside@affixes
295 \if*#2*\else\NAT@cmt#2\fi
296 \if\relax\NAT@date\relax\else\NAT@@close\fi
297 \else
298 \if\relax\NAT@date\relax\else\NAT@@close\fi
299 \if*#2*\else#2\fi
300 \fi
301 \fi}{#1}{#2}}

thebibliography (env.) 参考文献列表的标签左对齐

15

302 \renewcommand\@biblabel[1]{[#1]\hfill}

Patch natbib 内部命令，以支持 \noopsort。参考 https://tex.stacke
xchange.com/a/39718/82731。

303 \let\NAT@bare@aux\NAT@bare
304 \def\NAT@bare#1(#2){%
305 \begingroup\edef\x{\endgroup
306 \unexpanded{\NAT@bare@aux#1}(\@firstofone#2)}\x}

\url 使用 xurl 宏包的方法，增加 URL 可断行的位置。

307 \g@addto@macro\UrlBreaks{%
308 \do0\do1\do2\do3\do4\do5\do6\do7\do8\do9%
309 \do\A\do\B\do\C\do\D\do\E\do\F\do\G\do\H\do\I\do\J\do\K\do\L\do\M
310 \do\N\do\O\do\P\do\Q\do\R\do\S\do\T\do\U\do\V\do\W\do\X\do\Y\do\Z
311 \do\a\do\b\do\c\do\d\do\e\do\f\do\g\do\h\do\i\do\j\do\k\do\l\do\m
312 \do\n\do\o\do\p\do\q\do\r\do\s\do\t\do\u\do\v\do\w\do\x\do\y\do\z
313 }
314 \Urlmuskip=0mu plus 0.1mu

(End of definition for \url. This function is documented on page ??.)

兼容 v2.0 前过时的接口：

315 \newif\ifgbt@bib@style@written
316 \@ifpackageloaded{chapterbib}{}{%
317 \def\bibliography#1{%
318 \ifgbt@bib@style@written\else
319 \bibliographystyle{gbt7714-numerical}%
320 \fi
321 \if@filesw
322 \immediate\write\@auxout{\string\bibdata{\zap@space#1 \@empty}}%
323 \fi
324 \@input@{\jobname.bbl}}
325 \def\bibliographystyle#1{%
326 \gbt@bib@style@writtentrue
327 \ifx\@begindocumenthook\@undefined\else
328 \expandafter\AtBeginDocument
329 \fi
330 {\if@filesw
331 \immediate\write\@auxout{\string\bibstyle{#1}}%
332 \fi}%
333 }%
334 }
335 \ifgbt@legacy@interface
336 \ifgbt@numerical

16

https://tex.stackexchange.com/a/39718/82731
https://tex.stackexchange.com/a/39718/82731

337 \ifgbt@super\else
338 \citestyle{numbers}
339 \fi
340 \bibliographystyle{gbt7714-numerical}
341 \else
342 \bibliographystyle{gbt7714-author-year}
343 \fi
344 \fi
345 ⟨/package⟩

B BibTeX样式的代码实现
B.1 自定义选项

bst (env.) 这里定义了一些变量用于定制样式，可以在下面的 load.config函数中选择是否

启用。
346 ⟨∗author-year | numerical⟩
347 INTEGERS {
348 citation.et.al.min
349 citation.et.al.use.first
350 bibliography.et.al.min
351 bibliography.et.al.use.first
352 uppercase.name
353 terms.in.macro
354 year.after.author
355 period.after.author
356 italic.book.title
357 sentence.case.title
358 link.title
359 title.in.journal
360 show.patent.country
361 show.mark
362 space.before.mark
363 show.medium.type
364 short.journal
365 italic.journal
366 link.journal
367 bold.journal.volume
368 show.missing.address.publisher
369 space.before.pages
370 only.start.page
371 show.urldate
372 show.url
373 show.doi
374 show.note
375 show.english.translation
376 end.with.period
377 lowercase.word.after.colon
378 ⟨∗author-year⟩

17

379 lang.zh.order
380 lang.ja.order
381 lang.en.order
382 lang.ru.order
383 lang.other.order
384 ⟨/author-year⟩
385 }
386

387 STRINGS {
388 component.part.label
389 page.range.delimiter
390 }
391

下面每个变量若被设为 #1则启用该项，若被设为 #0则不启用。默认的值是严

格遵循国标的配置。
392 FUNCTION {load.config}
393 {

如果姓名的数量大于等于 et.al.min，只著录前 et.al.use.first个，其

后加“et al.”或“等”。
394 ⟨∗!ucas⟩
395 #2 'citation.et.al.min :=
396 #1 'citation.et.al.use.first :=
397 ⟨/!ucas⟩
398 ⟨∗ucas⟩
399 #3 'citation.et.al.min :=
400 #1 'citation.et.al.use.first :=
401 ⟨/ucas⟩
402 #4 'bibliography.et.al.min :=
403 #3 'bibliography.et.al.use.first :=

英文姓名转为全大写：
404 ⟨∗!(no-uppercase | thu | ustc)⟩
405 #1 'uppercase.name :=
406 ⟨/!(no-uppercase | thu | ustc)⟩
407 ⟨∗no-uppercase | thu | ustc⟩
408 #0 'uppercase.name :=
409 ⟨/no-uppercase | thu | ustc⟩

使用 TeX 宏输出“和”、“等”
410 ⟨∗!(macro | ucas)⟩
411 #0 'terms.in.macro :=
412 ⟨/!(macro | ucas)⟩
413 ⟨∗macro | ucas⟩
414 #1 'terms.in.macro :=
415 ⟨/macro | ucas⟩

将年份置于著者后面（著者-出版年制默认）
416 ⟨∗numerical | ucas⟩
417 #0 'year.after.author :=
418 ⟨/numerical | ucas⟩
419 ⟨∗author-year&!ucas⟩
420 #1 'year.after.author :=

18

421 ⟨/author-year&!ucas⟩

采用著者-出版年制时，作者姓名与年份之间使用句点连接：
422 ⟨∗numerical⟩
423 #1 'period.after.author :=
424 ⟨/numerical⟩
425 ⟨∗author-year⟩
426 ⟨∗2015&!(period)⟩
427 #0 'period.after.author :=
428 ⟨/2015&!(period)⟩
429 ⟨∗period | 2005⟩
430 #1 'period.after.author :=
431 ⟨/period | 2005⟩
432 ⟨/author-year⟩

书名使用斜体：
433 ⟨∗!italic-book-title⟩
434 #0 'italic.book.title :=
435 ⟨/!italic-book-title⟩
436 ⟨∗italic-book-title⟩
437 #1 'italic.book.title :=
438 ⟨/italic-book-title⟩

英文标题转为 sentence case （句首字母大写，其余小写）：
439 ⟨∗!no-sentence-case⟩
440 #1 'sentence.case.title :=
441 ⟨/!no-sentence-case⟩
442 ⟨∗no-sentence-case⟩
443 #0 'sentence.case.title :=
444 ⟨/no-sentence-case⟩

在标题添加超链接：
445 ⟨∗!link-title⟩
446 #0 'link.title :=
447 ⟨/!link-title⟩
448 ⟨∗link-title⟩
449 #1 'link.title :=
450 ⟨/link-title⟩

期刊是否含标题：
451 ⟨∗!no-title-in-journal⟩
452 #1 'title.in.journal :=
453 ⟨/!no-title-in-journal⟩
454 ⟨∗no-title-in-journal⟩
455 #0 'title.in.journal :=
456 ⟨/no-title-in-journal⟩

专利题名是否含专利国别
457 ⟨∗!(show-patent-country | 2005 | thu)⟩
458 #0 'show.patent.country :=
459 ⟨/!(show-patent-country | 2005 | thu)⟩
460 ⟨∗(show-patent-country | 2005 | thu)⟩
461 #1 'show.patent.country :=
462 ⟨/(show-patent-country | 2005 | thu)⟩

19

著录文献类型标识（比如“[M/OL]“）：
463 ⟨∗!no-mark⟩
464 #1 'show.mark :=
465 ⟨/!no-mark⟩
466 ⟨∗no-mark⟩
467 #0 'show.mark :=
468 ⟨/no-mark⟩

文献类型标识前是否有空格：
469 ⟨∗!space-before-mark⟩
470 #0 'space.before.mark :=
471 ⟨/!space-before-mark⟩
472 ⟨∗space-before-mark⟩
473 #1 'space.before.mark :=
474 ⟨/space-before-mark⟩

是否显示载体类型标识（比如“/OL“）：
475 ⟨∗!no-medium-type⟩
476 #1 'show.medium.type :=
477 ⟨/!no-medium-type⟩
478 ⟨∗no-medium-type⟩
479 #0 'show.medium.type :=
480 ⟨/no-medium-type⟩

使用“//”表示析出文献
481 ⟨∗!(in-collection | no-slash)⟩
482 "slash" 'component.part.label :=
483 ⟨/!(in-collection | no-slash)⟩
484 ⟨∗in-collection⟩
485 "in" 'component.part.label :=
486 ⟨/in-collection⟩
487 ⟨∗no-slash⟩
488 "none" 'component.part.label :=
489 ⟨/no-slash⟩

期刊名使用缩写：
490 ⟨∗!short-journal⟩
491 #0 'short.journal :=
492 ⟨/!short-journal⟩
493 ⟨∗short-journal⟩
494 #1 'short.journal :=
495 ⟨/short-journal⟩

期刊名使用斜体：
496 ⟨∗!italic-journal⟩
497 #0 'italic.journal :=
498 ⟨/!italic-journal⟩
499 ⟨∗italic-journal⟩
500 #1 'italic.journal :=
501 ⟨/italic-journal⟩

在期刊题名添加超链接：
502 ⟨∗!link-journal⟩
503 #0 'link.journal :=

20

504 ⟨/!link-journal⟩
505 ⟨∗link-journal⟩
506 #1 'link.journal :=
507 ⟨/link-journal⟩

期刊的卷使用粗体：
508 #0 'bold.journal.volume :=

无出版地或出版者时，著录“出版地不详”，“出版者不详”，“S.l.”或“s.n.”：
509 ⟨∗!sl-sn⟩
510 #0 'show.missing.address.publisher :=
511 ⟨/!sl-sn⟩
512 ⟨∗sl-sn⟩
513 #1 'show.missing.address.publisher :=
514 ⟨/sl-sn⟩

页码与前面的冒号之间是否有空格：
515 ⟨∗!no-space-before-pages⟩
516 #1 'space.before.pages :=
517 ⟨/!no-space-before-pages⟩
518 ⟨∗no-space-before-pages⟩
519 #0 'space.before.pages :=
520 ⟨/no-space-before-pages⟩

页码是否只含起始页：
521 ⟨∗!only-start-page⟩
522 #0 'only.start.page :=
523 ⟨/!only-start-page⟩
524 ⟨∗only-start-page⟩
525 #1 'only.start.page :=
526 ⟨/only-start-page⟩

起止页码中的连接号：
527 ⟨∗!(en-dash-page-range-delimiter | wave-dash-page-range-delimiter)⟩
528 "-" 'page.range.delimiter :=
529 ⟨/!(en-dash-page-range-delimiter | wave-dash-page-range-delimiter)⟩
530 ⟨∗en-dash-page-range-delimiter⟩
531 "--" 'page.range.delimiter :=
532 ⟨/en-dash-page-range-delimiter⟩
533 ⟨∗wave-dash-page-range-delimiter⟩
534 "～" 'page.range.delimiter :=
535 ⟨/wave-dash-page-range-delimiter⟩

是否著录非电子文献的引用日期：
536 ⟨∗!no-urldate⟩
537 #1 'show.urldate :=
538 ⟨/!no-urldate⟩
539 ⟨∗no-urldate⟩
540 #0 'show.urldate :=
541 ⟨/no-urldate⟩

是否著录 URL：
542 ⟨∗!(no-url | ustc)⟩
543 #1 'show.url :=

21

544 ⟨/!(no-url | ustc)⟩
545 ⟨∗no-url | ustc⟩
546 #0 'show.url :=
547 ⟨/no-url | ustc⟩

是否著录 DOI：
548 ⟨∗!(no-doi | 2005 | ustc)⟩
549 #1 'show.doi :=
550 ⟨/!(no-doi | 2005 | ustc)⟩
551 ⟨∗no-doi | 2005 | ustc⟩
552 #0 'show.doi :=
553 ⟨/no-doi | 2005 | ustc⟩

在每一条文献最后输出注释（note）的内容：
554 #0 'show.note :=

中文文献是否显示英文翻译
555 ⟨∗!show-english-translation⟩
556 #0 'show.english.translation :=
557 ⟨/!show-english-translation⟩
558 ⟨∗show-english-translation⟩
559 #1 'show.english.translation :=
560 ⟨/show-english-translation⟩

结尾加句点
561 ⟨∗!no-period-at-end⟩
562 #1 'end.with.period :=
563 ⟨/!no-period-at-end⟩
564 ⟨∗no-period-at-end⟩
565 #0 'end.with.period :=
566 ⟨/no-period-at-end⟩

将冒号后的单词变成小写
567 ⟨∗!no-lowercase-word-after-colon⟩
568 #1 'lowercase.word.after.colon :=
569 ⟨/!no-lowercase-word-after-colon⟩
570 ⟨∗no-lowercase-word-after-colon⟩
571 #0 'lowercase.word.after.colon :=
572 ⟨/no-lowercase-word-after-colon⟩

参考文献表按照“著者-出版年”组织时，各个文种的顺序：
573 ⟨∗author-year⟩
574 #1 'lang.zh.order :=
575 #2 'lang.ja.order :=
576 #3 'lang.en.order :=
577 #4 'lang.ru.order :=
578 #5 'lang.other.order :=
579 ⟨/author-year⟩
580 }
581

22

B.2 The ENTRY declaration

Like Scribe’s (according to pages 231-2 of the April ’84 edition), but no fullauthor or
editors fields because BibTeX does name handling. The annote field is commented out here
because this family doesn’t include an annotated bibliography style. And in addition to the
fields listed here, BibTeX has a built-in crossref field, explained later.
582 ENTRY
583 { address
584 archivePrefix
585 author
586 booktitle
587 date
588 doi
589 edition
590 editor
591 eprint
592 eprinttype
593 entrysubtype
594 howpublished
595 institution
596 journal
597 journaltitle
598 key
599 langid
600 language
601 location
602 mark
603 medium
604 note
605 number
606 organization
607 pages
608 publisher
609 school
610 series
611 shortjournal
612 title
613 translation
614 translator
615 url
616 urldate
617 volume
618 year
619 }
620 { entry.lang entry.is.electronic is.pure.electronic entry.numbered }

These string entry variables are used to form the citation label. In a storage pinch,
sort.label can be easily computed on the fly.
621 { label extra.label sort.label short.list entry.mark entry.url }
622

23

B.3 Entry functions

Each entry function starts by calling output.bibitem, to write the \bibitem and
its arguments to the .BBL file. Then the various fields are formatted and printed by out-
put or output.check. Those functions handle the writing of separators (commas, periods,
\newblock’s), taking care not to do so when they are passed a null string. Finally,
fin.entry is called to add the final period and finish the entry.

A bibliographic reference is formatted into a number of ‘blocks’: in the open format,
a block begins on a new line and subsequent lines of the block are indented. A block may
contain more than one sentence (well, not a grammatical sentence, but something to be ended
with a sentence ending period). The entry functions should call new.block whenever a block
other than the first is about to be started. They should call new.sentence whenever a new
sentence is to be started. The output functions will ensure that if two new.sentence’s oc-
cur without any non-null string being output between them then there won’t be two periods
output. Similarly for two successive new.block’s.

The output routines don’t write their argument immediately. Instead, by convention,
that argument is saved on the stack to be output next time (when we’ll know what separator
needs to come after it). Meanwhile, the output routine has to pop the pending output off the
stack, append any needed separator, and write it.

To tell which separator is needed, we maintain an output.state. It will be one of these val-
ues: before.all just after the \bibitem mid.sentence in the middle of a sentence: comma
needed if more sentence is output after.sentence just after a sentence: period needed af-
ter.block just after a block (and sentence): period and \newblock needed. Note: These
styles don’t use after.sentence

VAR: output.state : INTEGER – state variable for output
The output.nonnull function saves its argument (assumed to be nonnull) on the stack,

and writes the old saved value followed by any needed separator. The ordering of the tests is
decreasing frequency of occurrence.

由于专著中的析出文献需要用到很特殊的“//”，所以我又加了一个 after.slash。其

他需要在特定符号后面输出，所以写了一个 output.after。

output.nonnull(s) ==
BEGIN

s := argument on stack
if output.state = mid.sentence then

write$(pop() * ",␣")
-- "pop" isn't␣a␣function:␣just␣use␣stack␣top

␣␣␣␣␣␣else
␣␣␣␣␣␣␣␣␣␣if␣output.state␣=␣after.block␣then
␣␣␣␣␣␣␣␣␣␣␣␣␣␣write$(add.period$(pop()))
␣␣␣␣␣␣␣␣␣␣␣␣␣␣newline$

24

␣␣␣␣␣␣␣␣␣␣␣␣␣␣write$("\newblock␣")
␣␣␣␣␣␣␣␣␣␣else
␣␣␣␣␣␣␣␣␣␣␣␣␣␣if␣output.state␣=␣before.all␣then
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣write$(pop())
␣␣␣␣␣␣␣␣␣␣␣␣␣␣else␣␣␣␣␣␣␣␣--␣output.state␣should␣be␣after.sentence
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣write$(add.period$(pop())␣*␣"␣")
␣␣␣␣␣␣␣␣␣␣␣␣␣␣fi
␣␣␣␣␣␣␣␣␣␣fi
␣␣␣␣␣␣␣␣␣␣output.state␣:=␣mid.sentence
␣␣␣␣␣␣fi
␣␣␣␣␣␣push␣s␣on␣stack
␣END

The output function calls output.nonnull if its argument is non-empty; its argument may
be a missing field (thus, not necessarily a string)

output(s) ==
BEGIN

if not empty$(s) then output.nonnull(s)
fi

END

The output.check function is the same as the output function except that, if necessary,
output.check warns the user that the t field shouldn’t be empty (this is because it probably
won’t be a good reference without the field; the entry functions try to make the formatting
look reasonable even when such fields are empty).

output.check(s,t) ==
BEGIN

if empty$(s) then
warning$("empty␣" * t * "␣in␣" * cite$)

else output.nonnull(s)
fi

END

The output.bibitem function writes the \bibitem for the current entry (the label
should already have been set up), and sets up the separator state for the output functions.
And, it leaves a string on the stack as per the output convention.

output.bibitem ==
BEGIN

newline$
write$("\bibitem[") % for alphabetic labels,
write$(label) % these three lines
write$("]{") % are used
write$("\bibitem{") % this line for numeric labels
write$(cite$)
write$("}")
push "" on stack
output.state := before.all

END

25

The fin.entry function finishes off an entry by adding a period to the string remaining on
the stack. If the state is still before.all then nothing was produced for this entry, so the result
will look bad, but the user deserves it. (We don’t omit the whole entry because the entry was
cited, and a bibitem is needed to define the citation label.)

fin.entry ==
BEGIN

write$(add.period$(pop()))
newline$

END

The new.block function prepares for a new block to be output, and new.sentence prepares
for a new sentence.

new.block ==
BEGIN

if output.state <> before.all then
output.state := after.block

fi
END

new.sentence ==
BEGIN

if output.state <> after.block then
if output.state <> before.all then

output.state := after.sentence
fi

fi
END

623 INTEGERS { output.state before.all mid.sentence after.sentence after.block after.slash }
624

625 INTEGERS { lang.zh lang.ja lang.en lang.ru lang.other }
626

627 INTEGERS { charptr len }
628

629 FUNCTION {init.state.consts}
630 { #0 'before.all :=
631 #1 'mid.sentence :=
632 #2 'after.sentence :=
633 #3 'after.block :=
634 #4 'after.slash :=
635 #3 'lang.zh :=
636 #4 'lang.ja :=
637 #1 'lang.en :=
638 #2 'lang.ru :=
639 #0 'lang.other :=
640 }
641

下面是一些常量的定义
642 FUNCTION {bbl.anonymous}
643 { entry.lang lang.zh =

26

644 { " 佚名" }
645 { "Anon" }
646 if$
647 }
648

649 FUNCTION {bbl.space}
650 { entry.lang lang.zh =
651 { "\ " }
652 { " " }
653 if$
654 }
655

656 FUNCTION {bbl.and}
657 { "" }
658

659 FUNCTION {bbl.et.al}
660 { entry.lang lang.zh =
661 { " 等" }
662 { entry.lang lang.ja =
663 { " 他" }
664 { entry.lang lang.ru =
665 { "���" }
666 { "et~al." }
667 if$
668 }
669 if$
670 }
671 if$
672 }
673

674 FUNCTION {citation.and}
675 { terms.in.macro
676 { "{\biband}" }
677 'bbl.and
678 if$
679 }
680

681 FUNCTION {citation.et.al}
682 { terms.in.macro
683 { "{\bibetal}" }
684 'bbl.et.al
685 if$
686 }
687

688 FUNCTION {bbl.colon} { ": " }
689

690 FUNCTION {bbl.pages.colon}
691 { space.before.pages
692 { ": " }
693 { ":\allowbreak " }
694 if$
695 }
696

697 ⟨∗!2005⟩
698 FUNCTION {bbl.wide.space} { "\quad " }

27

699 ⟨/!2005⟩
700 ⟨∗2005⟩
701 FUNCTION {bbl.wide.space} { "\ " }
702 ⟨/2005⟩
703

704 FUNCTION {bbl.slash} { "//\allowbreak " }
705

706 FUNCTION {bbl.sine.loco}
707 { entry.lang lang.zh =
708 { "[出版地不详]" }
709 { "[S.l.]" }
710 if$
711 }
712

713 FUNCTION {bbl.sine.nomine}
714 { entry.lang lang.zh =
715 { "[出版者不详]" }
716 { "[s.n.]" }
717 if$
718 }
719

720 FUNCTION {bbl.sine.loco.sine.nomine}
721 { entry.lang lang.zh =
722 { "[出版地不详: 出版者不详]" }
723 { "[S.l.: s.n.]" }
724 if$
725 }
726

727 FUNCTION {default.self.tokens} { ":,-'–—?.!" }
728

729 FUNCTION {latin.upper} { "ÀÁÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖØÙÚÛÜÝÞŸĀĂĄĆĈĊČĎĐĒĔĖĘĚĜĞĠĢĤĦĨĪĬĮİIĴĶĹĻĽĿŁŃŅŇŊŌŎŐŒŔŖŘŚŜŞŠŢŤ�ŨŪŬŮŰŲŴŶŸŹŻŽ" }
730

731 FUNCTION {latin.lower} { "àáãäåæçèéêëìíîïðñòóôõöøùúûüýþÿāăąćĉċčďđēĕėęěĝğġģĥħĩīĭįiıĵķĺļľŀłńņňŋōŏőœŕŗřśŝşšţť�ũūŭůűųŵŷÿźżž" }
732

733 FUNCTION {range.delimiters} { "-–—～" }
734

These three functions pop one or two (integer) arguments from the stack and push a
single one, either 0 or 1. The 'skip$ in the ‘and’ and ‘or’ functions are used because the
corresponding if$ would be idempotent
735 FUNCTION {not}
736 { { #0 }
737 { #1 }
738 if$
739 }
740

741 FUNCTION {and}
742 { 'skip$
743 { pop$ #0 }
744 if$
745 }
746

747 FUNCTION {or}
748 { { pop$ #1 }

28

749 'skip$
750 if$
751 }
752

753 STRINGS { x y }
754

755 FUNCTION {contains}
756 { 'y :=
757 'x :=
758 y text.length$ 'len :=
759 x text.length$ len - #1 + 'charptr :=
760 { charptr #0 >
761 x charptr len substring$ y = not
762 and
763 }
764 { charptr #1 - 'charptr := }
765 while$
766 charptr #0 >
767 }
768

the variables s and t are temporary string holders
769 STRINGS { s t }
770

771 FUNCTION {output.nonnull}
772 { 's :=
773 output.state mid.sentence =
774 { ", " * write$ }
775 { output.state after.block =
776 { add.period$ write$
777 newline$
778 "\newblock " write$
779 }
780 { output.state before.all =
781 'write$
782 { output.state after.slash =
783 { bbl.slash * write$
784 newline$
785 }
786 { add.period$ " " * write$ }
787 if$
788 }
789 if$
790 }
791 if$
792 mid.sentence 'output.state :=
793 }
794 if$
795 s
796 }
797

798 FUNCTION {output}
799 { duplicate$ empty$
800 'pop$
801 'output.nonnull

29

802 if$
803 }
804

805 FUNCTION {output.after}
806 { 't :=
807 duplicate$ empty$
808 'pop$
809 { 's :=
810 output.state mid.sentence =
811 { t * write$ }
812 { output.state after.block =
813 { add.period$ write$
814 newline$
815 "\newblock " write$
816 }
817 { output.state before.all =
818 'write$
819 { output.state after.slash =
820 { bbl.slash * write$ }
821 { add.period$ " " * write$ }
822 if$
823 }
824 if$
825 }
826 if$
827 mid.sentence 'output.state :=
828 }
829 if$
830 s
831 }
832 if$
833 }
834

835 FUNCTION {output.check}
836 { 't :=
837 duplicate$ empty$
838 { pop$ "empty " t * " in " * cite$ * warning$ }
839 'output.nonnull
840 if$
841 }
842

This function finishes all entries.
843 FUNCTION {fin.entry}
844 { end.with.period
845 'add.period$
846 'skip$
847 if$
848 write$
849 show.english.translation entry.lang lang.zh = and
850 { ")"
851 write$
852 }
853 'skip$
854 if$

30

855 newline$
856 }
857

858 FUNCTION {new.block}
859 { output.state before.all =
860 'skip$
861 { output.state after.slash =
862 'skip$
863 { after.block 'output.state := }
864 if$
865 }
866 if$
867 }
868

869 FUNCTION {new.sentence}
870 { output.state after.block =
871 'skip$
872 { output.state before.all =
873 'skip$
874 { output.state after.slash =
875 'skip$
876 { after.sentence 'output.state := }
877 if$
878 }
879 if$
880 }
881 if$
882 }
883

884 FUNCTION {new.slash}
885 { output.state before.all =
886 'skip$
887 { component.part.label "slash" =
888 { after.slash 'output.state := }
889 { new.block
890 component.part.label "in" =
891 { entry.lang lang.en =
892 { "In: " output
893 write$
894 ""
895 before.all 'output.state :=
896 }
897 'skip$
898 if$
899 }
900 'skip$
901 if$
902 }
903 if$
904 }
905 if$
906 }
907

Sometimes we begin a new block only if the block will be big enough. The new.block.checka

31

function issues a new.block if its argument is nonempty; new.block.checkb does the same if
either of its TWO arguments is nonempty.
908 FUNCTION {new.block.checka}
909 { empty$
910 'skip$
911 'new.block
912 if$
913 }
914

915 FUNCTION {new.block.checkb}
916 { empty$
917 swap$ empty$
918 and
919 'skip$
920 'new.block
921 if$
922 }
923

The new.sentence.check functions are analogous.
924 FUNCTION {new.sentence.checka}
925 { empty$
926 'skip$
927 'new.sentence
928 if$
929 }
930

931 FUNCTION {new.sentence.checkb}
932 { empty$
933 swap$ empty$
934 and
935 'skip$
936 'new.sentence
937 if$
938 }
939

In order to support UTF-8 encoding, we need some auxiliary functions. Below are a se-
ries of such functions. We try to make functions loosely-coupled as much as possible. Where
the use of variables is inevitable in functions, we generally assume it is the caller’s respon-
sibility to save and restore those variables. Exceptions are made for some unary functions,
where it is convenient for the callee to do so.
940 INTEGERS { b }
941

Function is.int.in.range takes a codepoint and two integers and check if the
codepoint is between these two integers (inclusive).
942 % codepoint: int, a: int, b: int -> bool
943 % variable used: b
944 FUNCTION {is.int.in.range}
945 {

32

946 'b :=
947 #1 +
948 b >
949 { #1 - b < }
950 { pop$ #0 }
951 if$
952 }
953

Function mult.power2 takes two integers and returns 2nm.
954 % m: int, n: int -> int
955 FUNCTION {mult.power2}
956 {
957 { duplicate$ #0 > }
958 {
959 swap$
960 duplicate$ +
961 swap$ #1 -
962 }
963 while$
964 pop$
965 }
966

Function find.match.brace takes two strings, the first of which is assumed to
be "{", and find the matching brace in the second string. It returns a token (or subtoken)
and the rest of the string after the matching brace. When braces are unmatched, it issues
a warning and complete the brace automatically, following the convention of the original
BIBTEX.
967 % "{", str -> subtoken: str, rest: str
968 % variables used: s, t
969 FUNCTION {find.match.brace}
970 {
971 's :=
972 't :=
973

974 #1
975 { duplicate$ #0 >
976 s empty$ not and }
977 {
978 s #1 #1 substring$ "{" =
979 { #1 + }
980 {
981 s #1 #1 substring$ "}" =
982 { #1 - }
983 'skip$
984 if$
985 }
986 if$
987 t s #1 #1 substring$ * 't :=
988 s #2 global.max$ substring$'s :=
989 }
990 while$

33

991

992 duplicate$ #0 >
993 {
994 "Unbalanced brace(s): one or more closing braces are missing" warning$
995 { duplicate$ #0 > }
996 {
997 t "}" * 't :=
998 #1 -
999 }

1000 while$
1001 }
1002 'skip$
1003 if$
1004 pop$
1005

1006 t
1007 s
1008 }
1009

Function split.first.char.from.str takes a UTF-8 string and return the
first UTF-8 character and the rest of the string in reverse order.

1010 % str -> str, char
1011 FUNCTION {split.first.char.from.str}
1012 {
1013 duplicate$ "" =
1014 {
1015 "split.first.char.from.str: Trying to split an empty string!" warning$
1016 ""
1017 }
1018 {
1019 duplicate$ #1 #1 substring$ chr.to.int$ #128 <
1020 {
1021 duplicate$ #1 #1 substring$ swap$
1022 #2 global.max$ substring$ swap$
1023 }
1024 {
1025 duplicate$ #1 #1 substring$ chr.to.int$ #224 <
1026 {
1027 duplicate$ #1 #2 substring$ swap$
1028 #3 global.max$ substring$ swap$
1029 }
1030 {
1031 duplicate$ #1 #1 substring$ chr.to.int$ #240 <
1032 {
1033 duplicate$ #1 #3 substring$ swap$
1034 #4 global.max$ substring$ swap$
1035 }
1036 {
1037 duplicate$ #1 #4 substring$ swap$
1038 #5 global.max$ substring$ swap$
1039 }
1040 if$
1041 }

34

1042 if$
1043 }
1044 if$
1045 }
1046 if$
1047 }
1048

Function get.first.char.from.str takes a UTF-8 string and return the first
UTF-8 character.

1049 % str -> char
1050 FUNCTION {get.first.char.from.str}
1051 {
1052 split.first.char.from.str swap$ pop$
1053 }
1054

Functionsplit.first.tex.char.from.str is likesplit.first.char.from.str.
It takes a UTF-8 string and return the first UTF-8 character or first TEXgroup and the rest of
string in reverse order.

1055 % str -> rest: str, texchar
1056 FUNCTION {split.first.tex.char.from.str}
1057 {
1058 duplicate$ #1 #1 substring$ "{" =
1059 {
1060 split.first.char.from.str swap$
1061 find.match.brace swap$
1062 }
1063 'split.first.char.from.str
1064 if$
1065 }
1066

Function char.to.unicode takes a UTF-8 character and returns its codepoint in
Unicode. It issues a warning and returns −1 if the presumed character is an empty string.
For other invalid input, the behavior is undefined.

1067 % char -> int
1068 FUNCTION {char.to.unicode}
1069 {
1070 duplicate$ #4 #1 substring$ "" =
1071 {
1072 duplicate$ #3 #1 substring$ "" =
1073 {
1074 duplicate$ #2 #1 substring$ "" =
1075 {
1076 duplicate$ "" =
1077 {
1078 "Empty string is not a char!" warning$
1079 pop$ #-1
1080 }
1081 { #1 #1 substring$ chr.to.int$ }
1082 if$

35

1083 }
1084 {
1085 duplicate$ #2 #1 substring$ chr.to.int$ #128 - swap$
1086 #1 #1 substring$ chr.to.int$ #192 -
1087 #6 mult.power2 +
1088 }
1089 if$
1090 }
1091 {
1092 duplicate$ #3 #1 substring$ chr.to.int$ #128 - swap$
1093 duplicate$ #2 #1 substring$ chr.to.int$ #128 - swap$
1094 #1 #1 substring$ chr.to.int$ #224 -
1095 #6 mult.power2 +
1096 #6 mult.power2 +
1097 }
1098 if$
1099 }
1100 {
1101 duplicate$ #4 #1 substring$ chr.to.int$ #128 - swap$
1102 duplicate$ #3 #1 substring$ chr.to.int$ #128 - swap$
1103 duplicate$ #2 #1 substring$ chr.to.int$ #128 - swap$
1104 #1 #1 substring$ chr.to.int$ #240 -
1105 #6 mult.power2 +
1106 #6 mult.power2 +
1107 #6 mult.power2 +
1108 }
1109 if$
1110 }
1111

Functionis.char.in.str takes a string and a UTF-8 character. It checks whether
the character is in the string. It issues a warning and returns 0 if the presumed character is
an empty string. It also returns 0 if the string itself is empty. For other input, the behavior is
undefined.

1112 % str, char -> bool
1113 % variable used: t
1114 FUNCTION {is.char.in.str}
1115 {
1116 't :=
1117

1118 t "" =
1119 { "is.char.in.str: Empty string is not a char!" warning$ }
1120 'skip$
1121 if$
1122

1123 #0 swap$
1124 { duplicate$ "" = not }
1125 {
1126 split.first.char.from.str t =
1127 { pop$ pop$ #1 "" }
1128 'skip$
1129 if$
1130 }

36

1131 while$
1132 pop$
1133 }
1134

Function is.upper.ascii takes a UTF-8 character and checks whether it is an
uppercase ASCII letter.

1135 % char -> bool
1136 % variable used: b
1137 FUNCTION {is.upper.ascii}
1138 {
1139 char.to.unicode #65 swap$ #90 swap$ is.int.in.range
1140 }
1141

Function is.upper takes a UTF-8 character and checks whether it is uppercase in
the range from U+0000 to U+017F.

1142 % char -> bool
1143 % variable used: b
1144 FUNCTION {is.upper}
1145 {
1146 duplicate$ is.upper.ascii
1147 { pop$ #1 }
1148 { latin.upper swap$ is.char.in.str }
1149 if$
1150 }
1151

Function is.lower.ascii takes a UTF-8 character and checks whether it is a
lowercase ASCII letter.

1152 % char -> bool
1153 % variable used: b
1154 FUNCTION {is.lower.ascii}
1155 {
1156 char.to.unicode #97 swap$ #122 swap$ is.int.in.range
1157 }
1158

Function is.upper takes a UTF-8 character and checks whether it is lowercase in
the range from U+0000 to U+017F.

1159 % char -> bool
1160 % variable used: b
1161 FUNCTION {is.lower}
1162 {
1163 duplicate$ is.lower.ascii
1164 { pop$ #1 }
1165 { latin.lower swap$ is.char.in.str }
1166 if$
1167 }
1168

37

Function is.printable.ascii takes a UTF-8 character and checks whether it
is a printable ASCII character.

1169 % char -> bool
1170 % variable used: b
1171 FUNCTION {is.printable.ascii}
1172 {
1173 char.to.unicode #32 swap$ #126 swap$ is.int.in.range
1174 }
1175

Function is.letter.ascii takes a UTF-8 character and checks whether it is an
ASCII letter.

1176 % char -> bool
1177 % variable used: b
1178 FUNCTION {is.letter.ascii}
1179 {
1180 duplicate$ is.upper.ascii swap$ is.lower.ascii or
1181 }
1182

Function is.symbol.ascii takes a UTF-8 character and checks whether it is a
printable ASCII character but not an ASCII letter.

1183 % char -> bool
1184 % variable used: b
1185 FUNCTION {is.symbol.ascii}
1186 {
1187 duplicate$ is.printable.ascii swap$ is.letter.ascii not and
1188 }
1189

Function is.all.lower takes a string and checks whether every character in it is
lowercase in the range from U+0000 to U+017F.

1190 % str -> bool
1191 % variable used: b
1192 % return true if str is empty
1193 FUNCTION {is.all.lower}
1194 {
1195 #1 swap$
1196 { duplicate$ "" = not }
1197 {
1198 split.first.char.from.str is.lower
1199 'skip$
1200 { pop$ pop$ #0 "" }
1201 if$
1202 }
1203 while$
1204 pop$
1205 }
1206

1207 % str -> bool
1208 % variable used: b
1209 FUNCTION {is.tex.str.in.title.case}

38

1210 {
1211 duplicate$ "" =
1212 { pop$ #0 }
1213 {
1214 split.first.tex.char.from.str purify$
1215 duplicate$ "" =
1216 { pop$ pop$ #0 }
1217 {
1218 split.first.char.from.str is.upper
1219 {
1220 duplicate$ is.all.lower
1221 {
1222 empty$
1223 {
1224 duplicate$ "" =
1225 { pop$ #0 }
1226 'is.all.lower
1227 if$
1228 }
1229 'is.all.lower
1230 if$
1231 }
1232 { pop$ pop$ #0 }
1233 if$
1234 }
1235 { pop$ pop$ #0}
1236 if$
1237 }
1238 if$
1239 }
1240 if$
1241 }
1242

1243 % char, int -> bool
1244 % variables used: t, b
1245 FUNCTION {is.in.inter.token.chars}
1246 {
1247 duplicate$ #0 =
1248 { pop$ " " = }
1249 {
1250 #1 =
1251 { " " range.delimiters * swap$ is.char.in.str }
1252 'is.letter.ascii
1253 if$
1254 }
1255 if$
1256 }
1257

1258 % str, int -> intertoken: str, rest: str
1259 % variable used: t, b
1260 FUNCTION {skip.inter.token.chars.by}
1261 {
1262 'b :=
1263 't :=
1264

39

1265 "" t
1266 { duplicate$ "" = not }
1267 {
1268 split.first.char.from.str
1269 duplicate$ b is.in.inter.token.chars
1270 { swap$ 't := * t }
1271 { swap$ * 't := "" }
1272 if$
1273 }
1274 while$
1275

1276 pop$ t
1277 }
1278

1279 % str -> intertoken: str, rest: str
1280 % variable used: t, b
1281 FUNCTION {skip.inter.token.chars}
1282 {
1283 #0 skip.inter.token.chars.by
1284 }
1285

1286 % str -> intertoken: str, rest: str
1287 % variable used: t, b
1288 FUNCTION {skip.inter.token.command}
1289 {
1290 duplicate$ "" =
1291 { "" }
1292 {
1293 duplicate$ #1 #1 substring$ is.symbol.ascii
1294 { split.first.char.from.str swap$ }
1295 { #2 skip.inter.token.chars.by }
1296 if$
1297 }
1298 if$
1299 }
1300

1301 % cmdstr -> cmdstr
1302 FUNCTION {is.special.char.command}
1303 {
1304 #2 global.max$ substring$ skip.inter.token.command
1305

1306 empty$
1307 'skip$
1308 { "is.special.char.command: cmdstr has extra components!" warning$ }
1309 if$
1310

1311 duplicate$ duplicate$ duplicate$ duplicate$ duplicate$ duplicate$
1312 "oOlLij" swap$ is.char.in.str
1313 swap$ "oe" = or
1314 swap$ "OE" = or
1315 swap$ "ae" = or
1316 swap$ "AE" = or
1317 swap$ "aa" = or
1318 swap$ "AA" = or
1319 }

40

1320

1321 % str, str, char -> char
1322 % variable used: t
1323 FUNCTION {map.char}
1324 {
1325 't :=
1326 split.first.char.from.str
1327 { swap$ duplicate$ "" = not }
1328 {
1329 swap$ t =
1330 { pop$ "" t }
1331 {
1332 swap$ split.first.char.from.str pop$ swap$
1333 split.first.char.from.str
1334 }
1335 if$
1336 }
1337 while$
1338 pop$ t =
1339 'get.first.char.from.str
1340 { pop$ t }
1341 if$
1342 }
1343

1344 % char -> char
1345 % variables used: t, b
1346 FUNCTION {to.lower}
1347 {
1348 duplicate$ is.upper.ascii
1349 { chr.to.int$ #32 + int.to.chr$ }
1350 { latin.lower swap$ latin.upper swap$ map.char }
1351 if$
1352 }
1353

1354 % char -> char
1355 % variables used: t, b
1356 FUNCTION {to.upper}
1357 {
1358 duplicate$ is.lower.ascii
1359 { chr.to.int$ #32 - int.to.chr$ }
1360 { latin.upper swap$ latin.lower swap$ map.char }
1361 if$
1362 }
1363

1364 % str -> str
1365 % variables used: t, b
1366 FUNCTION {all.to.lower}
1367 {
1368 "" swap$
1369 { duplicate$ empty$ not }
1370 { split.first.char.from.str to.lower swap$ 't := * t }
1371 while$
1372 *
1373 }
1374

41

1375 % texchar -> texchar
1376 % variables used: t, b
1377 FUNCTION {command.to.lower}
1378 {
1379 duplicate$ "" =
1380 { "command.to.lower: Empty string is not a texchar!" warning$ }
1381 {
1382 duplicate$ #1 #1 substring$ #92 int.to.chr$ =
1383 {
1384 duplicate$ is.special.char.command
1385 'all.to.lower
1386 'skip$
1387 if$
1388 }
1389 'to.lower
1390 if$
1391 }
1392 if$
1393 }
1394

1395 % texchar -> texchar
1396 % variables used: t, b
1397 FUNCTION {tex.to.lower}
1398 {
1399 duplicate$ #1 #2 substring$ "{" #92 int.to.chr$ * =
1400 {
1401 "" swap$
1402 { duplicate$ "" = not }
1403 {
1404 split.first.char.from.str
1405 duplicate$ #92 int.to.chr$ =
1406 {
1407 swap$ skip.inter.token.command 't := * t
1408 swap$ command.to.lower
1409 }
1410 'to.lower
1411 if$
1412 swap$ 't := * t
1413 }
1414 while$
1415 pop$
1416 }
1417 {
1418 duplicate$ #1 #1 substring$ "{" =
1419 { split.first.char.from.str swap$ find.match.brace pop$ }
1420 'command.to.lower
1421 if$
1422 }
1423 if$
1424 }
1425

1426 % str -> str
1427 % variables used: t, b
1428 FUNCTION {all.to.upper}
1429 {

42

1430 "" swap$
1431 { duplicate$ empty$ not }
1432 { split.first.char.from.str to.upper swap$ 't := * t }
1433 while$
1434 *
1435 }
1436

1437 % texchar -> texchar
1438 % variables used: t, b
1439 FUNCTION {command.to.upper}
1440 {
1441 duplicate$ "" =
1442 { "command.to.lower: Empty string is not a texchar!" warning$ }
1443 {
1444 duplicate$ #1 #1 substring$ #92 int.to.chr$ =
1445 {
1446 duplicate$ is.special.char.command
1447 'all.to.upper
1448 'skip$
1449 if$
1450 }
1451 'to.upper
1452 if$
1453 }
1454 if$
1455 }
1456

1457 % texchar -> texchar
1458 % variables used: t, b
1459 FUNCTION {tex.to.upper}
1460 {
1461 duplicate$ #1 #2 substring$ "{" #92 int.to.chr$ * =
1462 {
1463 "" swap$
1464 { duplicate$ "" = not }
1465 {
1466 split.first.char.from.str
1467 duplicate$ #92 int.to.chr$ =
1468 {
1469 swap$ skip.inter.token.command 't := * t
1470 swap$ command.to.upper
1471 }
1472 'to.upper
1473 if$
1474 swap$ 't := * t
1475 }
1476 while$
1477 pop$
1478 }
1479 {
1480 duplicate$ #1 #1 substring$ "{" =
1481 { split.first.char.from.str swap$ find.match.brace pop$ }
1482 'command.to.upper
1483 if$
1484 }

43

1485 if$
1486 }
1487

1488 % texstr -> texstr
1489 % variable used: t, b
1490 FUNCTION {lower.token.if.in.title.case}
1491 {
1492 duplicate$ is.tex.str.in.title.case
1493 { split.first.tex.char.from.str tex.to.lower swap$ * }
1494 'skip$
1495 if$
1496 }
1497

1498 % int -> str
1499 FUNCTION {self.tokens}
1500 {
1501 #0 =
1502 'default.self.tokens
1503 'range.delimiters
1504 if$
1505 }
1506

1507 % str, int -> token: str, rest: str
1508 % variables used: s, t, b
1509 FUNCTION {tokenize.by}
1510 {
1511 'b :=
1512 's :=
1513

1514 s "" =
1515 { "" "" }
1516 {
1517 s split.first.char.from.str
1518 duplicate$ b self.tokens swap$ is.char.in.str
1519 'swap$
1520 {
1521 duplicate$ #92 int.to.chr$ =
1522 { swap$ skip.inter.token.command 's := * s }
1523 {
1524 pop$ pop$ "" s
1525 { duplicate$ "" = not }
1526 {
1527 split.first.char.from.str
1528 duplicate$ "\ " b self.tokens * swap$ is.char.in.str
1529 { pop$ pop$ "" }
1530 {
1531 duplicate$ "{" =
1532 { swap$ find.match.brace }
1533 'swap$
1534 if$
1535 's := * s
1536 }
1537 if$
1538 }
1539 while$

44

1540 pop$ s
1541 }
1542 if$
1543 }
1544 if$
1545 }
1546 if$
1547 }
1548

1549 % str -> str
1550 % variables used: s, t, b
1551 FUNCTION {tokenize}
1552 {
1553 #0 tokenize.by
1554 }
1555

1556 % str -> str
1557 % variables used: s, t, b
1558 FUNCTION {smart.sentence.case}
1559 {
1560 tokenize 's :=
1561

1562 { s "" = not }
1563 {
1564 s skip.inter.token.chars 's := * s
1565 tokenize swap$
1566 duplicate$ ":" =
1567 {
1568 swap$'s := *
1569 s skip.inter.token.chars 's := * s
1570 tokenize swap$
1571 lowercase.word.after.colon
1572 {
1573 duplicate$ "A" =
1574 { pop$ "a" }
1575 'lower.token.if.in.title.case
1576 if$
1577 }
1578 'skip$
1579 if$
1580 }
1581 'lower.token.if.in.title.case
1582 if$
1583 swap$'s := *
1584 }
1585 while$
1586 }
1587

1588 % str -> str
1589 % variables used: s, t, b
1590 FUNCTION {smart.upper.case}
1591 {
1592 s swap$ t swap$
1593

1594 "" swap$

45

1595 { duplicate$ "" = not }
1596 {
1597 tokenize swap$
1598 duplicate$ #1 #1 substring$ #92 int.to.chr$ =
1599 'command.to.upper
1600 {
1601 "" swap$
1602 { duplicate$ "" = not }
1603 {
1604 split.first.tex.char.from.str tex.to.upper
1605 swap$ 't := * t
1606 }
1607 while$
1608 pop$
1609 }
1610 if$
1611 swap$ 't := * t
1612 skip.inter.token.chars 't := * t
1613 }
1614 while$
1615 pop$
1616

1617 swap$ 't :=
1618 swap$'s :=
1619 }
1620

B.4 Formatting chunks

Here are some functions for formatting chunks of an entry. By convention they either
produce a string that can be followed by a comma or period (using add.period$, so it
is OK to end in a period), or they produce the null string.

A useful utility is the field.or.null function, which checks if the argument is the result
of pushing a ‘missing’ field (one for which no assignment was made when the current entry
was read in from the database) or the result of pushing a string having no non-white-space
characters. It returns the null string if so, otherwise it returns the field string. Its main (but
not only) purpose is to guarantee that what’s left on the stack is a string rather than a missing
field.

field.or.null(s) ==
BEGIN

if empty$(s) then return ""
else return s

END

Another helper function is emphasize, which returns the argument emphazised, if that is
non-empty, otherwise it returns the null string. Italic corrections aren’t used, so this function
should be used when punctation will follow the result.

46

emphasize(s) ==
BEGIN

if empty$(s) then return ""
else return "{\em␣" * s * "}"

The ‘pop$’ in this function gets rid of the duplicate ‘empty’ value and the ‘skip$’ returns
the duplicate field value

1621 FUNCTION {field.or.null}
1622 { duplicate$ empty$
1623 { pop$ "" }
1624 'skip$
1625 if$
1626 }
1627

1628 FUNCTION {emphasize}
1629 { duplicate$ empty$
1630 { pop$ "" }
1631 { "\emph{" swap$ * "}" * }
1632 if$
1633 }
1634

1635 FUNCTION {format.btitle}
1636 { italic.book.title
1637 entry.lang lang.en = and
1638 'emphasize
1639 'skip$
1640 if$
1641 }
1642

B.4.1 Detect Language
1643 INTEGERS { byte second.byte }
1644

1645 INTEGERS { char.lang tmp.lang }
1646

1647 STRINGS { tmp.str }
1648

1649 FUNCTION {get.str.lang}
1650 { 'tmp.str :=
1651 lang.other 'tmp.lang :=
1652 #1 'charptr :=
1653 tmp.str text.length$ #1 + 'len :=
1654 { charptr len < }
1655 { tmp.str charptr #1 substring$ chr.to.int$ 'byte :=
1656 byte #128 <
1657 { charptr #1 + 'charptr :=
1658 byte #64 > byte #91 < and byte #96 > byte #123 < and or
1659 { lang.en 'char.lang := }
1660 { lang.other 'char.lang := }
1661 if$
1662 }
1663 { tmp.str charptr #1 + #1 substring$ chr.to.int$ 'second.byte :=

47

1664 byte #224 <

俄文西里尔字母：U+0400 到 U+052F，对应 UTF-8 从 D0 80 到 D4 AF。
1665 { charptr #2 + 'charptr :=
1666 byte #207 > byte #212 < and
1667 byte #212 = second.byte #176 < and or
1668 { lang.ru 'char.lang := }
1669 { lang.other 'char.lang := }
1670 if$
1671 }
1672 { byte #240 <

CJK Unified Ideographs: U+4E00–U+9FFF; UTF-8: E4 B8 80–E9 BF BF.
1673 { charptr #3 + 'charptr :=
1674 byte #227 > byte #234 < and
1675 { lang.zh 'char.lang := }

CJK Unified Ideographs Extension A: U+3400–U+4DBF; UTF-8: E3 90 80–E4 B6 BF.
1676 { byte #227 =
1677 { second.byte #143 >
1678 { lang.zh 'char.lang := }

日语假名：U+3040–U+30FF, UTF-8: E3 81 80–E3 83 BF.
1679 { second.byte #128 > second.byte #132 < and
1680 { lang.ja 'char.lang := }
1681 { lang.other 'char.lang := }
1682 if$
1683 }
1684 if$
1685 }

CJK Compatibility Ideographs: U+F900–U+FAFF, UTF-8: EF A4 80–EF AB BF.
1686 { byte #239 =
1687 second.byte #163 > second.byte #172 < and and
1688 { lang.zh 'char.lang := }
1689 { lang.other 'char.lang := }
1690 if$
1691 }
1692 if$
1693 }
1694 if$
1695 }

CJK Unified Ideographs Extension B–F: U+20000–U+2EBEF, UTF-8: F0 A0 80 80–F0 AE
AF AF. CJK Compatibility Ideographs Supplement: U+2F800–U+2FA1F, UTF-8: F0 AF
A0 80–F0 AF A8 9F.

1696 { charptr #4 + 'charptr :=
1697 byte #240 = second.byte #159 > and
1698 { lang.zh 'char.lang := }
1699 { lang.other 'char.lang := }
1700 if$
1701 }
1702 if$
1703 }
1704 if$

48

1705 }
1706 if$
1707 char.lang tmp.lang >
1708 { char.lang 'tmp.lang := }
1709 'skip$
1710 if$
1711 }
1712 while$
1713 tmp.lang
1714 }
1715

1716 FUNCTION {check.entry.lang}
1717 { author field.or.null
1718 title field.or.null *
1719 get.str.lang
1720 }
1721

1722 STRINGS { entry.langid }
1723

1724 FUNCTION {set.entry.lang}
1725 { "" 'entry.langid :=
1726 language empty$ not
1727 { language 'entry.langid := }
1728 'skip$
1729 if$
1730 langid empty$ not
1731 { langid 'entry.langid := }
1732 'skip$
1733 if$
1734 entry.langid empty$
1735 { check.entry.lang }
1736 { entry.langid "english" = entry.langid "american" = or entry.langid "british" = or
1737 { lang.en }
1738 { entry.langid "chinese" =
1739 { lang.zh }
1740 { entry.langid "japanese" =
1741 { lang.ja }
1742 { entry.langid "russian" =
1743 { lang.ru }
1744 { check.entry.lang }
1745 if$
1746 }
1747 if$
1748 }
1749 if$
1750 }
1751 if$
1752 }
1753 if$
1754 'entry.lang :=
1755 }
1756

1757 FUNCTION {set.entry.numbered}
1758 { type$ "patent" =
1759 type$ "standard" = or

49

1760 type$ "techreport" = or
1761 { #1 'entry.numbered := }
1762 { #0 'entry.numbered := }
1763 if$
1764 }
1765

B.4.2 Format names

The format.names function formats the argument (which should be in BibTeX name
format) into First Von Last, Junior, separated by commas and with an and
before the last (but ending with et~al. if the last of multiple authors is others). This
function’s argument should always contain at least one name.
VAR: nameptr, namesleft, numnames: INTEGER
pseudoVAR: nameresult: STRING (it's␣what's accumulated on the stack)

format.names(s) ==
BEGIN

nameptr := 1
numnames := num.names$(s)
namesleft := numnames
while namesleft > 0

do
% for full names:

t := format.name$(s, nameptr, "{ff~}{vv~}{ll}{,␣jj}")
% for abbreviated first names:

t := format.name$(s, nameptr, "{f.~}{vv~}{ll}{,␣jj}")
if nameptr > 1 then

if namesleft > 1 then nameresult := nameresult * ",␣" * t
else if numnames > 2

then nameresult := nameresult * ","
fi
if t = "others"

then nameresult := nameresult * "␣et~al."
else nameresult := nameresult * "␣and␣" * t

fi
fi

else nameresult := t
fi
nameptr := nameptr + 1
namesleft := namesleft - 1

od
return nameresult

END

The format.authors function returns the result of format.names(author) if the author is
present, or else it returns the null string
format.authors ==
BEGIN

if empty$(author) then return ""
else return format.names(author)
fi

50

END

Format.editors is like format.authors, but it uses the editor field, and appends, editor
or , editors

format.editors ==
BEGIN

if empty$(editor) then return ""
else

if num.names$(editor) > 1 then
return format.names(editor) * ",␣editors"

else
return format.names(editor) * ",␣editor"

fi
fi

END

Other formatting functions are similar, so no comment version will be given for
them.

1766 INTEGERS { nameptr namesleft numnames name.lang }
1767

1768 FUNCTION {format.name}
1769 { "{vv~}{ll}{, jj}{, ff}" format.name$ 't :=
1770 t "others" =
1771 { bbl.et.al }
1772 { t get.str.lang 'name.lang :=
1773 name.lang lang.en =
1774 { t #1 "{vv~}{ll}{ f{~}}" format.name$
1775 uppercase.name
1776 'smart.upper.case
1777 'skip$
1778 if$
1779 t #1 "{, jj}" format.name$ *
1780 }
1781 { t #1 "{ll}{ff}" format.name$ }
1782 if$
1783 }
1784 if$
1785 }
1786

1787 FUNCTION {format.names}
1788 { 's :=
1789 #1 'nameptr :=
1790 s num.names$ 'numnames :=
1791 ""
1792 numnames 'namesleft :=
1793 { namesleft #0 > }
1794 { s nameptr format.name bbl.et.al =
1795 numnames bibliography.et.al.min #1 - > nameptr bibliography.et.al.use.first > and or
1796 { ", " *
1797 bbl.et.al *
1798 #1 'namesleft :=
1799 }

51

1800 { nameptr #1 >
1801 { namesleft #1 = bbl.and "" = not and
1802 { bbl.and * }
1803 { ", " * }
1804 if$
1805 }
1806 'skip$
1807 if$
1808 s nameptr format.name *
1809 }
1810 if$
1811 nameptr #1 + 'nameptr :=
1812 namesleft #1 - 'namesleft :=
1813 }
1814 while$
1815 }
1816

1817 FUNCTION {format.key}
1818 { empty$
1819 { key field.or.null }
1820 { "" }
1821 if$
1822 }
1823

1824 FUNCTION {format.authors}
1825 { author empty$ not
1826 { author format.names }
1827 { "empty author in " cite$ * warning$
1828 ⟨∗author-year⟩
1829 bbl.anonymous
1830 ⟨/author-year⟩
1831 ⟨∗numerical⟩
1832 ""
1833 ⟨/numerical⟩
1834 }
1835 if$
1836 }
1837

1838 FUNCTION {format.editors}
1839 { editor empty$
1840 { "" }
1841 { editor format.names }
1842 if$
1843 }
1844

1845 FUNCTION {format.translators}
1846 { translator empty$
1847 { "" }
1848 { translator format.names
1849 entry.lang lang.zh =
1850 { translator num.names$ #3 >
1851 { " 译" * }
1852 { ", 译" * }
1853 if$
1854 }

52

1855 'skip$
1856 if$
1857 }
1858 if$
1859 }
1860

1861 FUNCTION {format.full.names}
1862 {'s :=
1863 #1 'nameptr :=
1864 s num.names$ 'numnames :=
1865 numnames 'namesleft :=
1866 { namesleft #0 > }
1867 { s nameptr "{vv~}{ll}{, jj}{, ff}" format.name$ 't :=
1868 t get.str.lang 'name.lang :=
1869 name.lang lang.en =
1870 { t #1 "{vv~}{ll}" format.name$ 't := }
1871 { t #1 "{ll}{ff}" format.name$ 't := }
1872 if$
1873 nameptr #1 >
1874 {
1875 namesleft #1 >
1876 { ", " * t * }
1877 {
1878 numnames #2 >
1879 { "," * }
1880 'skip$
1881 if$
1882 t "others" =
1883 { " et~al." * }
1884 { " and " * t * }
1885 if$
1886 }
1887 if$
1888 }
1889 't
1890 if$
1891 nameptr #1 + 'nameptr :=
1892 namesleft #1 - 'namesleft :=
1893 }
1894 while$
1895 }
1896

1897 FUNCTION {author.editor.full}
1898 { author empty$
1899 { editor empty$
1900 { "" }
1901 { editor format.full.names }
1902 if$
1903 }
1904 { author format.full.names }
1905 if$
1906 }
1907

1908 FUNCTION {author.full}
1909 { author empty$

53

1910 { "" }
1911 { author format.full.names }
1912 if$
1913 }
1914

1915 FUNCTION {editor.full}
1916 { editor empty$
1917 { "" }
1918 { editor format.full.names }
1919 if$
1920 }
1921

1922 FUNCTION {make.full.names}
1923 { type$ "book" =
1924 type$ "inbook" = booktitle empty$ not and
1925 or
1926 'author.editor.full
1927 { type$ "collection" =
1928 type$ "proceedings" =
1929 or
1930 'editor.full
1931 'author.full
1932 if$
1933 }
1934 if$
1935 }
1936

1937 FUNCTION {output.bibitem}
1938 { newline$
1939 "\bibitem[" write$
1940 label ")" *
1941 make.full.names duplicate$ short.list =
1942 { pop$ }
1943 { duplicate$ "]" contains
1944 { "{" swap$ * "}" * }
1945 'skip$
1946 if$
1947 *
1948 }
1949 if$
1950 "]{" * write$
1951 cite$ write$
1952 "}" write$
1953 newline$
1954 ""
1955 before.all 'output.state :=
1956 }
1957

B.4.3 Format title

The format.title function is used for non-book-like titles. For most styles we
convert to lowercase (except for the very first letter, and except for the first one after a colon

54

(followed by whitespace)), and hope the user has brace-surrounded words that need to stay
capitilized; for some styles, however, we leave it as it is in the database.

1958 FUNCTION {change.sentence.case}
1959 { entry.lang lang.en =
1960 'smart.sentence.case
1961 'skip$
1962 if$
1963 }
1964

1965 FUNCTION {add.link}
1966 { url empty$ not
1967 { "\href{" url * "}{" * swap$ * "}" * }
1968 { doi empty$ not
1969 { "\href{https://doi.org/" doi * "}{" * swap$ * "}" * }
1970 'skip$
1971 if$
1972 }
1973 if$
1974 }
1975

1976 FUNCTION {format.title}
1977 { title empty$
1978 { "" }
1979 { title
1980 sentence.case.title
1981 'change.sentence.case
1982 'skip$
1983 if$
1984 entry.numbered number empty$ not and
1985 { bbl.colon *
1986 type$ "patent" = show.patent.country and
1987 { address empty$ not
1988 { address * ", " * }
1989 { location empty$ not
1990 { location * ", " * }
1991 { entry.lang lang.zh =
1992 { " 中国" * ", " * }
1993 'skip$
1994 if$
1995 }
1996 if$
1997 }
1998 if$
1999 }
2000 'skip$
2001 if$
2002 number *
2003 }
2004 'skip$
2005 if$
2006 link.title
2007 'add.link
2008 'skip$
2009 if$

55

2010 }
2011 if$
2012 }
2013

For several functions we’ll need to connect two strings with a tie (~) if the second one
isn’t very long (fewer than 3 characters). The tie.or.space.connect function does that. It
concatenates the two strings on top of the stack, along with either a tie or space between
them, and puts this concatenation back onto the stack:

tie.or.space.connect(str1,str2) ==
BEGIN

if text.length$(str2) < 3
then return the concatenation of str1, "~", and str2
else return the concatenation of str1, "␣", and str2

END

2014 FUNCTION {tie.or.space.connect}
2015 { duplicate$ text.length$ #3 <
2016 { "~" }
2017 { " " }
2018 if$
2019 swap$ * *
2020 }
2021

The either.or.check function complains if both fields or an either-or pair are nonempty.

either.or.check(t,s) ==
BEGIN

if empty$(s) then
warning$(can't␣use␣both␣"␣*␣t␣*␣"␣fields␣in␣"␣*␣cite$)

␣␣␣␣␣␣fi
␣END

2022 FUNCTION {either.or.check}
2023 { empty$
2024 'pop$
2025 { "can't use both " swap$ * " fields in " * cite$ * warning$ }
2026 if$
2027 }
2028

The format.bvolume function is for formatting the volume and perhaps series name of
a multivolume work. If both a volume and a series field are there, we assume the series field
is the title of the whole multivolume work (the title field should be the title of the thing being
referred to), and we add an of <series>. This function is called in mid-sentence.

The format.number.series function is for formatting the series name and perhaps number
of a work in a series. This function is similar to format.bvolume, although for this one the
series must exist (and the volume must not exist). If the number field is empty we output
either the series field unchanged if it exists or else the null string. If both the number and

56

series fields are there we assume the series field gives the name of the whole series (the title
field should be the title of the work being one referred to), and we add an in <series>.
We capitilize Number when this function is used at the beginning of a block.

2029 FUNCTION {is.digit}
2030 { duplicate$ empty$
2031 { pop$ #0 }
2032 { chr.to.int$
2033 duplicate$ "0" chr.to.int$ <
2034 { pop$ #0 }
2035 { "9" chr.to.int$ >
2036 { #0 }
2037 { #1 }
2038 if$
2039 }
2040 if$
2041 }
2042 if$
2043 }
2044

2045 FUNCTION {is.number}
2046 { 's :=
2047 s empty$
2048 { #0 }
2049 { s text.length$ 'charptr :=
2050 { charptr #0 >
2051 s charptr #1 substring$ is.digit
2052 and
2053 }
2054 { charptr #1 - 'charptr := }
2055 while$
2056 charptr not
2057 }
2058 if$
2059 }
2060

2061 FUNCTION {format.volume}
2062 { volume empty$ not
2063 { volume is.number
2064 { entry.lang lang.zh =
2065 { " 第 " volume * " 卷" * }
2066 { "Vol." volume tie.or.space.connect }
2067 if$
2068 }
2069 { volume }
2070 if$
2071 }
2072 { "" }
2073 if$
2074 }
2075

2076 FUNCTION {format.number}
2077 { number empty$ not
2078 { number is.number
2079 { entry.lang lang.zh =

57

2080 { " 第 " number * " 册" * }
2081 { "No." number tie.or.space.connect }
2082 if$
2083 }
2084 { number }
2085 if$
2086 }
2087 { "" }
2088 if$
2089 }
2090

2091 FUNCTION {format.volume.number}
2092 { volume empty$ not
2093 { format.volume }
2094 { format.number }
2095 if$
2096 }
2097

2098 FUNCTION {format.title.vol.num}
2099 { title
2100 sentence.case.title
2101 'change.sentence.case
2102 'skip$
2103 if$
2104 entry.numbered
2105 { number empty$ not
2106 { bbl.colon * number * }
2107 'skip$
2108 if$
2109 }
2110 { format.volume.number 's :=
2111 s empty$ not
2112 { bbl.colon * s * }
2113 'skip$
2114 if$
2115 }
2116 if$
2117 }
2118

2119 FUNCTION {format.series.vol.num.title}
2120 { format.volume.number 's :=
2121 series empty$ not
2122 { series
2123 sentence.case.title
2124 'change.sentence.case
2125 'skip$
2126 if$
2127 entry.numbered
2128 { bbl.wide.space * }
2129 { bbl.colon *
2130 s empty$ not
2131 { s * bbl.wide.space * }
2132 'skip$
2133 if$
2134 }

58

2135 if$
2136 title *
2137 sentence.case.title
2138 'change.sentence.case
2139 'skip$
2140 if$
2141 entry.numbered number empty$ not and
2142 { bbl.colon * number * }
2143 'skip$
2144 if$
2145 }
2146 { format.title.vol.num }
2147 if$
2148 format.btitle
2149 link.title
2150 'add.link
2151 'skip$
2152 if$
2153 }
2154

2155 FUNCTION {format.booktitle.vol.num}
2156 { booktitle
2157 entry.numbered
2158 'skip$
2159 { format.volume.number 's :=
2160 s empty$ not
2161 { bbl.colon * s * }
2162 'skip$
2163 if$
2164 }
2165 if$
2166 }
2167

2168 FUNCTION {format.series.vol.num.booktitle}
2169 { format.volume.number 's :=
2170 series empty$ not
2171 { series bbl.colon *
2172 entry.numbered not s empty$ not and
2173 { s * bbl.wide.space * }
2174 'skip$
2175 if$
2176 booktitle *
2177 }
2178 { format.booktitle.vol.num }
2179 if$
2180 format.btitle
2181 }
2182

2183 FUNCTION {remove.period}
2184 { 't :=
2185 "" 's :=
2186 { t empty$ not }
2187 { t #1 #1 substring$ 'tmp.str :=
2188 tmp.str "." = not
2189 { s tmp.str * 's := }

59

2190 'skip$
2191 if$
2192 t #2 global.max$ substring$ 't :=
2193 }
2194 while$
2195 s
2196 }
2197

2198 FUNCTION {abbreviate}
2199 { remove.period
2200 't :=
2201 t "l" change.case$'s :=
2202 ""
2203 s "physical review letters" =
2204 { "Phys Rev Lett" }
2205 'skip$
2206 if$
2207 's :=
2208 s empty$
2209 { t }
2210 { pop$ s }
2211 if$
2212 }
2213

2214 FUNCTION {get.journal.title}
2215 { short.journal
2216 { shortjournal empty$ not
2217 { shortjournal }
2218 { journal empty$ not
2219 { journal abbreviate }
2220 { journaltitle empty$ not
2221 { journaltitle abbreviate }
2222 { "" }
2223 if$
2224 }
2225 if$
2226 }
2227 if$
2228 }
2229 { journal empty$ not
2230 { journal }
2231 { journaltitle empty$ not
2232 { journaltitle }
2233 { shortjournal empty$ not
2234 { shortjournal }
2235 { "" }
2236 if$
2237 }
2238 if$
2239 }
2240 if$
2241 }
2242 if$
2243 }
2244

60

2245 FUNCTION {check.arxiv.preprint}
2246 { "l" change.case$
2247 duplicate$
2248 "arxiv:" 'y :=
2249 'x :=
2250 y text.length$ 'len :=
2251 x text.length$ len - #1 + 'charptr :=
2252 { charptr #0 >
2253 x charptr len substring$ y = not
2254 and
2255 }
2256 { charptr #1 - 'charptr := }
2257 while$
2258 charptr #0 >
2259 { x charptr #6 + global.max$ substring$ 'x :=
2260 x text.length$ #1 + 'len :=
2261 #1 'charptr :=
2262 { charptr len <
2263 x charptr #1 substring$ " " = not and
2264 x charptr #1 substring$ "[" = not and
2265 }
2266 { charptr #1 + 'charptr := }
2267 while$
2268 x #1 charptr substring$
2269 duplicate$ empty$
2270 { pop$ }
2271 { "https://arxiv.org/abs/" swap$ * 'entry.url :=
2272 #1 'entry.is.electronic :=
2273 #1 'is.pure.electronic :=
2274 }
2275 if$
2276 }
2277 'skip$
2278 if$
2279 purify$ #1 #5 substring$ "arxiv" =
2280 { #1 }
2281 { #0 }
2282 if$
2283 }
2284

2285 FUNCTION {format.journal}
2286 { get.journal.title
2287 duplicate$ empty$ not
2288 { italic.journal entry.lang lang.en = and
2289 'emphasize
2290 'skip$
2291 if$
2292 link.journal
2293 'add.link
2294 'skip$
2295 if$
2296 }
2297 'skip$
2298 if$
2299 }

61

2300

B.4.4 Format entry type mark
2301 FUNCTION {set.entry.mark}
2302 { entry.mark empty$ not
2303 'pop$
2304 { mark empty$ not
2305 { pop$ mark 'entry.mark := }
2306 { 'entry.mark := }
2307 if$
2308 }
2309 if$
2310 }
2311

2312 FUNCTION {format.mark}
2313 { show.mark
2314 { entry.mark
2315 show.medium.type
2316 { medium empty$ not
2317 { "/" * medium * }
2318 { entry.is.electronic
2319 { "/OL" * }
2320 'skip$
2321 if$
2322 }
2323 if$
2324 }
2325 'skip$
2326 if$
2327 'entry.mark :=
2328 space.before.mark
2329 { " " }
2330 { "\allowbreak" }
2331 if$
2332 "[" * entry.mark * "]" *
2333 }
2334 { "" }
2335 if$
2336 }
2337

B.4.5 Format edition

The format.edition function appends edition to the edition, if present. We lower-
case the edition (it should be something like Third), because this doesn’t start a sentence.

2338 FUNCTION {num.to.ordinal}
2339 { duplicate$ text.length$ 'charptr :=
2340 duplicate$ charptr #1 substring$'s :=
2341 s "1" =
2342 { "st" * }
2343 { s "2" =
2344 { "nd" * }
2345 { s "3" =

62

2346 { "rd" * }
2347 { "th" * }
2348 if$
2349 }
2350 if$
2351 }
2352 if$
2353 }
2354

2355 FUNCTION {format.edition}
2356 { edition empty$
2357 { "" }
2358 { edition is.number
2359 { edition "1" = not
2360 { entry.lang lang.zh =
2361 { edition " 版" * }
2362 { edition num.to.ordinal " ed." * }
2363 if$
2364 }
2365 { "" }
2366 if$
2367 }
2368 { entry.lang lang.en =
2369 { edition change.sentence.case 's :=
2370 s "Revised" = s "Revised edition" = or
2371 { "Rev. ed." }
2372 { s " ed." * }
2373 if$
2374 }
2375 { edition }
2376 if$
2377 }
2378 if$
2379 }
2380 if$
2381 }
2382

B.4.6 Format publishing items

出版地址和出版社会有“[S.l.: s.n.]”的情况，所以必须一起处理。
2383 FUNCTION {format.publisher}
2384 { publisher empty$ not
2385 { publisher }
2386 { school empty$ not
2387 { school }
2388 { organization empty$ not
2389 { organization }
2390 { institution empty$ not
2391 { institution }
2392 { "" }
2393 if$
2394 }
2395 if$

63

2396 }
2397 if$
2398 }
2399 if$
2400 }
2401

2402 FUNCTION {format.address.publisher}
2403 { address empty$ not
2404 { address }
2405 { location empty$ not
2406 { location }
2407 { "" }
2408 if$
2409 }
2410 if$
2411 duplicate$ empty$ not
2412 { format.publisher empty$ not
2413 { bbl.colon * format.publisher * }
2414 { entry.is.electronic not show.missing.address.publisher and
2415 { bbl.colon * bbl.sine.nomine * }
2416 'skip$
2417 if$
2418 }
2419 if$
2420 }
2421 { pop$
2422 entry.is.electronic not show.missing.address.publisher and
2423 { format.publisher empty$ not
2424 { bbl.sine.loco bbl.colon * format.publisher * }
2425 { bbl.sine.loco.sine.nomine }
2426 if$
2427 }
2428 { format.publisher empty$ not
2429 { format.publisher }
2430 { "" }
2431 if$
2432 }
2433 if$
2434 }
2435 if$
2436 }
2437

B.4.7 Format date

The format.date function is for the month and year, but we give a warning if there’s an
empty year but the month is there, and we return the empty string if they’re both empty.

期刊需要著录起止范围，其中年份使用“/”分隔，卷和期使用“–”分隔。版本 v2.0.2
前的年份也使用“–”分隔，仅提供兼容性，不再推荐。

2438 FUNCTION {extract.before.dash}
2439 { duplicate$ empty$
2440 { pop$ "" }

64

2441 { 's :=
2442 #1 'charptr :=
2443 s text.length$ #1 + 'len :=
2444 { charptr len <
2445 s charptr #1 substring$ "-" = not
2446 and
2447 }
2448 { charptr #1 + 'charptr := }
2449 while$
2450 s #1 charptr #1 - substring$
2451 }
2452 if$
2453 }
2454

2455 FUNCTION {extract.after.dash}
2456 { duplicate$ empty$
2457 { pop$ "" }
2458 { 's :=
2459 #1 'charptr :=
2460 s text.length$ #1 + 'len :=
2461 { charptr len <
2462 s charptr #1 substring$ "-" = not
2463 and
2464 }
2465 { charptr #1 + 'charptr := }
2466 while$
2467 { charptr len <
2468 s charptr #1 substring$ "-" =
2469 and
2470 }
2471 { charptr #1 + 'charptr := }
2472 while$
2473 s charptr global.max$ substring$
2474 }
2475 if$
2476 }
2477

2478 FUNCTION {extract.before.slash}
2479 { duplicate$ empty$
2480 { pop$ "" }
2481 { 's :=
2482 #1 'charptr :=
2483 s text.length$ #1 + 'len :=
2484 { charptr len <
2485 s charptr #1 substring$ "/" = not
2486 and
2487 }
2488 { charptr #1 + 'charptr := }
2489 while$
2490 s #1 charptr #1 - substring$
2491 }
2492 if$
2493 }
2494

2495 FUNCTION {extract.after.slash}

65

2496 { duplicate$ empty$
2497 { pop$ "" }
2498 { 's :=
2499 #1 'charptr :=
2500 s text.length$ #1 + 'len :=
2501 { charptr len <
2502 s charptr #1 substring$ "-" = not
2503 and
2504 s charptr #1 substring$ "/" = not
2505 and
2506 }
2507 { charptr #1 + 'charptr := }
2508 while$
2509 { charptr len <
2510 s charptr #1 substring$ "-" =
2511 s charptr #1 substring$ "/" =
2512 or
2513 and
2514 }
2515 { charptr #1 + 'charptr := }
2516 while$
2517 s charptr global.max$ substring$
2518 }
2519 if$
2520 }
2521

著者-出版年制必须提取出年份
2522 FUNCTION {format.year}
2523 { year empty$ not
2524 { year extra.label * }
2525 { date empty$ not
2526 { date extract.before.dash extra.label * }
2527 { entry.is.electronic not
2528 { "empty year in " cite$ * warning$ }
2529 'skip$
2530 if$
2531 urldate empty$ not
2532 { "[" urldate extract.before.dash * extra.label * "]" * }
2533 { "" }
2534 if$
2535 }
2536 if$
2537 }
2538 if$
2539 }
2540

2541 FUNCTION {format.periodical.year}
2542 { year empty$ not
2543 { year extract.before.slash
2544 "--" *
2545 year extract.after.slash
2546 duplicate$ empty$
2547 'pop$
2548 { * }

66

2549 if$
2550 }
2551 { date empty$ not
2552 { date extract.before.dash }
2553 { "empty year in " cite$ * warning$
2554 urldate empty$ not
2555 { "[" urldate extract.before.dash * "]" * }
2556 { "" }
2557 if$
2558 }
2559 if$
2560 }
2561 if$
2562 }
2563

专利和报纸都是使用日期而不是年
2564 FUNCTION {format.date}
2565 { date empty$ not
2566 { type$ "patent" = type$ "newspaper" = or
2567 { date }
2568 { entrysubtype empty$ not
2569 { type$ "article" = entrysubtype "newspaper" = and
2570 { date }
2571 { format.year }
2572 if$
2573 }
2574 { format.year }
2575 if$
2576 }
2577 if$
2578 }
2579 { year empty$ not
2580 { format.year }
2581 { "" }
2582 if$
2583 }
2584 if$
2585 }
2586

更新、修改日期只用于电子资源 electronic
2587 FUNCTION {format.editdate}
2588 { date empty$ not
2589 { "\allowbreak(" date * ")" * }
2590 { "" }
2591 if$
2592 }
2593

国标中的“引用日期”都是与 URL 同时出现的，所以其实为 urldate，这个虽然不

是 BIBTEX 标准的域，但是实际中很常见。
2594 FUNCTION {format.urldate}
2595 { show.urldate show.url and entry.url empty$ not and

67

2596 is.pure.electronic or
2597 urldate empty$ not and
2598 { "\allowbreak[" urldate * "]" * }
2599 { "" }
2600 if$
2601 }
2602

B.4.8 Format pages

By default, BibTeX sets the global integer variable global.max$ to the BibTeX
constantglob_str_size, the maximum length of a global string variable. Analogously,
BibTeX sets the global integer variable entry.max$ to ent_str_size, the maxi-
mum length of an entry string variable. The style designer may change these if necessary
(but this is unlikely)

The n.dashify function makes each single `-' in a string a double `--' if it’s not
already

pseudoVAR: pageresult: STRING (it's␣what's accumulated on the stack)

n.dashify(s) ==
BEGIN

t := s
pageresult := ""
while (not empty$(t))

do
if (first character of t = "-")

then
if (next character isn't)

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣then
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣pageresult␣:=␣pageresult␣*␣"--"
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣t␣:=␣t␣with␣the␣"-"␣removed
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣else
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣while␣(first␣character␣of␣t␣=␣"-")
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣do
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣pageresult␣:=␣pageresult␣*␣"-"
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣t␣:=␣t␣with␣the␣"-"␣removed
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣od
␣␣␣␣␣␣␣␣␣␣␣␣␣␣fi
␣␣␣␣␣␣␣␣␣␣␣␣else
␣␣␣␣␣␣␣␣␣␣␣␣␣␣pageresult␣:=␣pageresult␣*␣the␣first␣character
␣␣␣␣␣␣␣␣␣␣␣␣␣␣t␣:=␣t␣with␣the␣first␣character␣removed
␣␣␣␣␣␣␣␣␣␣fi
␣␣␣␣␣␣␣␣od
␣␣␣␣␣␣return␣pageresult
␣END

国标里页码范围的连接号使用 hyphen，需要将 dash 转为 hyphen。
2603 % str -> str
2604 % variable used: s, t, b
2605 FUNCTION {normalize.page.range}

68

2606 {
2607 "" swap$
2608 { duplicate$ empty$ not }
2609 {
2610 #1 skip.inter.token.chars.by 't :=
2611 empty$
2612 { "" }
2613 'page.range.delimiter
2614 if$
2615 * t
2616 #1 tokenize.by 't :=
2617 * t
2618 }
2619 while$
2620 pop$
2621 }
2622

This function doesn’t begin a sentence so pages isn’t capitalized. Other functions that
use this should keep that in mind.

2623 FUNCTION {format.pages}
2624 {
2625 pages normalize.page.range
2626 }
2627

2628 FUNCTION {format.extracted.pages}
2629 { pages empty$
2630 { "" }
2631 { pages
2632 only.start.page
2633 { #1 tokenize.by pop$ }
2634 'normalize.page.range
2635 if$
2636 }
2637 if$
2638 }
2639

The format.vol.num.pages function is for the volume, number, and page
range of a journal article. We use the format: vol(number):pages, with some variations for
empty fields. This doesn’t begin a sentence.

报纸在卷号缺失时，期号与前面的日期直接相连，所以必须拆开输出。
2640 FUNCTION {format.journal.volume}
2641 { volume empty$ not
2642 { bold.journal.volume
2643 { "\textbf{" volume * "}" * }
2644 { volume }
2645 if$
2646 }
2647 { "" }
2648 if$
2649 }
2650

69

2651 FUNCTION {format.journal.number}
2652 { number empty$ not
2653 { "\allowbreak (" number * ")" * }
2654 { "" }
2655 if$
2656 }
2657

2658 FUNCTION {format.journal.pages}
2659 { pages empty$
2660 { "" }
2661 { format.extracted.pages }
2662 if$
2663 }
2664

连续出版物的年卷期有起止范围，需要特殊处理
2665 FUNCTION {format.periodical.year.volume.number}
2666 { year empty$ not
2667 { year extract.before.slash }
2668 { "empty year in periodical " cite$ * warning$ }
2669 if$
2670 volume empty$ not
2671 { ", " * volume extract.before.dash * }
2672 'skip$
2673 if$
2674 number empty$ not
2675 { "\allowbreak (" * number extract.before.dash * ")" * }
2676 'skip$
2677 if$
2678 "--" *
2679 year extract.after.slash empty$
2680 volume extract.after.dash empty$ and
2681 number extract.after.dash empty$ and not
2682 { year extract.after.slash empty$ not
2683 { year extract.after.slash * }
2684 { year extract.before.slash * }
2685 if$
2686 volume empty$ not
2687 { ", " * volume extract.after.dash * }
2688 'skip$
2689 if$
2690 number empty$ not
2691 { "\allowbreak (" * number extract.after.dash * ")" * }
2692 'skip$
2693 if$
2694 }
2695 'skip$
2696 if$
2697 }
2698

B.4.9 Format url and doi

传统的 BIBTEX 习惯使用 howpublished 著录 url，这里提供支持。

70

2699 FUNCTION {check.url}
2700 { url empty$ not
2701 { url 'entry.url :=
2702 #1 'entry.is.electronic :=
2703 }
2704 { howpublished empty$ not
2705 { howpublished #1 #5 substring$ "\url{" =
2706 { howpublished 'entry.url :=
2707 #1 'entry.is.electronic :=
2708 }
2709 'skip$
2710 if$
2711 }
2712 { note empty$ not
2713 { note #1 #5 substring$ "\url{" =
2714 { note 'entry.url :=
2715 #1 'entry.is.electronic :=
2716 }
2717 'skip$
2718 if$
2719 }
2720 'skip$
2721 if$
2722 }
2723 if$
2724 }
2725 if$
2726 }
2727

2728 FUNCTION {output.url}
2729 { show.url is.pure.electronic or
2730 entry.url empty$ not and
2731 { new.block
2732 entry.url #1 #5 substring$ "\url{" =
2733 { entry.url }
2734 { "\url{" entry.url * "}" * }
2735 if$
2736 output
2737 }
2738 'skip$
2739 if$
2740 }
2741

需要检测 DOI 是否已经包含在 URL 中。
2742 FUNCTION {check.doi}
2743 { doi empty$ not
2744 { #1 'entry.is.electronic := }
2745 'skip$
2746 if$
2747 }
2748

2749 FUNCTION {is.in.url}
2750 { 's :=
2751 s empty$

71

2752 { #1 }
2753 { entry.url empty$
2754 { #0 }
2755 { s text.length$ 'len :=
2756 entry.url "l" change.case$ text.length$ 'charptr :=
2757 { entry.url "l" change.case$ charptr len substring$ s "l" change.case$ = not
2758 charptr #0 >
2759 and
2760 }
2761 { charptr #1 - 'charptr := }
2762 while$
2763 charptr
2764 }
2765 if$
2766 }
2767 if$
2768 }
2769

2770 FUNCTION {format.doi}
2771 { ""
2772 doi empty$ not
2773 { "" 's :=
2774 doi 't :=
2775 #0 'numnames :=
2776 { t empty$ not}
2777 { t #1 #1 substring$ 'tmp.str :=
2778 tmp.str "," = tmp.str " " = or t #2 #1 substring$ empty$ or
2779 { t #2 #1 substring$ empty$
2780 { s tmp.str * 's := }
2781 'skip$
2782 if$
2783 s empty$ s is.in.url or
2784 'skip$
2785 { numnames #1 + 'numnames :=
2786 numnames #1 >
2787 { ", " * }
2788 { "DOI: " * }
2789 if$
2790 "\doi{" s * "}" * *
2791 }
2792 if$
2793 "" 's :=
2794 }
2795 { s tmp.str * 's := }
2796 if$
2797 t #2 global.max$ substring$ 't :=
2798 }
2799 while$
2800 }
2801 'skip$
2802 if$
2803 }
2804

2805 FUNCTION {output.doi}
2806 { doi empty$ not show.doi and

72

2807 show.english.translation entry.lang lang.zh = and not and
2808 { new.block
2809 format.doi output
2810 }
2811 'skip$
2812 if$
2813 }
2814

2815 FUNCTION {check.electronic}
2816 { "" 'entry.url :=
2817 #0 'entry.is.electronic :=
2818 'check.doi
2819 'skip$
2820 if$
2821 'check.url
2822 'skip$
2823 if$
2824 medium empty$ not
2825 { medium "MT" = medium "DK" = or medium "CD" = or medium "OL" = or
2826 { #1 'entry.is.electronic := }
2827 'skip$
2828 if$
2829 }
2830 'skip$
2831 if$
2832 }
2833

2834 FUNCTION {format.eprinttype}
2835 { archivePrefix empty$ not
2836 { archivePrefix }
2837 { eprinttype empty$ not
2838 { eprinttype }
2839 { type$ "article" = get.journal.title check.arxiv.preprint and
2840 { "arXiv" }
2841 { "" }
2842 if$
2843 }
2844 if$
2845 }
2846 if$
2847 }
2848

2849 FUNCTION {format.note}
2850 { note empty$ not show.note and
2851 { note }
2852 { "" }
2853 if$
2854 }
2855

2856 FUNCTION {output.translation}
2857 { show.english.translation entry.lang lang.zh = and
2858 { translation empty$ not
2859 { translation }
2860 { "[English translation missing!]" }
2861 if$

73

2862 " (in Chinese)" * output
2863 write$
2864 format.doi duplicate$ empty$ not
2865 { newline$
2866 write$
2867 }
2868 'pop$
2869 if$
2870 " \\" write$
2871 newline$
2872 "(" write$
2873 ""
2874 before.all 'output.state :=
2875 }
2876 'skip$
2877 if$
2878 }
2879

The function empty.misc.check complains if all six fields are empty, and if there’s been
no sorting or alphabetic-label complaint.

2880 FUNCTION {empty.misc.check}
2881 { author empty$ title empty$
2882 year empty$
2883 and and
2884 key empty$ not and
2885 { "all relevant fields are empty in " cite$ * warning$ }
2886 'skip$
2887 if$
2888 }
2889

B.5 Functions for all entry types

Now we define the type functions for all entry types that may appear in the .BIB file—
e.g., functions like ‘article’ and ‘book’. These are the routines that actually generate the
.BBL-file output for the entry. These must all precede the READ command. In addition,
the style designer should have a function ‘default.type’ for unknown types. Note: The fields
(within each list) are listed in order of appearance, except as described for an ‘inbook’ or a
‘proceedings’.

B.5.1 专著

2890 FUNCTION {monograph}
2891 { output.bibitem
2892 output.translation
2893 author empty$ not
2894 { format.authors }
2895 { editor empty$ not
2896 { format.editors }
2897 { "empty author and editor in " cite$ * warning$

74

2898 ⟨∗author-year⟩
2899 bbl.anonymous
2900 ⟨/author-year⟩
2901 ⟨∗numerical⟩
2902 ""
2903 ⟨/numerical⟩
2904 }
2905 if$
2906 }
2907 if$
2908 output
2909 year.after.author
2910 { period.after.author
2911 'new.sentence
2912 'skip$
2913 if$
2914 format.year "year" output.check
2915 }
2916 'skip$
2917 if$
2918 new.block
2919 format.series.vol.num.title "title" output.check
2920 "M" set.entry.mark
2921 format.mark "" output.after
2922 new.block
2923 format.translators output
2924 new.sentence
2925 format.edition output
2926 new.block
2927 format.address.publisher output
2928 year.after.author not
2929 { format.year "year" output.check }
2930 'skip$
2931 if$
2932 format.pages bbl.pages.colon output.after
2933 format.urldate "" output.after
2934 output.url
2935 output.doi
2936 new.block
2937 format.note output
2938 fin.entry
2939 }
2940

B.5.2 专著中的析出文献

An incollection is like inbook, but where there is a separate title for the referenced thing
(and perhaps an editor for the whole). An incollection may CROSSREF a book.

Required: author, title, booktitle, publisher, year
Optional: editor, volume or number, series, type, chapter, pages, address, edition,

month, note
2941 FUNCTION {incollection}
2942 { output.bibitem

75

2943 output.translation
2944 format.authors output
2945 author format.key output
2946 year.after.author
2947 { period.after.author
2948 'new.sentence
2949 'skip$
2950 if$
2951 format.year "year" output.check
2952 }
2953 'skip$
2954 if$
2955 new.block
2956 format.title "title" output.check
2957 "M" set.entry.mark
2958 format.mark "" output.after
2959 new.block
2960 format.translators output
2961 new.slash
2962 format.editors output
2963 new.block
2964 format.series.vol.num.booktitle "booktitle" output.check
2965 new.block
2966 format.edition output
2967 new.block
2968 format.address.publisher output
2969 year.after.author not
2970 { format.year "year" output.check }
2971 'skip$
2972 if$
2973 format.extracted.pages bbl.pages.colon output.after
2974 format.urldate "" output.after
2975 output.url
2976 output.doi
2977 new.block
2978 format.note output
2979 fin.entry
2980 }
2981

B.5.3 连续出版物

2982 FUNCTION {periodical}
2983 { output.bibitem
2984 output.translation
2985 format.authors output
2986 author format.key output
2987 year.after.author
2988 { period.after.author
2989 'new.sentence
2990 'skip$
2991 if$
2992 format.year "year" output.check
2993 }
2994 'skip$

76

2995 if$
2996 new.block
2997 format.title "title" output.check
2998 "J" set.entry.mark
2999 format.mark "" output.after
3000 new.block
3001 format.periodical.year.volume.number output
3002 new.block
3003 format.address.publisher output
3004 year.after.author not
3005 { format.periodical.year "year" output.check }
3006 'skip$
3007 if$
3008 format.urldate "" output.after
3009 output.url
3010 output.doi
3011 new.block
3012 format.note output
3013 fin.entry
3014 }
3015

B.5.4 连续出版物中的析出文献

The article function is for an article in a journal. An article may CROSSREF another
article.

Required fields: author, title, journal, year
Optional fields: volume, number, pages, month, note
The other entry functions are all quite similar, so no comment version will be

given for them.
3016 FUNCTION {journal.article}
3017 { output.bibitem
3018 output.translation
3019 format.authors output
3020 author format.key output
3021 year.after.author
3022 { period.after.author
3023 'new.sentence
3024 'skip$
3025 if$
3026 format.year "year" output.check
3027 }
3028 'skip$
3029 if$
3030 new.block
3031 title.in.journal
3032 { format.title "title" output.check
3033 entrysubtype empty$ not
3034 {
3035 entrysubtype "newspaper" =
3036 { "N" set.entry.mark }
3037 { "J" set.entry.mark }

77

3038 if$
3039 }
3040 { "J" set.entry.mark }
3041 if$
3042 format.mark "" output.after
3043 new.block
3044 }
3045 'skip$
3046 if$
3047 format.journal "journal" output.check
3048 year.after.author not
3049 { format.date "year" output.check }
3050 'skip$
3051 if$
3052 format.journal.volume output
3053 format.journal.number "" output.after
3054 format.journal.pages bbl.pages.colon output.after
3055 format.urldate "" output.after
3056 output.url
3057 output.doi
3058 new.block
3059 format.note output
3060 fin.entry
3061 }
3062

B.5.5 专利文献

number 域也可以用来表示专利号。
3063 FUNCTION {patent}
3064 { output.bibitem
3065 output.translation
3066 format.authors output
3067 author format.key output
3068 year.after.author
3069 { period.after.author
3070 'new.sentence
3071 'skip$
3072 if$
3073 format.year "year" output.check
3074 }
3075 'skip$
3076 if$
3077 new.block
3078 format.title "title" output.check
3079 "P" set.entry.mark
3080 format.mark "" output.after
3081 new.block
3082 format.date "year" output.check
3083 format.urldate "" output.after
3084 output.url
3085 output.doi
3086 new.block
3087 format.note output

78

3088 fin.entry
3089 }
3090

B.5.6 电子资源

3091 FUNCTION {electronic}
3092 { #1 #1 check.electronic
3093 #1 'entry.is.electronic :=
3094 #1 'is.pure.electronic :=
3095 output.bibitem
3096 output.translation
3097 format.authors output
3098 author format.key output
3099 year.after.author
3100 { period.after.author
3101 'new.sentence
3102 'skip$
3103 if$
3104 format.year "year" output.check
3105 }
3106 'skip$
3107 if$
3108 new.block
3109 format.series.vol.num.title "title" output.check
3110 "EB" set.entry.mark
3111 format.mark "" output.after
3112 new.block
3113 format.address.publisher output
3114 year.after.author not
3115 { date empty$
3116 { format.date output }
3117 'skip$
3118 if$
3119 }
3120 'skip$
3121 if$
3122 format.pages bbl.pages.colon output.after
3123 format.editdate "" output.after
3124 format.urldate "" output.after
3125 output.url
3126 output.doi
3127 new.block
3128 format.note output
3129 fin.entry
3130 }
3131

B.5.7 预印本

3132 FUNCTION {preprint}
3133 { url empty$ not
3134 { url 'entry.url :=
3135 #1 'entry.is.electronic :=
3136 #1 'is.pure.electronic :=
3137 }

79

3138 { eprint empty$
3139 'skip$
3140 { archivePrefix empty$
3141 { eprinttype field.or.null }
3142 { archivePrefix }
3143 if$
3144 "l" change.case$ "arxiv" =
3145 { "https://arxiv.org/abs/" eprint * 'entry.url :=
3146 #1 'entry.is.electronic :=
3147 #1 'is.pure.electronic :=
3148 }
3149 'skip$
3150 if$
3151 }
3152 if$
3153 }
3154 if$
3155 output.bibitem
3156 output.translation
3157 author empty$ not
3158 { format.authors }
3159 { editor empty$ not
3160 { format.editors }
3161 { "empty author and editor in " cite$ * warning$
3162 ⟨∗author-year⟩
3163 bbl.anonymous
3164 ⟨/author-year⟩
3165 ⟨∗numerical⟩
3166 ""
3167 ⟨/numerical⟩
3168 }
3169 if$
3170 }
3171 if$
3172 output
3173 year.after.author
3174 { period.after.author
3175 'new.sentence
3176 'skip$
3177 if$
3178 format.year "year" output.check
3179 }
3180 'skip$
3181 if$
3182 new.block
3183 title.in.journal
3184 { format.series.vol.num.title "title" output.check
3185 ⟨∗2015⟩
3186 "A" set.entry.mark
3187 ⟨/2015⟩
3188 ⟨∗!2015⟩
3189 "Z" set.entry.mark
3190 ⟨/!2015⟩
3191 format.mark "" output.after
3192 new.block

80

3193 }
3194 'skip$
3195 if$
3196 format.edition output
3197 new.block
3198 format.eprinttype output
3199 date empty$ not
3200 { "(" date * ")" * }
3201 { year empty$ not
3202 { "(" year * ")" * }
3203 { "" }
3204 if$
3205 }
3206 if$
3207 " " output.after
3208 format.urldate "" output.after
3209 output.url
3210 output.doi
3211 new.block
3212 format.note output
3213 fin.entry
3214 }
3215

B.5.8 其他文献类型

A misc is something that doesn’t fit elsewhere.
Required: at least one of the ‘optional’ fields
Optional: author, title, howpublished, month, year, note
Misc 用来自动判断类型。

3216 FUNCTION {misc}
3217 { get.journal.title
3218 duplicate$ empty$ not
3219 { check.arxiv.preprint
3220 'preprint
3221 'journal.article
3222 if$
3223 }
3224 { pop$
3225 booktitle empty$ not
3226 'incollection
3227 { archivePrefix empty$ not
3228 eprinttype empty$ not or
3229 'preprint
3230 { publisher empty$ not
3231 'monograph
3232 { entry.is.electronic
3233 'electronic
3234 {
3235 ⟨∗!2005⟩
3236 "Z" set.entry.mark
3237 ⟨/!2005⟩
3238 ⟨∗2005⟩

81

3239 "M" set.entry.mark
3240 ⟨/2005⟩
3241 monograph
3242 }
3243 if$
3244 }
3245 if$
3246 }
3247 if$
3248 }
3249 if$
3250 }
3251 if$
3252 empty.misc.check
3253 }
3254

3255 FUNCTION {archive}
3256 { "A" set.entry.mark
3257 misc
3258 }
3259

3260 FUNCTION {article} { misc }
3261

The book function is for a whole book. A book may CROSSREF another book.
Required fields: author or editor, title, publisher, year
Optional fields: volume or number, series, address, edition, month, note

3262 FUNCTION {book} { monograph }
3263

A booklet is a bound thing without a publisher or sponsoring institution.
Required: title
Optional: author, howpublished, address, month, year, note

3264 FUNCTION {booklet} { book }
3265

3266 FUNCTION {collection}
3267 { "G" set.entry.mark
3268 monograph
3269 }
3270

3271 FUNCTION {database}
3272 { "DB" set.entry.mark
3273 electronic
3274 }
3275

3276 FUNCTION {dataset}
3277 { "DS" set.entry.mark
3278 electronic
3279 }
3280

An inbook is a piece of a book: either a chapter and/or a page range. It may CROSSREF
a book. If there’s no volume field, the type field will come before number and series.

82

Required: author or editor, title, chapter and/or pages, publisher,year
Optional: volume or number, series, type, address, edition, month, note
原生 BibTeX 的数据模型中 @inbook不含 booktitle，按照“专著”处理。而

biblatex 的 @inbook跟 incollection一样。按照“专著的析出文献”处理。
3281 FUNCTION {inbook} {
3282 booktitle empty$
3283 'book
3284 'incollection
3285 if$
3286 }
3287

An inproceedings is an article in a conference proceedings, and it may CROSSREF a
proceedings. If there’s no address field, the month (& year) will appear just before note.

Required: author, title, booktitle, year
Optional: editor, volume or number, series, pages, address, month, organization, pub-

lisher, note
3288 FUNCTION {inproceedings}
3289 { "C" set.entry.mark
3290 incollection
3291 }
3292

The conference function is included for Scribe compatibility.
3293 FUNCTION {conference} { inproceedings }
3294

3295 FUNCTION {legislation} { archive }
3296

3297

3298 FUNCTION {map}
3299 { "CM" set.entry.mark
3300 misc
3301 }
3302

A manual is technical documentation.
Required: title
Optional: author, organization, address, edition, month, year, note

3303 FUNCTION {manual} { monograph }
3304

A mastersthesis is a Master’s thesis.
Required: author, title, school, year
Optional: type, address, month, note

3305 FUNCTION {mastersthesis}
3306 { "D" set.entry.mark
3307 monograph
3308 }
3309

83

3310 FUNCTION {newspaper}
3311 { "N" set.entry.mark
3312 article
3313 }
3314

3315 FUNCTION {online}
3316 { "EB" set.entry.mark
3317 electronic
3318 }
3319

A phdthesis is like a mastersthesis.
Required: author, title, school, year
Optional: type, address, month, note

3320 FUNCTION {phdthesis} { mastersthesis }
3321

3322 FUNCTION {thesis} { mastersthesis }
3323

A proceedings is a conference proceedings. If there is an organization but no editor
field, the organization will appear as the first optional field (we try to make the first block
nonempty); if there’s no address field, the month (& year) will appear just before note.

Required: title, year
Optional: editor, volume or number, series, address, month, organization, publisher,

note
3324 FUNCTION {proceedings}
3325 { "C" set.entry.mark
3326 monograph
3327 }
3328

3329 FUNCTION {software}
3330 { "CP" set.entry.mark
3331 electronic
3332 }
3333

3334 FUNCTION {standard}
3335 { "S" set.entry.mark
3336 misc
3337 }
3338

A techreport is a technical report.
Required: author, title, institution, year
Optional: type, number, address, month, note

3339 FUNCTION {techreport}
3340 { "R" set.entry.mark
3341 misc
3342 }
3343

84

An unpublished is something that hasn’t been published.
Required: author, title, note
Optional: month, year

3344 FUNCTION {unpublished} { misc }
3345

We use entry type ‘misc’ for an unknown type; BibTeX gives a warning.
3346 FUNCTION {default.type} { misc }
3347

B.6 Common macros

Here are macros for common things that may vary from style to style. Users are encour-
aged to use these macros.

Months are either written out in full or abbreviated
3348 MACRO {jan} {"January"}
3349

3350 MACRO {feb} {"February"}
3351

3352 MACRO {mar} {"March"}
3353

3354 MACRO {apr} {"April"}
3355

3356 MACRO {may} {"May"}
3357

3358 MACRO {jun} {"June"}
3359

3360 MACRO {jul} {"July"}
3361

3362 MACRO {aug} {"August"}
3363

3364 MACRO {sep} {"September"}
3365

3366 MACRO {oct} {"October"}
3367

3368 MACRO {nov} {"November"}
3369

3370 MACRO {dec} {"December"}
3371

Journals are either written out in full or abbreviated; the abbreviations are like those
found in ACM publications.

To get a completely different set of abbreviations, it may be best to make a separate .bib
file with nothing but those abbreviations; users could then include that file name as the first
argument to the \bibliography command

3372 MACRO {acmcs} {"ACM Computing Surveys"}
3373

3374 MACRO {acta} {"Acta Informatica"}
3375

85

3376 MACRO {cacm} {"Communications of the ACM"}
3377

3378 MACRO {ibmjrd} {"IBM Journal of Research and Development"}
3379

3380 MACRO {ibmsj} {"IBM Systems Journal"}
3381

3382 MACRO {ieeese} {"IEEE Transactions on Software Engineering"}
3383

3384 MACRO {ieeetc} {"IEEE Transactions on Computers"}
3385

3386 MACRO {ieeetcad}
3387 {"IEEE Transactions on Computer-Aided Design of Integrated Circuits"}
3388

3389 MACRO {ipl} {"Information Processing Letters"}
3390

3391 MACRO {jacm} {"Journal of the ACM"}
3392

3393 MACRO {jcss} {"Journal of Computer and System Sciences"}
3394

3395 MACRO {scp} {"Science of Computer Programming"}
3396

3397 MACRO {sicomp} {"SIAM Journal on Computing"}
3398

3399 MACRO {tocs} {"ACM Transactions on Computer Systems"}
3400

3401 MACRO {tods} {"ACM Transactions on Database Systems"}
3402

3403 MACRO {tog} {"ACM Transactions on Graphics"}
3404

3405 MACRO {toms} {"ACM Transactions on Mathematical Software"}
3406

3407 MACRO {toois} {"ACM Transactions on Office Information Systems"}
3408

3409 MACRO {toplas} {"ACM Transactions on Programming Languages and Systems"}
3410

3411 MACRO {tcs} {"Theoretical Computer Science"}
3412

B.7 Format labels

The sortify function converts to lower case after purify$ing; it’s used in sorting and
in computing alphabetic labels after sorting

The chop.word(w,len,s) function returns either s or, if the first len letters of s equals w
(this comparison is done in the third line of the function’s definition), it returns that part of s
after w.

3413 FUNCTION {sortify}
3414 { purify$
3415 "l" change.case$
3416 }
3417

We need the chop.word stuff for the dubious unsorted-list-with-labels case.

86

3418 FUNCTION {chop.word}
3419 { 's :=
3420 'len :=
3421 s #1 len substring$ =
3422 { s len #1 + global.max$ substring$ }
3423 's
3424 if$
3425 }
3426

The format.lab.names function makes a short label by using the initials of the
von and Last parts of the names (but if there are more than four names, (i.e., people) it
truncates after three and adds a superscripted +; it also adds such a + if the last of multiple
authors is others). If there is only one name, and its von and Last parts combined have
just a single name-token (Knuth has a single token, Brinch Hansen has two), we take
the first three letters of the last name. The boolean et.al.char.used tells whether we’ve used a
superscripted +, so that we know whether to include a LaTeX macro for it.

format.lab.names(s) ==
BEGIN

numnames := num.names$(s)
if numnames > 1 then

if numnames > 4 then
namesleft := 3

else
namesleft := numnames

nameptr := 1
nameresult := ""
while namesleft > 0

do
if (name_ptr = numnames) and

format.name$(s, nameptr, "{ff␣}{vv␣}{ll}{␣jj}") = "others"
then nameresult := nameresult * "{\etalchar{+}}"

et.al.char.used := true
else nameresult := nameresult *

format.name$(s, nameptr, "{v{}}{l{}}")
nameptr := nameptr + 1
namesleft := namesleft - 1

od
if numnames > 4 then

nameresult := nameresult * "{\etalchar{+}}"
et.al.char.used := true

else
t := format.name$(s, 1, "{v{}}{l{}}")
if text.length$(t) < 2 then % there's␣just␣one␣name-token

␣␣␣␣␣␣␣␣␣␣␣␣␣␣nameresult␣:=␣text.prefix$(format.name$(s,1,"{ll}"),3)
␣␣␣␣␣␣␣␣␣␣else
␣␣␣␣␣␣␣␣␣␣␣␣␣␣nameresult␣:=␣t
␣␣␣␣␣␣␣␣␣␣fi
␣␣␣␣␣␣fi
␣␣␣␣␣␣return␣nameresult
␣END

87

Exactly what fields we look at in constructing the primary part of the label depends on
the entry type; this selectivity (as opposed to, say, always looking at author, then editor, then
key) helps ensure that ignored fields, as described in the LaTeX book, really are ignored.
Note that MISC is part of the deepest ‘else’ clause in the nested part of calc.label; thus, any
unrecognized entry type in the database is handled correctly.

There is one auxiliary function for each of the four different sequences of fields we use.
The first of these functions looks at the author field, and then, if necessary, the key field. The
other three functions, which might look at two fields and the key field, are similar, except
that the key field takes precedence over the organization field (for labels—not for sorting).

The calc.label function calculates the preliminary label of an entry, which is formed
by taking three letters of information from the author or editor or key or organization field
(depending on the entry type and on what’s empty, but ignoring a leading The in the
organization), and appending the last two characters (digits) of the year. It is an error if the
appropriate fields among author, editor, organization, and key are missing, and we use the
first three letters of the cite$ in desperation when this happens. The resulting label has the
year part, but not the name part, purify$ed (purify$ing the year allows some sorting
shenanigans by the user).

This function also calculates the version of the label to be used in sorting.
The final label may need a trailing ’a’, ’b’, etc., to distinguish it from otherwise identical

labels, but we can’t calculated those extra.labels until after sorting.

calc.label ==
BEGIN

if type$ = "book" or "inbook" then
author.editor.key.label

else if type$ = "proceedings" then
editor.key.organization.label

else if type$ = "manual" then
author.key.organization.label

else
author.key.label

fi fi fi
label := label * substring$(purify$(field.or.null(year)), -1, 2)

% assuming we will also sort, we calculate a sort.label
sort.label := sortify(label), but use the last four, not two, digits

END

3427 FUNCTION {format.lab.name}
3428 { "{vv~}{ll}{, jj}{, ff}" format.name$ 't :=
3429 t "others" =
3430 { citation.et.al }
3431 { t get.str.lang 'name.lang :=
3432 name.lang lang.zh = name.lang lang.ja = or
3433 { t #1 "{ll}{ff}" format.name$ }
3434 { t #1 "{vv~}{ll}" format.name$ }

88

3435 if$
3436 }
3437 if$
3438 }
3439

3440 FUNCTION {format.lab.names}
3441 { 's :=
3442 #1 'nameptr :=
3443 s num.names$ 'numnames :=
3444 ""
3445 numnames 'namesleft :=
3446 { namesleft #0 > }
3447 { s nameptr format.lab.name citation.et.al =
3448 numnames citation.et.al.min #1 - > nameptr citation.et.al.use.first > and or
3449 { bbl.space *
3450 citation.et.al *
3451 #1 'namesleft :=
3452 }
3453 { nameptr #1 >
3454 { namesleft #1 = citation.and "" = not and
3455 { citation.and * }
3456 { ", " * }
3457 if$
3458 }
3459 'skip$
3460 if$
3461 s nameptr format.lab.name *
3462 }
3463 if$
3464 nameptr #1 + 'nameptr :=
3465 namesleft #1 - 'namesleft :=
3466 }
3467 while$
3468 }
3469

3470 FUNCTION {author.key.label}
3471 { author empty$
3472 { key empty$
3473 { cite$ #1 #3 substring$ }
3474 'key
3475 if$
3476 }
3477 { author format.lab.names }
3478 if$
3479 }
3480

3481 FUNCTION {author.editor.key.label}
3482 { author empty$
3483 { editor empty$
3484 { key empty$
3485 { cite$ #1 #3 substring$ }
3486 'key
3487 if$
3488 }
3489 { editor format.lab.names }

89

3490 if$
3491 }
3492 { author format.lab.names }
3493 if$
3494 }
3495

3496 FUNCTION {author.key.organization.label}
3497 { author empty$
3498 { key empty$
3499 { organization empty$
3500 { cite$ #1 #3 substring$ }
3501 { "The " #4 organization chop.word #3 text.prefix$ }
3502 if$
3503 }
3504 'key
3505 if$
3506 }
3507 { author format.lab.names }
3508 if$
3509 }
3510

3511 FUNCTION {editor.key.organization.label}
3512 { editor empty$
3513 { key empty$
3514 { organization empty$
3515 { cite$ #1 #3 substring$ }
3516 { "The " #4 organization chop.word #3 text.prefix$ }
3517 if$
3518 }
3519 'key
3520 if$
3521 }
3522 { editor format.lab.names }
3523 if$
3524 }
3525

3526 FUNCTION {calc.short.authors}
3527 { type$ "book" =
3528 type$ "inbook" = booktitle empty$ not and
3529 or
3530 'author.editor.key.label
3531 { type$ "collection" =
3532 type$ "proceedings" =
3533 or
3534 { editor empty$ not
3535 'editor.key.organization.label
3536 'author.key.organization.label
3537 if$
3538 }
3539 'author.key.label
3540 if$
3541 }
3542 if$
3543 'short.list :=
3544 }

90

3545

如果 label 中有中括号“[”，分别用大括号保护起来，防止 \bibitem 处理出

错。另外为了兼容 bibunits，“name(year)fullname”的每一项都要分别保护起来，参考

tuna/thuthesis/#630。
3546 FUNCTION {calc.label}
3547 { calc.short.authors
3548 short.list "]" contains
3549 { "{" short.list * "}" * }
3550 { short.list }
3551 if$
3552 "("
3553 *
3554 format.year duplicate$ empty$
3555 short.list key field.or.null = or
3556 { pop$ "" }
3557 'skip$
3558 if$
3559 duplicate$ "]" contains
3560 { "{" swap$ * "}" * }
3561 'skip$
3562 if$
3563 *
3564 'label :=
3565 }
3566

B.8 Sorting

When sorting, we compute the sortkey by executing presort on each entry. The
presort key contains a number ofsortifyed strings, concatenated with multiple blanks be-
tween them. This makes things likebrinch per come beforebrinch hansen per.

The fields used here are: the sort.label for alphabetic labels (as set by calc.label),
followed by the author names (or editor names or organization (with a leading The re-
moved) or key field, depending on entry type and on what’s empty), followed by year, fol-
lowed by the first bit of the title (chopping off a leading The , A , or An). Names are
formatted: Von Last First Junior. The names within a part will be separated by a single blank
(such as brinch hansen), two will separate the name parts themselves (except the von
and last), three will separate the names, four will separate the names from year (and from
label, if alphabetic), and four will separate year from title.

The sort.format.names function takes an argument that should be in BibTeX
name format, and returns a string containing -separated names in the format described
above. The function is almost the same as format.names.

3567 ⟨∗author-year⟩
3568 FUNCTION {sort.language.label}
3569 { entry.lang lang.zh =

91

https://github.com/tuna/thuthesis/issues/630

3570 { lang.zh.order }
3571 { entry.lang lang.ja =
3572 { lang.ja.order }
3573 { entry.lang lang.en =
3574 { lang.en.order }
3575 { entry.lang lang.ru =
3576 { lang.ru.order }
3577 { lang.other.order }
3578 if$
3579 }
3580 if$
3581 }
3582 if$
3583 }
3584 if$
3585 #64 +
3586 int.to.chr$
3587 }
3588

3589 FUNCTION {sort.format.names}
3590 { 's :=
3591 #1 'nameptr :=
3592 ""
3593 s num.names$ 'numnames :=
3594 numnames 'namesleft :=
3595 { namesleft #0 > }
3596 {
3597 s nameptr "{vv{ } }{ll{ }}{ ff{ }}{ jj{ }}" format.name$ 't :=
3598 nameptr #1 >
3599 {
3600 " " *
3601 namesleft #1 = t "others" = and
3602 { "zzzzz" * }
3603 { numnames #2 > nameptr #2 = and
3604 { "zz" * year field.or.null * " " * }
3605 'skip$
3606 if$
3607 t sortify *
3608 }
3609 if$
3610 }
3611 { t sortify * }
3612 if$
3613 nameptr #1 + 'nameptr :=
3614 namesleft #1 - 'namesleft :=
3615 }
3616 while$
3617 }
3618

The sort.format.title function returns the argument, but first any leading A ’s, An ’s,
or The ’s are removed. The chop.word function uses s, so we need another string variable,
t

3619 FUNCTION {sort.format.title}

92

3620 { 't :=
3621 "A " #2
3622 "An " #3
3623 "The " #4 t chop.word
3624 chop.word
3625 chop.word
3626 sortify
3627 #1 global.max$ substring$
3628 }
3629

The auxiliary functions here, for the presort function, are analogous to the ones for
calc.label; the same comments apply, except that the organization field takes precedence
here over the key field. For sorting purposes, we still remove a leading The from the
organization field.

3630 FUNCTION {anonymous.sort}
3631 { entry.lang lang.zh =
3632 { "yi4 ming2" }
3633 { "anon" }
3634 if$
3635 }
3636

3637 FUNCTION {warn.empty.key}
3638 { entry.lang lang.zh =
3639 { "empty key in " cite$ * warning$ }
3640 'skip$
3641 if$
3642 }
3643

3644 FUNCTION {author.sort}
3645 { key empty$
3646 { warn.empty.key
3647 author empty$
3648 { anonymous.sort }
3649 { author sort.format.names }
3650 if$
3651 }
3652 { key }
3653 if$
3654 }
3655

3656 FUNCTION {author.editor.sort}
3657 { key empty$
3658 { warn.empty.key
3659 author empty$
3660 { editor empty$
3661 { anonymous.sort }
3662 { editor sort.format.names }
3663 if$
3664 }
3665 { author sort.format.names }
3666 if$
3667 }

93

3668 { key }
3669 if$
3670 }
3671

3672 FUNCTION {author.organization.sort}
3673 { key empty$
3674 { warn.empty.key
3675 author empty$
3676 { organization empty$
3677 { anonymous.sort }
3678 { "The " #4 organization chop.word sortify }
3679 if$
3680 }
3681 { author sort.format.names }
3682 if$
3683 }
3684 { key }
3685 if$
3686 }
3687

3688 FUNCTION {editor.organization.sort}
3689 { key empty$
3690 { warn.empty.key
3691 editor empty$
3692 { organization empty$
3693 { anonymous.sort }
3694 { "The " #4 organization chop.word sortify }
3695 if$
3696 }
3697 { editor sort.format.names }
3698 if$
3699 }
3700 { key }
3701 if$
3702 }
3703

3704 ⟨/author-year⟩

顺序编码制的排序要简单得多
3705 ⟨∗numerical⟩
3706 INTEGERS { seq.num }
3707

3708 FUNCTION {init.seq}
3709 { #0 'seq.num :=}
3710

3711 FUNCTION {int.to.fix}
3712 { "000000000" swap$ int.to.str$ *
3713 #-1 #10 substring$
3714 }
3715

3716 ⟨/numerical⟩

There is a limit, entry.max$, on the length of an entry string variable (which is
what its sort.key$ is), so we take at most that many characters of the constructed key,

94

and hope there aren’t many references that match to that many characters!
3717 FUNCTION {presort}
3718 { set.entry.lang
3719 set.entry.numbered
3720 show.url show.doi check.electronic
3721 #0 'is.pure.electronic :=
3722 calc.label
3723 label sortify
3724 " "
3725 *
3726 ⟨∗author-year⟩
3727 sort.language.label
3728 " "
3729 *
3730 type$ "book" =
3731 type$ "inbook" = booktitle empty$ not and
3732 or
3733 'author.editor.sort
3734 { type$ "collection" =
3735 type$ "proceedings" =
3736 or
3737 'editor.organization.sort
3738 'author.sort
3739 if$
3740 }
3741 if$
3742 *
3743 " "
3744 *
3745 year field.or.null sortify
3746 *
3747 " "
3748 *
3749 cite$
3750 *
3751 #1 entry.max$ substring$
3752 ⟨/author-year⟩
3753 ⟨∗numerical⟩
3754 seq.num #1 + 'seq.num :=
3755 seq.num int.to.fix
3756 ⟨/numerical⟩
3757 'sort.label :=
3758 sort.label *
3759 #1 entry.max$ substring$
3760 'sort.key$:=
3761 }
3762

Now comes the final computation for alphabetic labels, putting in the ’a’s and ’b’s and
so forth if required. This involves two passes: a forward pass to put in the ’b’s, ’c’s and
so on, and a backwards pass to put in the ’a’s (we don’t want to put in ’a’s unless we know
there are ’b’s). We have to keep track of the longest (in width$ terms) label, for use by the
thebibliography environment.

95

VAR: longest.label, last.sort.label, next.extra: string
longest.label.width, last.extra.num: integer

initialize.longest.label ==
BEGIN

longest.label := ""
last.sort.label := int.to.chr$(0)
next.extra := ""
longest.label.width := 0
last.extra.num := 0

END

forward.pass ==
BEGIN

if last.sort.label = sort.label then
last.extra.num := last.extra.num + 1
extra.label := int.to.chr$(last.extra.num)

else
last.extra.num := chr.to.int$("a")
extra.label := ""
last.sort.label := sort.label

fi
END

reverse.pass ==
BEGIN

if next.extra = "b" then
extra.label := "a"

fi
label := label * extra.label
if width$(label) > longest.label.width then

longest.label := label
longest.label.width := width$(label)

fi
next.extra := extra.label

END

3763 STRINGS { longest.label last.label next.extra last.extra.label }
3764

3765 INTEGERS { longest.label.width number.label }
3766

3767 FUNCTION {initialize.longest.label}
3768 { "" 'longest.label :=
3769 #0 int.to.chr$ 'last.label :=
3770 "" 'next.extra :=
3771 #0 'longest.label.width :=
3772 #0 'number.label :=
3773 "" 'last.extra.label :=
3774 }
3775

3776 FUNCTION {forward.pass}
3777 {
3778 ⟨∗author-year⟩
3779 last.label label =

96

3780 { "" 'extra.label :=
3781 last.extra.label text.length$ 'charptr :=
3782 { last.extra.label charptr #1 substring$ "z" =
3783 charptr #0 > and
3784 }
3785 { "a" extra.label * 'extra.label :=
3786 charptr #1 - 'charptr :=
3787 }
3788 while$
3789 charptr #0 >
3790 { last.extra.label charptr #1 substring$ chr.to.int$ #1 + int.to.chr$
3791 extra.label * 'extra.label :=
3792 last.extra.label #1 charptr #1 - substring$
3793 extra.label * 'extra.label :=
3794 }
3795 { "a" extra.label * 'extra.label := }
3796 if$
3797 extra.label 'last.extra.label :=
3798 }
3799 { "a" 'last.extra.label :=
3800 "" 'extra.label :=
3801 label 'last.label :=
3802 }
3803 if$
3804 ⟨/author-year⟩
3805 number.label #1 + 'number.label :=
3806 }
3807

3808 FUNCTION {reverse.pass}
3809 {
3810 ⟨∗author-year⟩
3811 next.extra "b" =
3812 { "a" 'extra.label := }
3813 'skip$
3814 if$
3815 extra.label 'next.extra :=
3816 extra.label
3817 duplicate$ empty$
3818 'skip$
3819 { "{\natexlab{" swap$ * "}}" * }
3820 if$
3821 'extra.label :=
3822 ⟨/author-year⟩
3823 label extra.label * 'label :=
3824 }
3825

3826 FUNCTION {bib.sort.order}
3827 { sort.label 'sort.key$:=
3828 }
3829

97

B.9 Write bbl file

Now we’re ready to start writing the .BBL file. We begin, if necessary, with a LATEX
macro for unnamed names in an alphabetic label; next comes stuff from the ‘preamble’
command in the database files. Then we give an incantation containing the command
\begin{thebibliography}{...} where the ‘...’ is the longest label.

We also call init.state.consts, for use by the output routines.
3830 FUNCTION {begin.bib}
3831 { preamble$ empty$
3832 'skip$
3833 { preamble$ write$ newline$ }
3834 if$
3835 "\begin{thebibliography}{" number.label int.to.str$ * "}" *
3836 write$ newline$
3837 terms.in.macro
3838 { "\providecommand{\biband}{和}"
3839 write$ newline$
3840 "\providecommand{\bibetal}{等}"
3841 write$ newline$
3842 }
3843 'skip$
3844 if$
3845 "\providecommand{\natexlab}[1]{#1}"
3846 write$ newline$
3847 "\providecommand{\url}[1]{#1}"
3848 write$ newline$
3849 "\expandafter\ifx\csname urlstyle\endcsname\relax\else"
3850 write$ newline$
3851 " \urlstyle{same}\fi"
3852 write$ newline$
3853 "\expandafter\ifx\csname href\endcsname\relax"
3854 write$ newline$
3855 " \DeclareUrlCommand\doi{\urlstyle{rm}}"
3856 write$ newline$
3857 " \def\eprint#1#2{#2}"
3858 write$ newline$
3859 "\else"
3860 write$ newline$
3861 " \def\doi#1{\href{https://doi.org/#1}{\nolinkurl{#1}}}"
3862 write$ newline$
3863 " \let\eprint\href"
3864 write$ newline$
3865 "\fi"
3866 write$ newline$
3867 }
3868

Finally, we finish up by writing the ‘\end{thebibliography}’ command.
3869 FUNCTION {end.bib}
3870 { newline$
3871 "\end{thebibliography}" write$ newline$
3872 }

98

3873

B.10 Main execution

Now we read in the .BIB entries.
3874 READ
3875

3876 EXECUTE {init.state.consts}
3877

3878 EXECUTE {load.config}
3879

3880 ⟨∗numerical⟩
3881 EXECUTE {init.seq}
3882

3883 ⟨/numerical⟩
3884 ITERATE {presort}
3885

And now we can sort
3886 SORT
3887

3888 EXECUTE {initialize.longest.label}
3889

3890 ITERATE {forward.pass}
3891

3892 REVERSE {reverse.pass}
3893

3894 ITERATE {bib.sort.order}
3895

3896 SORT
3897

3898 EXECUTE {begin.bib}
3899

Now we produce the output for all the entries
3900 ITERATE {call.type$}
3901

3902 EXECUTE {end.bib}
3903 ⟨/author-year | numerical⟩

99

	1 简介
	2 版本 v2.0 的重要修改
	3 使用方法
	4 文献类型
	5 著录项目
	6 文献列表的排序
	7 自定义样式
	8 相关工作
	A 宏包的代码实现
	B BibTeX 样式的代码实现
	B.1 自定义选项
	B.2 The ENTRY declaration
	B.3 Entry functions
	B.4 Formatting chunks
	B.4.1 Detect Language
	B.4.2 Format names
	B.4.3 Format title
	B.4.4 Format entry type mark
	B.4.5 Format edition
	B.4.6 Format publishing items
	B.4.7 Format date
	B.4.8 Format pages
	B.4.9 Format url and doi

	B.5 Functions for all entry types
	B.5.1 专著
	B.5.2 专著中的析出文献
	B.5.3 连续出版物
	B.5.4 连续出版物中的析出文献
	B.5.5 专利文献
	B.5.6 电子资源
	B.5.7 预印本
	B.5.8 其他文献类型

	B.6 Common macros
	B.7 Format labels
	B.8 Sorting
	B.9 Write bbl file
	B.10 Main execution

