GB/T 7714 BIBTEX style

Zeping Lee*

2026/01/15 v2.1.9

i
The gbt7714 package provides a BisTgX implementation for the China’s national bib-

liography style standard GB/T 7714. It consists of .bst files for numeric and author-date
styles as well as a IXTEX package which provides the citation style defined in the standard. It
is compatible with natbib and supports language detection (Chinese and English) for each

biblilography entry.

1 gy

GB/T 7714—2015 «fFE53CHk SHCEE NN (LU R ERE &
B 1228 SOk AR . B N A AR AR I A AL SRR T T
PRRAEIORe R . A R IR BTeX @ S, EATEL P

o %5 natbib 22611,

o SERFT At R - AR PR XU

o HBRRTE S I T R AL T

o FRAE TR B AR B R

o [EIFEAE T 2005 BitHY Wbst S0
ARZMEFET: https://github.com/zepinglee/gbt7714-bibtex—s
tyle,

2 R v2.0 BYE A

M V2.0 SRASTF 17 (2020-03-04), H P AR SR A \biblilographystyle
A2 A=, W gbt 7714—numerical 8 gbt 7714—-author-year,
TER AR A, G ST AR U7 52 numbers B super 2L IEL%
gbt7714, T AREEfIH \bibliographystyle. XIEAREY LaTeX £ A—5L,
Fir LA

*zepinglee AT gmail.com

https://github.com/zepinglee/gbt7714-bibtex-style
https://github.com/zepinglee/gbt7714-bibtex-style

3 MM

LR 2 got7714 A — A B Bl

\documentclass{ctexart}

\usepackage {gbt7714}
\bibliographystyle{gbt7714-numerical}
\begin{document }

\cite{...}

\bibliography{bibfile}

\end{document }

H IR ERR RS . 278 SCIRAIPRTE A R 504 5 G il " F1 - R AR
FUNAESE XM ZE gbt7714, JFHALH \bibliographystyle i & icff <
FOCHRERIRE, e

\bibliographystyle{gbt771l4-numerical} % Wi & 4 & #

i)

\bibliographystyle{gbt771l4-author-year} % ## - }x & #

HAMART LA 2005 kg =t gbt7714-2005-numerical flgbt7714-200
5—-author-year,

TR AR v2.0 SRR IR B S HE ORI)T % SR B RS \bibliographystyle,
AFHEHZENSE, MHERT bst 1IXH&.

\citestyle \citestyle{(citation style))
H[i%: super, numbers, author—-year, {fiff] \bibliography #E#Z=%
Bk PR U 2 B B B M 5 RER e 72w i i 9 5 | A BRI A bR =X
(super), W Gk =P 2" GnAREAHEH FE OB, a0 semk (31 FP i, mTRAGE A
\citestyle s N+, (numbers),

\citestyle{numbers}

- U AN 2T | R,

sort&compress [l —Ab 5| 22 f SRS S 1 240K 25 SCRRAY key — [5 4E \cite iy Ho WidiE
Bt BN HEMEONEIZF S I EMZER (I natbib ff) compress L0
IR B 50 52T H sk, T BAER A got7714 B fl sortscompress
2R, XEESH ALY natbib A0FH

\usepackage [sort&compress] {gbt7714}

TEEEPRHEDR 2 DL ERES S HERS , AFT natbib ERIARY 3 DEELL E.
FAFEEE TIES.
A R S ISR DU, T LSRR \cite RYANESH . U0 \cite [42] {knuth84},
205 | FFRE %A A% natbib 229 5 P .
locator-inside-brackets [FEFRERIERE T INAMARIILEFG | 00U, WRENG T E TS5 N, 7]
DA 2200 E locator—-inside-brackets=true,

\usepackage [locator-inside—-brackets=true] {gbt7714}

PR R EEE R AR L

* . bib HduZE N] UTF-8 il
o - MR 225 SCRERRT . FhSCRY Sk & 0 A key SRS 158 044 RO B
o, AR IS, LA 6 1.

4 SCEREA

EFRHUE T 16 MBS0, % 1 FI26 T bib Bl B R SO
JCHE T R BisTX A biblatex AOFRIEST , (HBHN T % TS0 G * 5.

5 FHxIH

T E bR RLE 50T H 221 BeTX (AR, AATHHE — L35k i H - (A
*4g), XEEPI SRR AT 2% 1 BibLaTeX, U1 date M urldate. 7872057719
A ERIEI T

author T ILTH(FH
title 44

mark* SCERZE AR
medium* ZL{RERIFRIN
translator® %%

editor 745
organization 2021 (| T£)
booktitle &3 544
series %)

journal JTi|ii44
edition Jiji A

address H! i
publisher

1 eff SRR

SCHRZE A FRiFACAS Entry Type

3 P A M book

A5 AT H SRk M incollection

e 3 C proceedings

SR AT SR ¢ inproceedings 5% conference
L% G collection*

R4k N newspaper*

HTI R H STk J article

AR D mastersthesis 5f phdthesis
Eirasy R techreport

PR S standard*

LA P patent*

B DB database*

TR CP software*

IR EB online*

(EES A archive*

I CM map*

HAmE DS dataset™

Hth Z misc

school 1% (fT @phdthesis)
institution §1#J (T @techreport)
year HiffifE

volume %

number | (& LF]5)

pages 5| LU

date* EUFTECEN H]

urldate* 5| H#H

url FRIOATYT [EE 12

doi U7X R ME—HRIALT

langid* &5

key #f& (HTHER)

ANSZRF BieTeX FRifiE 5 i H A annote, chapter, crossref, month, type.
A ERAE BN AT LLE SR B SCE S . IF B SR B SO R A A R RS
W, HEEDEIEN NREN P TafeE, W

@misc{citekey,

langid = {japanese},
{z},

medium = {DK},

mark

}

T & 1E S A english, chinese, japanese, russian,

6 SCERSIRMHEY

bR ALE 275 SCIR AR R HT 38 - U R H A 250 STk B Se 4 oS i, 48
JE AR TR S RAEHES s o SCOCIR T DME F DO P IHES], tn] DU
HHIEE A SR T BTgX RERYRIRYE . Joik H s BCE S 2Pt
s 2N, fT LA A bib Bl i [key ST s NEFH A B9PE S T HEY
n:

@book{capital,
author = { & % & and B #)},
key = {ma3 ked4 sil & enl ge2 sil},

ST TR (R R L A S SR 22 B 475 4] biblatex 7561, LR
4 biber A LAH SR SO B T . AT SIS P

7 BEXHER

B TX 4 H & AR SR LA R, B DA P HRBEEE 2L bst SCHRIEL
SCHRAN R . AR T — 2B LA T B 2

f£ bst IFFIRAEHT load. config WEH, A —HEESHERIEHIFL,
F2HIH T H I BIMERI R, AR #1 WIFRZIEE A, 1728 #0
WIATE H o BRIAFGE I A8 G E AR B E

EH P EEEHE LN, WL bst CAFHNERIEB MY, sE R E
Ho

8 FHXRIAR

TeX ALIX A HAMSK T GB/T 7714 RIS CHIFRHER T A, 2005 =g %
Aii 7HET GB/T 7714—2005) BisTX FER, SCRFMIY 2 i IR AR 1 PR X

5

* 2 275 RN ES

ZHUE B TR

uppercase.name #1 BEEMAEARE
max.num.authors #3 W EE N mEZ T
year.after.author #0 FERETEEZ G
period.after.author #0 FEHE Ty A) R
italic.book.title #0 TS24 6 AR
sentence.case.title #1 GV A 4% %5 A sentence case
link title #0 TERAL LR url R 2
title.in journal #1 TR R iR
show.patent.country #0 LR A RS E)
space.before. mark #0 SR RIAR AT R A S
show.mark #1 BRI AR IR
show.medium.type #1 BIRHARLAIRIR
component.part.label "slash" ZFERWHCEES, o%: "in", "none"
italic.journal #0 PUSCHA T 44 18 FH AR
link.journal #0 TERATIA B url ()78 442
show.missing.address.publisher #0 H BRI I R B AN
space.before.pages #1 TS SR E ?élEﬂﬁ SHE
only.start.page #0 ARG DU
page.range.delimiter = I DT R Tﬁ*?
show.urldate #1 B85 A H 1 urldate

show.url #1 R url

show.doi #1 27~ DOI

show.note #0 7N note IHIE R
end.with.period #1 45 R INnA R
lowercase.word.after.colon #1 BB S E R R A NG

1%

o ARG AT T TR I

275 3L

(1]

(2]

[Z AR R S

b E BRI Bk, 2015.

PATASHNIK O. BieTXing[M/OL]. 1988. http://mirrors.ctan.org/biblio/bibtex/base/

B GB/T 7714—2005 (1) BibLaTeX [{#£0. 72 244
T53 N BisTEX G, SRLAEAT bst (A 1 java JHETERE. P13 T biblatex-
caspervector!! GEFFEN, LARF A BRI BIRREAAT T1F 6
FRUERY BibLaTeX 2% S0k

GB/T 7714—2015
FEREHT T LSS N EL 4

AFEESGEE 275 SCIEE SN GB/T 7714—2015(S].

http://mirrors.ctan.org/biblio/bibtex/base/btxdoc.pdf
http://mirrors.ctan.org/biblio/bibtex/base/btxdoc.pdf

(3]

[4]

[5]

[6]

[7]

[8]

(9]

[10]

[11]

[12]

btxdoc.pdf.

DALY P W. Natural sciences citations and references[M/OL]. 1999. http://mirrors.ct
an.org/macros/latex/contrib/natbib/natbib.pdf.

PATASHNIK O. Designing BIsTgX styles[M/OL]. 1988. http://mirrors.ctan.org/bibli
o/bibtex/base/btxhak.pdf.

MARKEY N. Tame the beast{fM/OL]. 2003. http://mirrors.ctan.org/info/bibtex/tamet
hebeast/ttb_en.pdf.

MITTELBACH F, GOOSSENS M, BRAAMS J, et al. The I£EX companion[M]. 2nd
ed. Reading, MA, USA: Addison-Wesley, 2004.

Fedl. &AW GBT7714-2005.bst versionl Beta Jjit [EB/OL]. 2006. CTeX i£ix (B¢
i) .

75525, HT biblatex [9454 GBT7714—2005 [0 3¢ Sk 4 i T EL [EB/OL).
2013. CTeX igts (E%MA) .

A L. A GB/T 7714—2005 national standard compliant BibTeX style[EB/OL].
2013. https://github.com/Haixing-Hu/GBT7714-2005-BibTeX-Style.

VL&, HEF caspervector IUE Y4 4A GB/T 7714—2005 bR 2% i kg =
[EB/OL]. 2016. https://github.com/szsdk/biblatex-gbt77142005.

VECTOR C T. biblatex =2 Rk fil15] FAREZ: caspervector[M/OL]. 2012. hittp:
//mirrors.ctan.org/macros/latex/contrib/biblatex-contrib/biblatex-caspervector/doc/ca

spervector.pdf.

W=, 545 GB/T 7714—2015 #RiERY biblatex 2% Sk #£3 [M/OL]. 2016.
http://mirrors.ctan.org/macros/latex/contrib/biblatex-contrib/biblatex-gb7714-2015/bi
blatex-gb7714-2015.pdf.

http://mirrors.ctan.org/biblio/bibtex/base/btxdoc.pdf
http://mirrors.ctan.org/macros/latex/contrib/natbib/natbib.pdf
http://mirrors.ctan.org/macros/latex/contrib/natbib/natbib.pdf
http://mirrors.ctan.org/biblio/bibtex/base/btxhak.pdf
http://mirrors.ctan.org/biblio/bibtex/base/btxhak.pdf
http://mirrors.ctan.org/info/bibtex/tamethebeast/ttb_en.pdf
http://mirrors.ctan.org/info/bibtex/tamethebeast/ttb_en.pdf
https://github.com/Haixing-Hu/GBT7714-2005-BibTeX-Style
https://github.com/szsdk/biblatex-gbt77142005
http://mirrors.ctan.org/macros/latex/contrib/biblatex-contrib/biblatex-caspervector/doc/caspervector.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex-contrib/biblatex-caspervector/doc/caspervector.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex-contrib/biblatex-caspervector/doc/caspervector.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex-contrib/biblatex-gb7714-2015/biblatex-gb7714-2015.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex-contrib/biblatex-gb7714-2015/biblatex-gb7714-2015.pdf

A RAEIRTII

20

21

22

23

24

25

26

27

28

29

30

31

32

HA LI AYRE T

(xpackage)
\newif\ifgbt@legacy@interface
\newif\ifgbt@mmxv
\newif\ifgbt@numerical
\newif\ifgbt@super
\newcommand\gbt@obsoleteRoption[1]{%

\PackageWarning{gbt7714}{The option "#1" is

\DeclareKeys [gbt7714]{

2015 .code = {%
\gbt@obsolete@option{2015}%
\gbt@legacy@interfacetrue
\gbt@mmxvtrue

b

2005 .code = {%
\gbt@obsolete@option{2005}%
\gbt@legacy@interfacetrue

\gbt@mmxvfalse
¥
super .code = {%

\gbt@obsolete@option{super}%
\gbt@legacy@interfacetrue
\gbt@numericaltrue
\gbt@supertrue

}

numbers .code = {%
\gbt@obsolete@option{numbers}%
\gbt@legacy@interfacetrue
\gbt@numericaltrue
\gbt@superfalse

}

authoryear .code = {%
\gbt@obsolete@option{authoryear}%
\gbt@legacy@interfacetrue
\gbt@numericalfalse

b

PG TE R TS5 IR R ARG 5 5

obsoletel}$%

\citestyle

\cite

38

39

40

41

42

43

44

45

46

47

48

\DeclareKeys [gbt7714] {

locator-inside-brackets .if = (@gbt@locator@inside@affixes ,
}
\SetKeys[gbt7714] {

locator—-inside-brackets = false ,

}

Wikt 45 natbib
\DeclareUnknownKeyHandler [gbt7714] {\PassOptionsToPackage{#1}{natbib}}
\ProcessKeyOptions [gbt7714]

HHZEE, EEATE compress A% sort.

\RequirePackage{natbib}
\RequirePackage{url}

MA compress {445 natbib 755,52 option clash. X B H &N FB a4
\def\NAT@cmprs{\@ne}

SE YIRS SR AOFRTER: T \citestyle ¥ numerical 8{ authoryear,
2 I, natbib,

49

50

51

52

53

\renewcommand\newblock{\space}
\newcommand\bibstyle@super{\bibpunct{[}{]1}{, }{s}{, } {, }}
\newcommand\bibstyle@numbers{\bibpunct{[}{]1}{, }{n}{, }{, }}
\newcommand\bibstyle@authoryear{\bibpunct{ (}{) }{;}{a}{, }{, }}
\newcommand\bibstyle@Rinline{\bibstyle@numbers}

(End of definition for \citestyle. This function is documented on page 2.)

54

55

56

57

fEfE] \bibliographystyle B HIYHET I HSCHRAFRERYFE

\@namedef {bibstyle@gbt7714-numerical}{\bibstyle@super}

\@namedef {bibstyle@gbt7714-author-year} {\bibstyleRauthoryear}
\@namedef{bibstyle@gbt7714-2005-numerical}{\bibstylelsuper}
\@namedef {bibstyle@gbt7714-2005-author-year} {\bibstyle@Qauthoryear}

T HEHE R natbib 1y 5] AR O T IR 20, X L R E E A AN
etoolbox [\patchecmd,

Super #£308 \citep M TUEH N Ebr. Z34MILE \kern\p@ Fi5 _EFr=(5]H]

G592 A2 ARE K, 27 tuna/thuthesis#624

58

59

60

61

62

63

64

\renewcommand\NAT@citesuper[3]{%
\ifNAT@swa
\if*#2*\else
#2\NAT@spacechar
\fi
\unskip\kern\p@

\textsuperscript{$%

https://github.com/tuna/thuthesis/issues/624

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

88

89

90

91

92

93

94

95

96

97

98

100

101

102

1

o
@

104

\NAT@Copen
#1%
\if@gbt@locator@inside@affixes
\if*#3*\else
\NAT@cmt #3%
\fi
\NAT@@close
\else
\NAT@@close
\if*#3*\else
#3%
\fi
\fi
1%
\kern\p@
\else
#1%
\fi
\endgroup

% numbers 30 \citep ARG E THESIh.
\renewcommand\NAT@citenum[3] {%
\ifNAT@swa
\NAT@Ropen
\if*#2*\else
#2\NAT@spacechar
\fi
#1%
\if@gbt@locator@insideRaffixes
\if*#3*\else\NAT@cmt#3\fi\NATQR@close
\else
\NAT@@close
\if*#3*\else
#3%
\fi
\fi
\else
#1%
\fi
\endgroup

10

Numerical #2501 \citet K T1H5:
5 \def\NATQcitexnum[#1] [#2]1#3{%
106 \NAT@reset@parser
107 \NAT@sort@cites{#3}%
108 \NAT@reset@citea
109 \@cite{\def\NAT@num{-1}\1let\NAT@last@yr\relax\let\NAT@nm\Cempty

1

o

110 \@for\@citeb:=\NAT@cite@list\do

11 {\@safe@activestrue

112 \edef\@citeb{\expandafter\@firstofone\Q@citeb\@empty}$%
113 \@safe@activesfalse

114 \@ifundefined{b@\Q@citeb\@extra@blciteb}{%

115 {\reset@font\bfseries?}

116 \NAT@citeundefined\PackageWarning{natbib}%

17 {Citation "\@citeb' on page \thepage \space undefined}}%
118 {\let\NAT@last@num\NAT@num\let \NAT@last@nm\NAT@nm

119 \NAT@parse{\Qciteb}%

120 \1fNAT@longnames\@ifundefined{bv@\@citeb\Q@extralblciteb}{%
121 \let\NAT@name=\NAT@all@names

122 \global\@namedef {bv@\@citeb\@extralb@citeb}{}}{}%
123 \fi

124 \ifNAT@full\let\NAT@nm\NATRall@names\else

125 \1let \NAT@nm\NAT@name\fi

126 \ifNAT@swa

127 \@ifnum{\NATQctype>\@ne}{%

128 \Qcitea

129 \NATQ@hyper@{\@ifnum{\NATRctype=\tw@} {\NATRtest { \NAT@ctype}}{\NATRal
130 H%

131 \@ifnum{\NAT@cmprs>\zQ@}{%

132 \NAT@ifcat@num\NAT@num

133 {\1let\NAT@nm=\NAT@num} %

134 {\def\NAT@nm{-2}1%

135 \NAT@ifcat@num\NAT@last@num

136 {\@tempcnta=\NAT@last@num\relax}%

137 {\@tempcnta\m@ne}%

138 \@ifnum{\NAT@nm=\Q@tempcntal}{%

139 \@ifnum{\NAT@merge>\@ne}{} {\NAT@last@yr@mbox}%
140 %

141 \advance\@tempcnta by\@ne

142 \@ifnum{\NAT@nm=\Q@tempcntal}{$%

TEN T Zhd)~ natbib HATE =4 DALk s | A S HERES, XH
BN AT | R HERES . 2% https://tex.stackexchange.com/

11

https://tex.stackexchange.com/a/86991/82731
https://tex.stackexchange.com/a/86991/82731

a/86991/82731,
143 \ifx\NAT@last@yr\relax

\def@NATQ@last@yr{\@citeal%

o

o\

144

145 % \else
146 % \def@NAT@last@yr{-—-\NAT@penalty}%
147 % \fi
148 \def@NATRlast@yr{-\NAT@penalty}$%
149 H%
150 \NAT@last@yr@mbox
151 1%
152 1%
153 HS%
154 \@tempswatrue
155 \@ifnum{\NAT@merge>\@ne} {\Qifnum{\NATRlast@num=\NAT@num\relax} {\@t
156 \if@tempswa\NAT@citeal@mbox\fi
157 1%
158 1%
159 \NAT@def@citea
160 \else
161 \ifcase\NATQ@ctype
162 \ifx\NATQ@last@nm\NAT@nm \NAT@yrsep\NAT@penalty\NAT@space\else
163 \Q@citea \NATQtest{\@ne}\NAT@spacechar\NAT@mbox{\NAT@superlkern\
164 \fi
165 \if*#1*\else#1\NAT@spacechar\fi
166 \NAT@mbox { \NAT@hyperQ{ {\citenumfont {\NAT@num}}}}$%
167 \NAT@def@citealbox
168 \or
169 \NAT@hyper@citea@space{\NAT@test {\NATActype}}%
170 \or
171 \NAT@hyper@citea@space{\NAT@test {\NATActype}}%
172 \or
173 \NAT@hyper@citeal@space\NATRalias
174 \fi
175 \fi
176 1%
177 1%
178 \Q@ifnum{\NAT@cmprs>\z@} {\NATRlast@yr}{1}%
179 \ifNAT@swa\else
W RS A eSS 5 M, I HET Ehr.
180 \if@gbt@locator@insideRaffixes
181 \Q@ifnum{\NATQctype=\z@}{%
182 \if*#2*\else\NATQ@cmt#2\fi

12

https://tex.stackexchange.com/a/86991/82731

183 {}%
184 \NAT@mbox {\NAT@@close}%

185 \else

186 \NAT@mbox { \NAT@@close}%
187 \@ifnum{\NATQRctype=\zQ}{%
188 \if*#2*\else

189 #2%
190 \fi

191 1%

192 \NAT@super@kern

193 \fi

194 \fi

1

5 F{#1}{#2}%

196}

©

o°

Author-year B \citep A TS :

197 \renewcommand\NATQcite$%

198 [3]1{\ifNAT@swa\NATRRopen\if*#2*\else#2\NAT@spacechar\fi
199 #1%

200 \if@gbt@locator@insideRaffixes

201 \if*#3*\else\NATQcmt#3\fi\NATQ@close

202 \else

203 \NAT@@close\if*#3*\else\textsuperscript {#3}\fi

204 \fi

205 \else#l\fi\endgroup}

(End of definition for \ cite. This function is documented on page ??.)
Author-year 5[] \citet IYTLL:

206 \def\NATQRcitex%

7 [#1] [#214#3{%

208 \NAT@reset@parser

209 \NAT@sort@cites{#3}%

210 \NAT@resetQcitea

2|

o

211 \@cite{\let\NAT@nm\Q@empty\let\NATQRyear\Rempty

212 \@for\Q@citeb:=\NATQciteRlist\do

213 {\@safelRactivestrue

214 \edef\@citeb{\expandafter\@firstofone\@citeb\Q@empty}$%

215 \@safe@activesfalse

216 \@ifundefined{b@\Q@citeb\@extra@blciteb}{\Qcitea%

217 {\reset@font\bfseries ?}\NATQ@citeundefined

218 \PackageWarning{natbib}%

219 {Citation “\@Qciteb' on page \thepage \space undefined}\def\NATRdate{
220 {\1let\NAT@Rlast@nm=\NAT@nm\let\NAT@last@yr=\NAT@year

13

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

\NAT@parse{\Qciteb}%
\1fNAT@longnames\@ifundefined{bv@\@citeb\Q@extral@blciteb}{%
\let\NAT@name=\NAT@all@names
\global\@namedef {bv@\@citeb\Q@extralb@citeb}{}}{}%
\fi
\ifNATQ@full\let\NAT@nm\NATRall@names\else
\1let \NAT@nm\NAT@name\fi
\ifNAT@swa\ifcase\NATQctype
\if\relax\NAT@date\relax
\Qcitea\NAT@hyperQ@{\NAT@nmfmt { \NAT@nm} \NAT@date}%
\else
\ifx\NAT@last@nm\NAT@nm\NAT@yrsep
\ifx\NATQ@last@yr\NATQ@year
\def\NATQRtemp{{?}}%

\ifx\NAT@temp\NAT@exlab\PackageWarningNoLine{natbib}%

{Multiple citation on page \thepage: same authors and

year\MessageBreak without distinguishing extra
letter, \MessageBreak appears as question mark}\fi
\NAT@hyper@{\NAT@Rexlab}%
\else\unskip\NAT@spacechar
\NATQRhyper@{\NATQRdate}$%
\fi
\else
\@citea\NATQ@hyper@{%
\NAT@nmfmt { \NAT@nm} %
\hyper@natlinkbreak{%
\NAT@aysep\NAT@spacechar} {\@citeb\lextra@blciteb

1%
\NAT@date
1%
\fi
\fi

\or\@citea\NAT@hyper@{\NAT@nmfmt { \NAT@nm} }%
\or\@citea\NAT@hyper@{\NATRdate}%
\or\@citea\NAT@hyper@{\NATRalias}$
\fi \NATGdeflcitea
\else
\ifcase\NATQctype
\if\relax\NAT@date\relax
\Qcitea\NATRhyper@{\NAT@nmfmt { \NAT@nm} } %
\else
\ifx\NAT@last@nm\NAT@nm\NAT@yrsep

14

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

296

297

298

300

301

\ifx\NATQ@last@yr\NATQ@year
\def\NATQRtemp{{?}}%
\ifx\NAT@temp\NAT@exlab\PackageWarningNoLine{natbib}%
{Multiple citation on page \thepage: same authors and
year\MessageBreak without distinguishing extra
letter, \MessageBreak appears as question mark}\fi
\NAT@hyper@{\NAT@Rexlab}%
\else
\unskip\NAT@spacechar
\NAT@hyperQ@{\NATQRdate}%
\fi
\else
\@citea\NATRhyper@{%
\NAT@nmfmt { \NAT@nm} %
\hyper@natlinkbreak {\NAT@spacechar\NATQ@Ropen\if*#1*\else#1\NAT
{\@citeb\RextralbRciteb}%
\NAT@date
1%
\Nfi
\fi
\or\@citea\NAT@hyper@{\NAT@nmfmt { \NAT@nm} }%
\or\@citea\NAT@hyper@{\NAT@date}%
\or\Q@citea\NAT@hyperQ@{\NATRalias}%
\fi
\if\relax\NAT@date\relax
\NAT@def@citea
\else
\NAT@def@citea@close
\fi
\fi
}}\1fNAT@swa\else

W TSI A RS 5 A, FF HE T Er.

\if@gbt@locator@insideRaffixes
\if*#2*\else\NATQ@cmt#2\fi
\if\relax\NAT@date\relax\else\NAT@@close\fi

\else
\if\relax\NAT@date\relax\else\NAT@@close\fi
\if*#2*\else#2\fi

\fi

NEi}{#1}{#2}}

thebibliography (em:) B4 CIIIFIFRE Aok

15

\url

302

\renewcommand\@biblabel [1]{[#1]\hfill}

Patch natbib a4, LI ¥ \noopsort, &# https://tex.stacke

xchange.com/a/39718/82731,

303

304

305

306

\let\NAT@bare@aux\NAT@bare

\def\NATRbare#l (#2) {%

\begingroup\edef\x{\endgroup
\unexpanded{\NAT@bare@aux#1} (\@firstofone#2) }\x}

A xurl ZZER9773% . S50 URL o] Wi T A9

307

308

309

310

311

312

313

314

\gRaddto@macro\UrlBreaks{%
\do0O\dol\do2\do3\do4\do5\do6\do7\do8\do9%
\do\A\do\B\do\C\do\D\do\E\do\F\do\G\do\H\do\I\do\J\do\K\do\L\do\M
\do\N\do\0O\do\P\do\Q\do\R\do\S\do\T\do\U\do\V\do\W\do\X\do\Y\do\Z
\do\a\do\b\do\c\do\d\do\e\do\f\do\g\do\h\do\i\do\j\do\k\do\1\do\m
\do\n\do\o\do\p\do\g\do\r\do\s\do\t\do\u\do\v\do\w\do\x\do\y\do\z

}

\Urlmuskip=0mu plus 0.lmu

(End of definition for \url. This function is documented on page ??.)

3

5

3

=)

3

7

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

3

@

5

336

FEAE v2.0 B IR -
\newif\ifgbt@bibRstyle@written
\@ifpackageloaded{chapterbib}{}{%
\def\bibliography#1{%
\ifgbtQ@bib@style@written\else
\bibliographystyle{gbt7714-numerical}l%
\fi
\if@filesw
\immediate\write\Qauxout{\string\bibdata{\zap@space#l \@empty}}%
\fi
\@input@{\jobname.bbl}}
\def\bibliographystyle#1{%
\gbt@bib@style@writtentrue
\ifx\@begindocumenthook\Q@undefined\else
\expandafter\AtBeginDocument
\fi
{\if@filesw
\immediate\write\@auxout{\string\bibstyle{#1}}%
\fi}%

-
o

}
\ifgbt@legacy@interface
\ifgbt@numerical

16

https://tex.stackexchange.com/a/39718/82731
https://tex.stackexchange.com/a/39718/82731

337 \ifgbt@super\else

338 \citestyle{numbers}

339 \fi

340 \bibliographystyle{gbt7714-numerical}
341 \else

342 \bibliographystyle{gbt771l4-author-year}
343 \fi

sas \fi

s (/package)

3

i

B BibTeX 3 A/ S
B.1 HE %k

bst (env) JXEE LT — LR TERIREN, ATLME FHIAY Load. config sk
JA

s46 (xauthor-year | numerical)

347 INTEGERS {

348 citation.et.al.min

349 citation.et.al.use.first
350 bibliography.et.al.min
351 bibliography.et.al.use.first
352 uppercase.name

353 terms.in.macro

354 year.after.author

355 period.after.author

356 italic.book.title

357 sentence.case.title

358 link.title

359 title.in. journal

360 show.patent.country

361 show.mark

362 space.before.mark

363 show.medium. type

364 short. journal
365 italic.journal
366 link.journal

367 bold. journal.volume

368 show.missing.address.publisher
369 space.before.pages

370 only.start.page

371 show.urldate
a72 show.url

373 show.doi

374 show.note

375 show.english.translation
376 end.with.period

377 lowercase.word.after.colon
a7s (xauthor-year)

17

379
380
381
382
383
3

®

4
385
386
3

®

7
388
389
390
391

393

lang.zh.order
lang. ja.order
lang.en.order
lang.ru.order
lang.other.order
(/author-year)
}

STRINGS {
component .part.label
page.range.delimiter

}

AR RON #1 R %I, 000 #0 WIS H o BOARI(EZ ™
A E R RO E

392 FUNCTION {load.config}

{

AR AREE KT T et .

Ej][]“et a]_”ﬁ“%”‘j

394
395
396
397
398
399
400
401
402
403

410
411
412
413
414
415

416
417
418
419
420

(xlucas)

#2 'citation.et.al.min

#1 'citation.et.al.u
(/!ucas)
(xucas)

se.

#3 'citation.et.al.min

#1 'citation.et.al.u
(/ucas)

#4 'bibliography.et.

#3 'bibliography.et.

ES QAL EWNEE
(x!(no-uppercase | thu | ustc))
#1 'uppercase.name
(/!(no-uppercase | thu | ustc))
(xno-uppercase | thu | ustc)
#0 'uppercase.name
(/no-uppercase | thu | ustc)

il TeX 28t A0 457
(x!(macro | ucas))
#0 'terms.in.macro
(/!(macro | ucas))
(xmacro | ucas)
#1 'terms.in.macro
(/macro | ucas)

se.

al. :
.use.first :=

al

al.min, HEFHjet.al.use.first 4>, H

min :=

R B THE i (- RO

(*numerical | ucas)

#0 'year.after.autho
(/numerical | ucas)
(xauthor-year&!ucas)

#1 'year.after.autho

r

r

18

421 (/author-year&!ucas)

R E - LRI, VR4 S0 2 T A R

422 (xnumerical)

423 #1 'period.after.author :=
424 {/numerical)

425 (xauthor-year)

426 (x2015&!(period))

427 #0 'period.after.author :=
428 (/2015&!(period))

429 (xperiod | 2005)

430 #1 'period.after.author :=
431 (/period | 2005)

432 (/author-year)

H AR :
433 (xlitalic-book-title)
434 #0 'italic.book.title :=
435 (/litalic-book-title)
436 (xitalic-book-title)
437 #1 'italic.book.title :=
438 (/italic-book-title)

JECHR LN sentence case (F]HFHRIRE, HA/NG):

430 (xIno-sentence-case)
440 #1 'sentence.case.title :=
41 (/!no-sentence-case)
42 (xno-sentence-case)
443 #0 'sentence.case.title :=
44 (/no-sentence-case)

TERT MU 08 B4 -
415 (x!link-title)
146 #0 'link.title :=
47 (/Mlink-title)
ass (xlink-title)
449 #1 'link.title :=
450 (/link-title)

SRR A S iR
451 (xIno-title-in-journal)
452 #1 'title.in. journal :=
453 (/!no-title-in-journal)
454 (xno-title-in-journal)
455 #0 'title.in. journal :=
456 (/no-title-in-journal)

LRI A7 R A 2 R
457 (x!(show-patent-country | 2005 | thu))
458 #0 'show.patent.country :=
459 (/!(show-patent-country | 2005 | thu))
460 (x(show-patent-country | 2005 | thu))
461 #1 'show.patent.country :=
462 (/(show-patent-country | 2005 | thu))

19

FROUIREAR IR (B [M/OLT) -
463 (xIno-mark)
464 #1 'show.mark :=
465 (/!no-mark)
466 (xno-mark)
467 #0 'show.mark :=
465 (/no-mark)

SCHRERIFR IR AT R A 254 -
460 (x!space-before-mark)
470 #0 'space.before.mark :=
471 (/!space-before-mark)
472 (xspace-before-mark)
473 #1 'space.before.mark :=
474 (/space-before-mark)

R EASEERN (/0oL -
475 (xlno-medium-type)
476 #1 'show.medium.type :=
477 (/!no-medium-type)
478 (*no-medium-type)
479 #0 'show.medium.type :=
40 (/no-medium-type)

A5 /77 Fe7 AT H STk
4s1 (x!(in-collection | no-slash))
482 "slash" 'component.part.label
4s3 (/!(in-collection | no-slash))
484 (xin-collection)
485 "in" 'component.part.label :=
4s6 (/in-collection)
487 (xno-slash)
488 "none" 'component.part.label :=
489 {/no-slash)

WP A S
490 (x!short-journal)
491 #0 'short. journal :=
492 (/!short-journal)
493 (xshort-journal)

494 #1 'short. journal :=
495 (/short-journal)
) 4 fa R -

96 (xlitalic-journal)
497 #0 'italic. journal
498 (/litalic-journal)
499 (xitalic-journal)
500 #1 'italic. journal
s01 (/italic-journal)

FEIYI TR TS I e e -

so2 (xllink-journal)
503 #0 'link.journal :=

20

508

509
510
511
512
513
514

515
516
517
518
519
520

527
528
529
530
531
532
533
534

535

543

(/!link-journal)
(xlink-journal)

#1 'link. journal :=
(/link-journal)

S R (o FTARLAA :

#0 'bold.journal.volume :=

TCH R B R I, 5 RN, “ R A, S E 0.

(*!sl-sn)

#0 'show.missing.address.publisher :=
(/!sl-sn)
(*sl-sn)

#1 'show.missing.address.publisher :=

(/sl-sn)

TR S RTH Y B9 Z AR A 25k
(x!no-space-before-pages)

#1 'space.before.pages :=
(/!no-space-before-pages)
(xno-space-before-pages)

#0 'space.before.pages :=
(/no-space-before-pages)

TR A AEiR R 0L -
(x!only-start-page)

#0 'only.start.page :=
(/!only-start-page)
(xonly-start-page)

#1 'only.start.page :=
(/only-start-page)

A TR R R 5
(x!(en-dash-page-range-delimiter | wave-dash-page-range-delimiter))
"-" 'page.range.delimiter :=
(/!(en-dash-page-range-delimiter | wave-dash-page-range-delimiter))
(xen-dash-page-range-delimiter)
"—-—" 'page.range.delimiter :=
(/en-dash-page-range-delimiter)
(xwave-dash-page-range-delimiter)
"~ " 'page.range.delimiter :=
(/wave-dash-page-range-delimiter)

BT AR FF SCHRAY 51T H 3
(x!no-urldate)

#1 'show.urldate
(/!no-urldate)
(xno-urldate)

#0 'show.urldate
(/no-urldate)

/e 1% % URL:
(x!(no-url | ustc))
#1 'show.url :=

21

s44 (/!(no-url | ustc))
s45 (xno-url | ustc)

546 #0 'show.url :=
547 {/no-url | ustc)
=1 DOIL:

s4s (x!(no-doi | 2005 | ustc))
549 #1 'show.doi :=
ss0 (/!(no-doi | 2005 | ustc))
551 (xno-doi | 2005 | ustc)
552 #0 'show.doi :=
553 {/no-doi | 2005 | ustc)

FEfg— 2 S0k R TR (note) AU

554 #0 'show.note :=

FRSCICHR R A5 R S SCRIE
555 (xlshow-english-translation)
556 #0 'show.english.translation :=
ss7 (/!show-english-translation)
sss - (*show-english-translation)

559 #1 'show.english.translation :=
s60 (/show-english-translation)
SERINA] R

s61 (*/no-period-at-end)
562 #1 'end.with.period :=
s63 (/!no-period-at-end)
se4 (*no-period-at-end)
565 #0 'end.with.period :=
s66 (/no-period-at-end)

B H 5 TR R IR RN
s67 (xIno-lowercase-word-after-colon)
568 #1 'lowercase.word.after.colon :=
s69 (/!no-lowercase-word-after-colon)
570 (xno-lowercase-word-after-colon)
571 #0 'lowercase.word.after.colon :=
572 (/no-lowercase-word-after-colon)

SRR IR -G, A SOR I -

573 (xauthor-year)

574 #1 'lang.zh.order :=
575 #2 'lang. ja.order :=
576 #3 'lang.en.order :=
577 #4 'lang.ru.order :=

#5 'lang.other.order

(/author-year)
}

22

B.2 The ENTRY declaration

Like Scribe’s (according to pages 231-2 of the April *84 edition), but no fullauthor or
editors fields because BibTeX does name handling. The annote field is commented out here
because this family doesn’t include an annotated bibliography style. And in addition to the
fields listed here, BibTeX has a built-in crossref field, explained later.

582 ENTRY

583 { address

584 archivePrefix
585 author

586 booktitle

587 date

588 doi

589 edition

590 editor

591 eprint

592 eprinttype
593 entrysubtype
594 howpublished
595 institution
596 journal

597 journaltitle
598 key

599 langid

600 language

601 location

602 mark

603 medium

604 note

605 number

606 organization
607 pages

608 publisher

609 school

610 series

611 shortjournal
612 title

613 translation
614 translator
615 url

616 urldate

617 volume

618 year

619 }

620 { entry.lang entry.is.electronic is.pure.electronic entry.numbered }

These string entry variables are used to form the citation label. In a storage pinch,

sort.label can be easily computed on the fly.

621 { label extra.label sort.label short.list entry.mark entry.url }
622

23

B.3 Entry functions

Each entry function starts by calling output.bibitem, to write the \bibitem and
its arguments to the .BBL file. Then the various fields are formatted and printed by out-
put or output.check. Those functions handle the writing of separators (commas, periods,
\newblock’s), taking care not to do so when they are passed a null string. Finally,
fin.entry is called to add the final period and finish the entry.

A bibliographic reference is formatted into a number of ‘blocks’: in the open format,
a block begins on a new line and subsequent lines of the block are indented. A block may
contain more than one sentence (well, not a grammatical sentence, but something to be ended
with a sentence ending period). The entry functions should call new.block whenever a block
other than the first is about to be started. They should call new.sentence whenever a new
sentence is to be started. The output functions will ensure that if two new.sentence’s oc-
cur without any non-null string being output between them then there won’t be two periods
output. Similarly for two successive new.block’s.

The output routines don’t write their argument immediately. Instead, by convention,
that argument is saved on the stack to be output next time (when we’ll know what separator
needs to come after it). Meanwhile, the output routine has to pop the pending output off the
stack, append any needed separator, and write it.

To tell which separator is needed, we maintain an output.state. It will be one of these val-
ues: before.all just after the \bibitem mid.sentence in the middle of a sentence: comma
needed if more sentence is output after.sentence just after a sentence: period needed af-
ter.block just after a block (and sentence): period and \newblock needed. Note: These
styles don’t use after.sentence

VAR: output.state : INTEGER - state variable for output

The output.nonnull function saves its argument (assumed to be nonnull) on the stack,
and writes the old saved value followed by any needed separator. The ordering of the tests is
decreasing frequency of occurrence.

H1 T4 2 FR AT SCIR R S 2RI/, it LAFRSUIN Y — > aftersslasho H
b me EAERERF SR . TS 17— output.after,

output .nonnull (s) ==
BEGIN

s := argument on stack

if output.state = mid.sentence then

writeS$ (pop() * ", u")
—— "pop" isn'tyayfunction:justyuseystack,top

uuuuuuelse
vuuuuuuuuuifyoutput.statey=pafter.block,then
Uuuuuuuuuuuuuuwrite$ (add.period$ (pop ()))

vuuuuuuuuuuuuunewline$

24

Uuuuuuuuuuuuuuwrite$ ("\newblocky")

vuuuuuuuuuelse
vuuuuuuuuuuuuuifyuoutput.statey= before.all then
LULLULLULLULUULuuuWriteS (pop ()
LvuuLuuuuuuuLuuuuelseuuuuuuu——uoutput .. stateshould beafter.sentence
UuuLULLLLULUuuuuuuWrite$ (add.period$ (pop ()) u*u"u")
vuuuuuuuouuouofi

vuuuuuuuoufl
vuuuuuuuuuoutput.state = mid.sentence

vuuoouofi

vuuuuupushysyonystack

LEND

The output function calls output.nonnull if its argument is non-empty; its argument may

be a missing field (thus, not necessarily a string)

output (s) ==

BEGIN
if not empty$(s) then output.nonnull (s)
fi

END

The output.check function is the same as the output function except that, if necessary,
output.check warns the user that the t field shouldn’t be empty (this is because it probably
won’t be a good reference without the field; the entry functions try to make the formatting

look reasonable even when such fields are empty).

output.check (s, t) ==
BEGIN
if empty$(s) then
warning$ ("empty," * t *
else output.nonnull (s)
fi

"uing" * cite$)

END

The output.bibitem function writes the \bibitem for the current entry (the label
should already have been set up), and sets up the separator state for the output functions.

And, it leaves a string on the stack as per the output convention.

output .bibitem ==

BEGIN
newline$
write$ ("\bibitem[")
write$ (label) these three lines
write$S("]{") are used

write$ ("\bibitem{") % this line for numeric labels
(
("

o

for alphabetic labels,

o°

o°

write$ c1te$

write$ "y

push "" on stack

output.state := before.all
END

25

The fin.entry function finishes off an entry by adding a period to the string remaining on
the stack. If the state is still before.all then nothing was produced for this entry, so the result
will look bad, but the user deserves it. (We don’t omit the whole entry because the entry was

cited, and a bibitem is needed to define the citation label.)

fin.entry ==

BEGIN
write$ (add.period$ (pop()))
newline$

END

The new.block function prepares for a new block to be output, and new.sentence prepares

for a new sentence.

new.block ==
BEGIN
if output.state <> before.all then
output.state := after.block
fi
END

new.sentence ==
BEGIN
if output.state <> after.block then
if output.state <> before.all then
output.state := after.sentence
fi

END

623 INTEGERS { output.state before.all mid.sentence after.sentence after.block
624

625 INTEGERS { lang.zh lang.ja lang.en lang.ru lang.other }

626

627 INTEGERS { charptr len }

628

629 FUNCTION {init.state.consts}

630 { #0 'before.all :=

631 #1 'mid.sentence :=

632 #2 'after.sentence :=

633 #3 'after.block :=

634 #4 'after.slash :=

635 #3 'lang.zh
636 #4 'lang.ja
637 #1 'lang.en :=
638 #2 'lang.ru :=

639 #0 'lang.other :=
640}

641

N E L
642 FUNCTION {bbl.anonymous}
643 { entry.lang lang.zh =

26

644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698

(s
{ "Anon" }
if$
}
FUNCTION {bbl.space}

{ entry.lang lang.zh =
{ l \ " }
{ " n }
if$
}

FUNCTION {bbl.and}
{ o }

FUNCTION {bbl.et.al}
{ entry.lang lang.zh =

{ n %u }
{ entry.lang lang.ja =
{ n ,{J@u }
{ entry.lang lang.ru
{ " n }
{ "et~al." }
ifs
}
if$
}
if$
}

FUNCTION {citation.and}
{ terms.in.macro
{ "{\biband}" }
'bbl.and
if$
}

FUNCTION {citation.et.al}
{ terms.in.macro

{ "{\bibetall}l" }
'bbl.et.al
if$
}
FUNCTION {bbl.colon} { ": "

FUNCTION {bbl.pages.colon}
{ space.before.pages

{ " : " }
{ ":\allowbreak " }
ifs
}
(x!12005)
FUNCTION {bbl.wide.space} {

”\quad " }

27

699 (/12005)

700 (¥2005)

701 FUNCTION {bbl.wide.space} { "\ " }

702 (/2005)

703

704 FUNCTION {bbl.slash} { "//\allowbreak " }
705

706 FUNCTION {bbl.sine.loco}

707 { entry.lang lang.zh =

708 { "[HBAED ")

709 { "[S.1.]1" }
710 ifs

711}

712

713 FUNCTION {bbl.sine.nomine}
714 { entry.lang lang.zh =

715 { "[HBEAED")

716 { "[s.n.]" }
717 ifs

718}

719

720 FUNCTION {bbl.sine.loco.sine.nomine}
721 { entry.lang lang.zh =

722 { " OHBOATE: HREATED")

723 { "[S.1l.: s.n.]" }

724 if$s

725 }

726

727 FUNCTION {default.self.tokens} { ":,—-'—2.!" }

728

729 FUNCTION {latin.upper} { "AARARAECEEEEITITPNOOOOOZUUTUYPYAAACCCCDPEEEEEGGGGE

730

731 FUNCTION {latin.lower} { "addddeceéééiiiidfoddddgpunliypbyadgcéccddeéeeeddyy
732

733 FUNCTION {range.delimiters} { "-—~" }

734

These three functions pop one or two (integer) arguments from the stack and push a
single one, either O or 1. The ' skip$ in the ‘and’ and ‘or’ functions are used because the

corresponding i £$ would be idempotent

735 FUNCTION {not}
736 { { #0 }

737 { #1 }
738 if$
739}

740
741 FUNCTION {and}

742 { 'skip$

743 { pop$ #0 }
744 if$

745 '}

746
747 FUNCTION {or}
748 { { pop$ #1 }

28

749 'skip$

750 ifs

751}

752

753 STRINGS { x vy }

754

755 FUNCTION {contains}

w6 { 'y =

757 'x 1=

758 y text.length$ 'len :=
759 x text.length$ len - #1 + 'charptr :=

760 { charptr #0 >

761 x charptr len substring$ y = not
762 and

763 }

764 { charptr #1 - 'charptr := }

765 while$

766 charptr #0 >
767}

768

the variables s and t are temporary string holders

9 STRINGS { s t }
770
771 FUNCTION {output.nonnull}

7!

[

72 { 's 1=

773 output.state mid.sentence =

774 { ", " * wyrite$ }

775 { output.state after.block =

776 { add.period$ write$

777 newline$

778 "\newblock " write$

779 }

780 { output.state before.all =
781 'write$

782 { output.state after.slash =
783 { bbl.slash * write$
784 newline$

785 }

786 { add.period$ " " * write$ }
787 ifs

788 }

789 if$

790 }

791 if$

792 mid.sentence 'output.state :=
793 }

794 ifs

795 S

796}

797

798 FUNCTION {output}

799 { duplicate$ empty$
800 'pop$

801 'output .nonnull

29

802 ifs

803}

804

gos FUNCTION {output.after}

sos { 't =

807 duplicate$ empty$

808 "pop$

809 { 's :=

810 output.state mid.sentence =

811 { t * write$ }

812 { output.state after.block =

813 { add.period$ write$

814 newline$

815 "\newblock " write$

816 }

817 { output.state before.all =

818 'write$

819 { output.state after.slash =
820 { bbl.slash * write$ }
821 { add.period$ " " * write$ }
822 if$

823 }

824 ifs

825 }

826 if$

827 mid.sentence 'output.state :=

828 }

829 ifs

830 S

831 }

832 if$s

833}
834
835 FUNCTION {output.check}

ss6 { 't =

837 duplicate$ empty$

838 { pop$ "empty " t * " in " * cite$ * warning$ }
839 'output .nonnull

840 ifs

841}
842

This function finishes all entries.

843 FUNCTION {fin.entry}
g4 { end.with.period

845 "add.period$
846 'skip$
847 ifs

848 write$
849 show.english.translation entry.lang lang.zh = and
850 { n) n

851 writes$
852 }

853 'skip$
854 ifs

30

855
856
857
8

a

8
8

a
©

860
861
862
863
864
865
866
867
868
8

[}

9
8

J
o

871
872
873
874
875
876
877
878
879
880
881
882
883
8

®

4
8

®
a

886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907

newline$

}

FUNCTION {new.block}
{ output.state before.all =

'skip$
{ output.state after.slash =
'skip$
{ after.block 'output.state := }
if$
}
if$

}

FUNCTION {new.sentence}
{ output.state after.block =

'skip$
{ output.state before.all =
'skip$
{ output.state after.slash =
'skip$
{ after.sentence 'output.state := }
ifs
}
if$
}
if$

}

FUNCTION {new.slash}
{ output.state before.all =

'skip$
{ component.part.label "slash" =
{ after.slash 'output.state := }

{ new.block
component .part.label "in"
{ entry.lang lang.en =
{ "In: " output
write$
before.all 'output.state :=
}
'skip$
ifs$
}
'skip$
ifs

if$
if$

Sometimes we begin a new block only if the block will be big enough. The new.block.checka

31

function issues a new.block if its argument is nonempty; new.block.checkb does the same if

either of its TWO arguments is nonempty.

908 FUNCTION {new.block.checka}
909 { empty$

910 'skip$
911 'new.block
912 if$

913}
914
915 FUNCTION {new.block.checkb}

916 { empty$

917 swap$ emptys$
918 and

919 'skip$

920 'new.block
921 if$

922 }
923

The new.sentence.check functions are analogous.

924 FUNCTION {new.sentence.checka}
95 { empty$

926 'skip$
927 'new.sentence
928 if$

929}
930
931 FUNCTION {new.sentence.checkb}

952 { empty$

933 swap$ emptys$

934 and

935 'skip$

936 'new.sentence
937 if$

938 }
939

In order to support UTF-8 encoding, we need some auxiliary functions. Below are a se-
ries of such functions. We try to make functions loosely-coupled as much as possible. Where
the use of variables is inevitable in functions, we generally assume it is the caller’s respon-
sibility to save and restore those variables. Exceptions are made for some unary functions,

where it is convenient for the callee to do so.

940 INTEGERS { b }
941

Function is.int.in.range takes a codepoint and two integers and check if the

codepoint is between these two integers (inclusive).

942 % codepoint: int, a: int, b: int -> bool
93 % variable used: b

944 FUNCTION {is.int.in.range}

945 {

32

946 'b =

947 #1 +
948 b >
949 { #1 - b < }
950 { pop$ #0 }
951 ifs

952}
953

Function mult . power?2 takes two integers and returns 2" m.
954 % m: int, n: int -> int
955 FUNCTION {mult.power2}
956 {
957 { duplicate$ #0 > }
958 {

959 swap$
960 duplicate$ +
961 swap$ #1 -

962 }

963 while$
964 pops

965 }

966

Function find.match.brace takes two strings, the first of which is assumed to
be " {", and find the matching brace in the second string. It returns a token (or subtoken)
and the rest of the string after the matching brace. When braces are unmatched, it issues
a warning and complete the brace automatically, following the convention of the original
BiETEX.

o)

%7 $ "{", str —-> subtoken: str, rest: str
%8 $ variables used: s, t

969 FUNCTION {find.match.brace}

970 {

971 's =

972 't o=

973

974 #1

975 { duplicate$ #0 >

976 s empty$ not and }

977 {

978 s #1 #1 substring$ "{" =

979 { #1 + }

980 {

981 s #1 #1 substring$ "}"
982 { #1 - }

983 'skip$

984 if$

985 }

986 ifs

987 t s #1 #1 substring$ * 't :=
988 s #2 global.max$ substring$'s :=

989 }
990 while$

33

991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009

duplicate$ #0 >

{

}

'skip$

ifs
pop$

"Unbalanced brace(s): one or more closing braces are missing" warning
{ duplicate$ #0 > }

{

}

t "

o

#1 -

while$

't =

Function split.first.char.from. str takes a UTF-8 string and return the

first UTF-8 character and the rest of the string in reverse order.

1010

1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041

o

°

{

str —> str,
1011 FUNCTION {split.first.char.from.str}

duplicate$

{

char

"split.first.char.from.str: Trying to split an empty string!" warning

duplicate$ #1 #1 substring$ chr.to.int$ #128 <

{

}
{

duplicate$ #1 #1 substring$ swap$
#2 global.max$ substring$ swap$

duplicate$ #1 #1 substring$ chr.to.int$ #224 <

{

}
{

duplicate$ #1 #2 substring$ swap$
#3 global.max$ substring$ swap$

duplicate$ #1 #1 substring$ chr.to.int$ #240 <

{

}
{

}
if$

duplicate$ #1 #3 substring$ swap$
#4 global.max$ substring$ swap$

duplicate$ #1 #4 substring$ swap$
#5 global.max$ substring$ swap$

34

1042 ifs
1043 }

1044 ifs

1045 }

1046 ifs

1047}

1048

Function get . first.char.from. str takes a UTF-8 string and return the first
UTF-8 character.

o)

1049 5 str —-> char

1050 FUNCTION {get.first.char.from.str}

1051 {

1052 split.first.char.from.str swap$ pop$
1053 }

1054

Functionsplit.first.tex.char.from.strislikesplit.first.char.from.st:
It takes a UTF-8 string and return the first UTF-8 character or first TeXgroup and the rest of

string in reverse order.
155 % str —> rest: str, texchar
106 FUNCTION {split.first.tex.char.from.str}

1057 {
1088 duplicate$ #1 #1 substring$ "{" =

1059 {

1060 split.first.char.from.str swap$
1061 find.match.brace swap$

1062 }

1063 'split.first.char.from.str

1064 ifs

1065 }
1066

Function char.to.unicode takes a UTF-8 character and returns its codepoint in
Unicode. It issues a warning and returns —1 if the presumed character is an empty string.

For other invalid input, the behavior is undefined.

1067 % char —-> int

1068 FUNCTION {char.to.unicode}

1069 {

1070 duplicate$ #4 #1 substring$ ""
1071 {

1072 duplicate$ #3 #1 substring$ ""

1073 {

1074 duplicate$ #2 #1 substring$ ""

1075 {

1076 duplicate$ ""

1077 {

1078 "Empty string is not a char!" warning$
1079 popS$ #-1

1080 }

1081 { #1 #1 substring$ chr.to.int$ }
1082 if$

35

1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1108
1104
1105
1106
1107
1108
1109
1110
1111

}
if$

}
{
duplicate$ #2 #1 substring$ chr.to.int$ #128 - swap$
#1 #1 substring$ chr.to.int$ #192 -
#6 mult.power2 +
}
ifs

duplicate$ #3 #1 substring$ chr.to.int$ #128 - swap$
duplicate$ #2 #1 substring$ chr.to.int$ #128 - swap$
#1 #1 substring$ chr.to.int$ #224 -

#6 mult.power2 +

#6 mult.power2 +

duplicate$ #4 #1 substring$ chr.to.int$ #128 - swap$
duplicate$ #3 #1 substring$ chr.to.int$ #128 - swap$
duplicate$ #2 #1 substring$ chr.to.int$ #128 - swap$

#1
#6
#6
#6

if$

Function i

#1 substring$ chr.to.int$ #240 -
mult.power2 +
mult.power2 +
mult.power2 +

s.char.in.str takesastring and a UTF-8 character. It checks whether

the character is in the string. It issues a warning and returns 0 if the presumed character is

an empty string. It also returns 0 if the string itself is empty. For other input, the behavior is

undefined.

1112
1118
1114
1115
1116
1117
1118
1119
1120
1121
1122
1128
1124
1125
1126
1127
1128
1129
1130

% str, ch
% variabl
FUNCTION

{
't o=

t nn
{ "is
'skip
if$

#0 swap

{ dupli
{

spl

{

if$

ar —> bool
e used: t
{is.char.in.str}

.char.in.str: Empty string is not a char!" warning$ }
$

$

cate$ "" = not }

it.first.char.from.str t =

pop$ pop$ #1 "" }

skip$

36

1131 while$
1182 pops
1133}

1134

Function is.upper.ascii takes a UTF-8 character and checks whether it is an

uppercase ASCII letter.

1135 % char —-> bool

1136 $ variable used: b

1137 FUNCTION {is.upper.ascii}

1138 {

1139 char.to.unicode #65 swap$ #90 swap$ is.int.in.range
1140 '}

1141

Function is.upper takes a UTF-8 character and checks whether it is uppercase in
the range from U+0000 to U+017F.

char -> bool

1143 % variable used: Db
1144 FUNCTION {is.upper}
1145 {

oe

1142

1146 duplicate$ is.upper.ascii

1147 { pop$ #1 }

1148 { latin.upper swap$ is.char.in.str }
1149 ifs

1150 }
1151

Function is.lower.ascii takes a UTF-8 character and checks whether it is a
lowercase ASCII letter.

1152 % char -> bool

1153 % variable used: b

1154 FUNCTION {is.lower.ascii}

1155 {

1156 char.to.unicode #97 swap$ #122 swap$ is.int.in.range
1157}

1158

Function is.upper takes a UTF-8 character and checks whether it is lowercase in
the range from U+0000 to U+017F.

1159 % char —-> bool

1160 % variable used: b
1161 FUNCTION {is.lower}
1162 {

1163 duplicate$ is.lower.ascii

1164 { pop$ #1 }

1165 { latin.lower swap$ is.char.in.str }
1166 if$

1167}
1168

37

Function is.printable.ascii takes a UTF-8 character and checks whether it

is a printable ASCII character.

1169 % char —-> bool

1170 % variable used: Db

1171 FUNCTION {is.printable.ascii}

1172 {

1173 char.to.unicode #32 swap$ #126 swap$ is.int.in.range
1174}

1175

Function is.letter.ascii takes a UTF-8 character and checks whether it is an
ASCII letter.

1176 char -> bool

1177 % variable used: b

1178 FUNCTION {is.letter.ascii}
{

o

1179

1180 duplicate$ is.upper.ascii swap$ is.lower.ascii or
1181}

1182

Function is.symbol.ascii takes a UTF-8 character and checks whether it is a
printable ASCII character but not an ASCII letter.

1183 5 char —-> bool

1184 % variable used: b

1185 FUNCTION {is.symbol.ascii}

1186 {

1187 duplicate$ is.printable.ascii swap$ is.letter.ascii not and
1188 }

1189

Function is.all.lower takes a string and checks whether every character in it is

lowercase in the range from U+0000 to U+017F.

str —> bool

variable used: b

1192 return true if str is empty
1193 FUNCTION {is.all.lower}

1194 {

1195 #1 swap$

oe

1190

oe

1191

oe

1196 { duplicate$ "" = not }

1197 {

1198 split.first.char.from.str is.lower
1199 'skip$

1200 { pop$ pop$ #0 "" }

1201 ifs

1202 }

1203 while$

1204 pops$

1205}

1206

1207 % str —> bool

1208 % variable used: b

1209 FUNCTION {is.tex.str.in.title.case}

38

1210 {

1211 duplicates ""

1212 { pop$ #0 1}

1213 {

1214 split.first.tex.char.from.str purify$
1215 duplicates ""

1216 { pop$ pop$ #0 }

1217 {

1218 split.first.char.from.str is.upper
1219 {

1220 duplicate$ is.all.lower
1221 {

1222 emptys$

1223 {

1224 duplicates ""
1225 { popS$ #0 }
1226 'is.all.lower
1227 ifs

1228 }

1229 'is.all.lower

1230 if$s

1231 }

1232 { pop$ pops #0 }

1233 if$

1234 }

1235 { pop$ pop$ #0}

1236 if$

1237 }

1238 ifs

1239 }

1240 ifs

1241}

1242

o

1243 char, int -> bool

1244 % variables used: t, b

1245, FUNCTION {is.in.inter.token.chars}
1246 {

1247 duplicate$ #0 =

1248 { pop$ " " =}

1249 {

1250 #1 =

1251 { " " range.delimiters * swap$ is.char.in.str }
1252 'is.letter.ascii

1253 ifs

1254 }

1255 ifs

1256}

1257

o

1258 str, int -> intertoken: str, rest: str
1250 % variable used: t, Db

1260 FUNCTION {skip.inter.token.chars.by}

1261 {

1262 'b =

1263 't

1264

39

1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

"ot
{ duplicate$ "" = not }
{
split.first.char.from.str
duplicate$ b is.in.inter.token.chars
{ swap$ 't := * t }
{ swap$ * 't := "" }
if$
}
while$

pops$ t

% str —-> intertoken: str, rest: str
% variable used: t, b
FUNCTION {skip.inter.token.chars}

{
#0 skip.inter.token.chars.by

% str —-> intertoken: str, rest: str
% variable used: t, b
FUNCTION {skip.inter.token.command}
{
duplicate$ ""
Ly
{
duplicate$ #1 #1 substring$ is.symbol.ascii
{ split.first.char.from.str swap$ }
{ #2 skip.inter.token.chars.by }
ifs
}
if$

o)

% cmdstr —-> cmdstr
FUNCTION {is.special.char.command}
{

#2 global.max$ substring$ skip.inter.token.command

empty$

'skip$

{ "is.special.char.command: cmdstr has extra components!" warning$ }
if$

duplicate$ duplicate$ duplicate$ duplicate$ duplicate$ duplicates$
"oOlLij" swap$ is.char.in.str

swap$ "oe" = or
swap$ "OE" = or
swap$ "ae" = or
swap$ "AE" = or
swap$ "aa" = or
swap$ "AA" = or

40

1320

1321 % str, str, char -> char
1322 % variable used: t

1323 FUNCTION {map.char}

1324 {

1325 't o=

1326 split.first.char.from.str

1327 { swap$ duplicate$ "" = not }

1328 {

1329 swap$ t =

1330 { pop$ "" t }

1331 {

1332 swap$ split.first.char.from.str pop$ swap$
1333 split.first.char.from.str
1334 }

1335 ifs

1336 }
1337 while$
1338 pops$ t =

1339 'get.first.char.from.str
1340 { pop$ t }
1341 ifs

f—

1342
1343
1344 % char -> char

1345 % variables used: t, b
1346 FUNCTION {to.lower}

1347 {

1348 duplicate$ is.upper.ascii

1349 { chr.to.int$ #32 + int.to.chr$ }

1350 { latin.lower swap$ latin.upper swap$ map.char }
1351 ifs

—

1352
1353
1354 % char -> char

1355 % variables used: t, b
1356 FUNCTION {to.upper}

1357 {

1358 duplicate$ is.lower.ascii

1359 { chr.to.int$ #32 - int.to.chr$ }

1360 { latin.upper swap$ latin.lower swap$ map.char }
1361 ifs

—

1362
1363
364 % str —> str

1365 % variables used: t, b
1366 FUNCTION {all.to.lower}

1367 {

1368 ""oswap$

1369 { duplicate$ empty$ not }

1370 { split.first.char.from.str to.lower swap$ 't := * t }
1371 while$

1372 *

1373}
1374

41

1375 % texchar —-> texchar

1376 % variables used: t, b

1377 FUNCTION {command.to.lower}
1378 {

1379 duplicates ""

1380 { "command.to.lower: Empty string is not a texchar!" warning$ }
1381 {

1382 duplicate$ #1 #1 substring$ #92 int.to.chr$ =
1383 {

1384 duplicate$ is.special.char.command

1385 'all.to.lower

1386 'skip$

1387 if$

1388 }

1389 'to.lower

1390 ifs

1391 }

1392 ifs

f—

1393
1394
1395 % texchar —-> texchar

1396 % variables used: t, b

1397 FUNCTION {tex.to.lower}

1398 {

1399 duplicate$ #1 #2 substring$ "{" #92 int.to.chr$ * =
1400 {

1401 "o swap$

1402 { duplicate$ "" = not }

1403 {

1404 split.first.char.from.str

1405 duplicate$ #92 int.to.chr$ =
1406 {

1407 swap$ skip.inter.token.command 't := * t
1408 swap$ command.to.lower

1409 }

1410 'to.lower

1411 ifs

1412 swap$ 't = * t

1413 }

1414 while$

1415 pop$

1416 }

1417 {

1418 duplicate$ #1 #1 substring$ "{" =
1419 { split.first.char.from.str swap$ find.match.brace pop$ }
1420 'command.to.lower

1421 ifs

1422 }

1423 ifs

1424}

1425

1426 % str —> str

1427 % variables used: t, b
1428 FUNCTION {all.to.upper}
1429 {

42

1430 ""oswap$
1431 { duplicate$ empty$ not }

1432 { split.first.char.from.str to.upper swap$ 't := * t }
1433 while$
1434 *

1435 }
1436

o

1437 texchar -> texchar

1438 % variables used: t, b

1439 FUNCTION {command.to.upper}
1440 {

1441 duplicate$ ""

1442 { "command.to.lower: Empty string is not a texchar!" warning$ }
1443 {

1444 duplicate$ #1 #1 substring$ #92 int.to.chr$ =
1445 {

1446 duplicate$ is.special.char.command

1447 'all.to.upper

1448 'skip$

1449 ifs

1450 }

1451 'to.upper

1452 ifs

1453 }

1454 ifs

1455 }
1456

o

1457 texchar -> texchar

1458 % variables used: t, b

1459 FUNCTION {tex.to.upper}

1460 {

1461 duplicate$ #1 #2 substring$ "{" #92 int.to.chr$ * =
1462 {

1463 "o swap$

1464 { duplicate$ "" = not }

1465 {

1466 split.first.char.from.str

1467 duplicate$ #92 int.to.chr$ =

1468 {

1469 swap$ skip.inter.token.command 't := * t
1470 swap$ command.to.upper

1471 }

1472 'to.upper

1473 ifs

1474 swap$ 't = * t

1475 }

1476 while$

1477 p0p$

1478 }

1479 {

1480 duplicate$ #1 #1 substring$ "{" =
1481 { split.first.char.from.str swap$ find.match.brace pop$ }
1482 'command.to.upper

1483 ifs

1484 }

43

1485 ifs

1486

f—

1487

1488 % texstr -> texstr

1489 % variable used: t, Db

1490 FUNCTION {lower.token.if.in.title.case}

1491 {

1492 duplicate$ is.tex.str.in.title.case

1493 { split.first.tex.char.from.str tex.to.lower swap$ * }
1494 'skip$

1495 if$s

1496 }

1497
1498 % int -> str
1499 FUNCTION {self.tokens}

1500 {

1501 #0 =

1502 'default.self.tokens
1503 'range.delimiters
1504 ifs

f—

1505
1506
507 % str, int -> token: str, rest: str
508 % variables used: s, t, b

1509 FUNCTION {tokenize.by}

1510 {

1511 'b
1512 's

1513
1514 s "

1515 ooy

1516 {

1517 s split.first.char.from.str

1518 duplicate$ b self.tokens swap$ is.char.in.str

1519 'swap$

1520 {

1521 duplicate$ #92 int.to.chr$ =

1522 { swap$ skip.inter.token.command 's := * s }
1523 {

1524 pop$ pops "" s

1525 { duplicate$ "" = not }

1526 {

1527 split.first.char.from.str

1528 duplicate$ "\ " b self.tokens * swap$ is.char.in.str
1529 { pop$ pop$ "" }

1530 {

1531 duplicate$ "{"

1532 { swap$ find.match.brace }

1533 'swap$

1534 ifs

1535 's 1= * s

1536 }

1537 if$s

1538 }

1539 while$

44

1540
1541

1542
1543
1544
1545
1546
1547
1548
1549
1550
1551

1552
1553
1554
1555
1556
1557
1558
1559
1560
1561

1562
1563
1564
1565
1566
1567
1568
1569
1570
1571

1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594

pop$ s
if$
ifs

}
if$

—

str —> str
variables used: s, t, b
FUNCTION {tokenize}

{
#0 tokenize.by

o)
°
o)

°

f—

str —> str
variables used: s, t, b
FUNCTION {smart.sentence.case}

{

tokenize 's :=

o)
°
o)

°

{ s """ = not }
{
s skip.inter.token.chars 's := * s
tokenize swap$
duplicate$ ":"
{
swap$'s = *
s skip.inter.token.chars 's := * s
tokenize swap$
lowercase.word.after.colon
{
duplicate$ "A"
{ pop$ Ila|l }
'lower.token.if.in.title.case
if$
}
'skip$
if$
}
'"lower.token.if.in.title.case
if$
swap$'s := *
}
while$

—

str —> str
variables used: s, t, b
FUNCTION {smart.upper.case}

{
s swap$ t swap$

o)
°
o)

°

o swap$

45

1595 { duplicate$ "" = not }
1596 {

1597 tokenize swap$

1598 duplicate$ #1 #1 substring$ #92 int.to.chr$ =
1599 'command.to.upper

1600 {

1601 "o swap$

1602 { duplicate$ "" = not }

1603 {

1604 split.first.tex.char.from.str tex.to.upper
1605 swap$ 't = * t

1606 }

1607 while$

1608 pops

1609 }

1610 ifs

1611 swap$ 't = * t

1612 skip.inter.token.chars 't := * t

1613 }

1614 while$
1615 pops

1616

1617 swap$ 't
1618 swap$'s
1619}

1620

B.4 Formatting chunks

Here are some functions for formatting chunks of an entry. By convention they either
produce a string that can be followed by a comma or period (using add.periods$, so it
is OK to end in a period), or they produce the null string.

A useful utility is the field.or.null function, which checks if the argument is the result
of pushing a ‘missing’ field (one for which no assignment was made when the current entry
was read in from the database) or the result of pushing a string having no non-white-space
characters. It returns the null string if so, otherwise it returns the field string. Its main (but
not only) purpose is to guarantee that what’s left on the stack is a string rather than a missing
field.

field.or.null(s) ==

BEGIN
if empty$(s) then return ""
else return s

END

Another helper function is emphasize, which returns the argument emphazised, if that is
non-empty, otherwise it returns the null string. Italic corrections aren’t used, so this function

should be used when punctation will follow the result.

46

emphasize (s) ==
BEGIN
if empty$(s) then return "'
else return "{\em," * s * "}"

The ‘pop$’ in this function gets rid of the duplicate ‘empty’ value and the ‘skip$’ returns

the duplicate field value

1621 FUNCTION {field.or.null}
622 { duplicate$ empty$

1623 { pop$ "" }
1624 'skip$
1625 ifs

1626}

1627

1628 FUNCTION {emphasize}
1620 { duplicate$ empty$

1630 { pop$ "" }
1631 { "\emph{" swap$ L LU
1632 ifs

1633}

1634

1635 FUNCTION {format.btitle}
636 { italic.book.title

1637 entry.lang lang.en = and
1638 'emphasize

1639 'skip$

1640 ifs

1641}
1642

B.4.1 Detect Language

1643 INTEGERS { byte second.byte }
1644

1645 INTEGERS { char.lang tmp.lang }
1646

1647 STRINGS { tmp.str }

1648

1649 FUNCTION {get.str.lang}

650 { 'tmp.str :=

1651 lang.other 'tmp.lang :=

1652 #1 'charptr :=

1653 tmp.str text.length$ #1 + 'len :=

1654 { charptr len < }

1655 { tmp.str charptr #1 substring$ chr.to.int$ 'byte :=

1656 byte #128 <

1657 { charptr #1 + 'charptr :=

1658 byte #64 > byte #91 < and byte #96 > byte #123 < and or

1659 { lang.en 'char.lang := }

1660 { lang.other 'char.lang := }

1661 if$

1662 }

1663 { tmp.str charptr #1 + #1 substring$ chr.to.int$ 'second.byte :=

47

1664 byte #224 <

BT /R FERE . U+0400 21 U+052F, Xt/ UTF-8)\ DO 80 % D4 AF,

1665 { charptr #2 + 'charptr :=

1666 byte #207 > byte #212 < and

1667 byte #212 = second.byte #176 < and or

1668 { lang.ru 'char.lang := }

1669 { lang.other 'char.lang := }

1670 if$

1671 }

1672 { byte #240 <

CJK Unified Ideographs: U+4E00-U+9FFF; UTF-8: E4 B8 80-E9 BF BF.

1673 { charptr #3 + 'charptr :=

1674 byte #227 > byte #234 < and

1675 { lang.zh 'char.lang := }

CJK Unified Ideographs Extension A: U+3400-U+4DBF; UTF-8: E3 90 80—E4 B6 BF.
1676 { byte #227 =

1677 { second.byte #143 >

1678 { lang.zh 'char.lang := }
HiE{ 44 U+3040-U+30FF, UTF-8: E3 81 80-E3 83 BF.

1679 { second.byte #128 > second.byte #132 < and
1680 { lang.ja 'char.lang := }

1681 { lang.other 'char.lang := }
1682 ifs

1683 }

1684 if$

1685 }

CJK Compatibility Ideographs: U+F900-U+FAFF, UTF-8: EF A4 80-EF AB BF.

1686 { byte #239 =

1687 second.byte #163 > second.byte #172 < and and
1688 { lang.zh 'char.lang := }

1689 { lang.other 'char.lang := }

1690 if$

1691 }

1692 if$

1693 }

1694 ifs

1695 }

CJK Unified Ideographs Extension B—F: U+20000-U+2EBEF, UTF-8: FO A0 80 80-FO AE
AF AF. CJK Compatibility Ideographs Supplement: U+2F800-U+2FA1F, UTF-8: FO AF
A0 80-F0 AF A8 9F.

1696 { charptr #4 + 'charptr :=

1697 byte #240 = second.byte #159 > and
1698 { lang.zh 'char.lang := }

1699 { lang.other 'char.lang := }

1700 if$

1701 }

1702 if$

1703 }

1704 ifs

48

1705 }
1706 ifs

1707 char.lang tmp.lang >

1708 { char.lang 'tmp.lang := }
1709 'skip$

1710 ifs

1711 }

1712 while$

1713 tmp.lang

1714}

1715

1716 FUNCTION {check.entry.lang}
1717 { author field.or.null
1718 title field.or.null *
1719 get.str.lang

1720}

1721

1722 STRINGS { entry.langid }
1723

1724 FUNCTION {set.entry.lang}

i725. { "" 'entry.langid :=

1726 language empty$ not

1727 { language 'entry.langid := }

1728 'skip$

1729 ifs

1730 langid empty$ not

1731 { langid 'entry.langid := }

1782 'skip$

1733 ifs

1734 entry.langid empty$

1735 { check.entry.lang }

1736 { entry.langid "english" = entry.langid "american" = or entry.langid "k
1737 { lang.en }

1738 { entry.langid "chinese" =

1739 { lang.zh }

1740 { entry.langid "japanese" =
1741 { lang.ja }

1742 { entry.langid "russian" =
1743 { lang.ru }

1744 { check.entry.lang }
1745 ifs

1746 }

1747 ifs

1748 }

1749 ifs

1750 }

1751 ifs

1752 }

1753 ifs

1754 'entry.lang :=

1755}

1756

1757 FUNCTION {set.entry.numbered}
1758 { type$ "patent" =

1759 type$ "standard" = or

49

1760 type$ "techreport" = or

1761 { #1 'entry.numbered := }
1762 { #0 'entry.numbered := }
1763 if$s

B.4.2 Format names

The format.names function formats the argument (which should be in BibTeX name
format) into First Von Last, Junior, separated by commas and with an and
before the last (but ending with et ~al. if the last of multiple authors is others). This

function’s argument should always contain at least one name.

VAR: nameptr, namesleft, numnames: INTEGER
pseudoVAR: nameresult: STRING (it'syuwhat's accumulated on {
format.names (s) ==
BEGIN
nameptr := 1
numnames := num.names$ (s)
namesleft := numnames
while namesleft > 0
do
% for full names:
t := format.name$ (s, nameptr, "{ff~}{vv~}{11l}{,o33}")
% for abbreviated first names:
t := format.name$ (s, nameptr, "{f.~}{vv~}{11l}{,o33}")
if nameptr > 1 then
if namesleft > 1 then nameresult := nameresult * ",
else if numnames > 2
then nameresult := nameresult * ",6"
fi
if t = "others"
then nameresult := nameresult * "pet~al."
else nameresult := nameresult * "pandy" * t
fi
fi
else nameresult := t
fi
nameptr := nameptr + 1
namesleft := namesleft - 1
od
return nameresult
END

The format.authors function returns the result of format.names(author) if the author is

present, or else it returns the null string

format.authors ==

BEGIN
if empty$ (author) then return "'
else return format.names (author)
fi

50

the stack)

END

Format.editors is like format.authors, but it uses the editor field, and appends , editor

or, editors

format.editors ==
BEGIN
if empty$ (editor) then return "'
else
if num.names$ (editor) > 1 then
return format.names (editor) * ", editors"
else
return format.names (editor) * ", editor"
fi
fi
END

Other formatting functions are similar, so no comment version will be given for

them.

1766 INTEGERS { nameptr namesleft numnames name.lang }
1767

1768 FUNCTION {format.name}

769 { "{vv~}{11}{, Jjj}{, ff}" format.name$ 't :=

1770 t "others" =

1771 { bbl.et.al }

1772 { t get.str.lang 'name.lang :=

1773 name.lang lang.en =

1774 { t #1 "{vv~}{11}{ £{~}}" format.name$
1775 uppercase.name

1776 'smart.upper.case

1777 'skip$

1778 ifs

1779 t #1 "{, jj}" format.name$ *
1780 }

1781 { t #1 "{11}{ff}" format.name$ }
1782 ifs

1783 }

1784 ifs

1785 }
1786
1787 FUNCTION {format.names}

78 { 's :=

1789 #1 'nameptr :=

1790 S num.names$ 'numnames :=

1791 "

1792 numnames 'namesleft :=

1793 { namesleft #0 > }

1794 { s nameptr format.name bbl.et.al =
1795 numnames bibliography.et.al.min #1 - > nameptr bibliography.et.al.use
1796 { ll, noox

1797 bbl.et.al *

1798 #1 'namesleft :=

1799 }

51

1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854

{ nameptr #1 >

{ namesleft #1 = bbl.and "" = not and

{ bbl.and * }
{ n’ "o % }
ifs$
}
'skip$
ifs
s nameptr format.name *

}

ifs
nameptr #1 + 'nameptr :=
namesleft #1 - 'namesleft :=
}
while$

FUNCTION {format.key}
{ empty$
{ key field.or.null }
{ mnin }
if$

FUNCTION {format.authors}
{ author empty$ not

{ author format.names }

{ "empty author in " cite$ * warning$
(xauthor-year)

bbl.anonymous

(/author-year)
(xnumerical)
(/numerical)

}
if$

FUNCTION {format.editors}
{ editor empty$
{ mnn }
{ editor format.names }
if$

FUNCTION {format.translators}
{ translator empty$
Ly
{ translator format.names
entry.lang lang.zh =
{ translator num.names$ #3 >

{ " i%u * }
{ n , _L%n * }
ifs

52

1855 'skip$

1856 ifs
1857 }

1858 ifs

1859 }

1860
1861 FUNCTION {format.full.names}

g2 {'s 1=

1863 #1 'nameptr :=

1864 S num.names$ 'numnames :=

1865 numnames 'namesleft :=

1866 { namesleft #0 > }

1867 { s nameptr "{vv~}{11}{, Jjr{, ff}" format.name$ 't :=
1868 t get.str.lang 'name.lang :=
1869 name.lang lang.en =

1870 { t #1 "{vv~}{1l1l}" format.name$ 't := }
1871 { t #1 "{11}{ff}" format.name$ 't := }
1872 if$

1873 nameptr #1 >

1874 {

1875 namesleft #1 >

1876 [

1877 {

1878 numnames #2 >

1879 £, o}

1880 'skip$

1881 ifs

1882 t "others" =

1883 { " et~al." * }
1884 { " and " * t * }
1885 ifs

1886 }

1887 ifs

1888 }

1889 't

1890 ifs

1891 nameptr #1 + 'nameptr :=

1892 namesleft #1 - 'namesleft :=
1893 }

1894 while$

1895 }

1896
1897 FUNCTION {author.editor.full}
1898 { author empty$

1899 { editor empty$

1900 {3

1901 { editor format.full.names }
1902 ifs

1903 }

1904 { author format.full.names }

1905 if$s

1906 }

1907
1908 FUNCTION {author.full}
1909 { author empty$

53

1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957

{ mnin }
{ author format.full.names }
if$
}

FUNCTION {editor.full}
{ editor empty$
{ mnin }
{ editor format.full.names }
if$
}

FUNCTION {make.full.names}
{ type$ "book" =
type$ "inbook" = booktitle empty$ not and
or
"author.editor.full
{ type$ "collection" =
type$ "proceedings" =
or
'editor.full
"author.full
ifs$
}
ifs
}

FUNCTION {output.bibitem}
{ newline$
"\bibitem[" write$
label ") " *
make.full.names duplicate$ short.list =
{ pop$ }
{ duplicate$ "]" contains
{ "{" swap$ * "}" * }
'skip$
ifs
*

}
ifs
"1{" * write$
cite$ write$
"I write$
newline$

before.all 'output.state :=

B.4.3 Format title

The format .title function is used for non-book-like titles. For most styles we

convert to lowercase (except for the very first letter, and except for the first one after a colon

54

(followed by whitespace)), and hope the user has brace-surrounded words that need to stay

capitilized; for some styles, however, we leave it as it is in the database.

1958 FUNCTION {change.sentence.case}
1959 { entry.lang lang.en =

1960 'smart.sentence.case
1961 'skip$

1962 if$

1963}

1964
1965 FUNCTION {add.link}
1966 { url empty$ not

1967 { ll\href{ll url * " * swap$ LR L

1968 { doi empty$ not

1969 { "\href{https://doi.org/" doi * "}{" * swap$ * "}" * }
1970 'skip$

1971 if$

1972 }

1973 if$

1974}

1975

1976 FUNCTION {format.title}

1977 { title empty$

1978 { non }

1979 { title

1980 sentence.case.title

1981 'change.sentence.case

1982 'skip$

1983 if$

1984 entry.numbered number empty$ not and
1985 { bbl.colon *

1986 type$ "patent" = show.patent.country and
1987 { address empty$ not

1988 { address * ", " * }

1989 { location empty$ not

1990 { location * ", " * }
1991 { entry.lang lang.zh =
1992 { n EPH * u’ noox }
1993 'skip$

1994 ifs

1995 }

1996 if$

1997 }

1998 if$

1999 }

2000 'skip$

2001 if$

2002 number *

2003 }

2004 'skip$

2005 if$

2006 link.title

2007 'add.link

2008 'skip$

2009 if$

55

2010 }
2011 ifs
2012}

2013

For several functions we’ll need to connect two strings with a tie (~) if the second one
isn’t very long (fewer than 3 characters). The tie.or.space.connect function does that. It
concatenates the two strings on top of the stack, along with either a tie or space between

them, and puts this concatenation back onto the stack:

tie.or.space.connect (strl, str2) ==
BEGIN
if text.length$(str2) < 3
then return the concatenation of strl, "~", and str2
else return the concatenation of strl, ",", and str2
END

2014 FUNCTION {tie.or.space.connect}
2015 { duplicate$ text.length$ #3 <
2016 { "~"}

2017 "

2018 ifs

2019 swap$ * *

2020 }

2021

The either.or.check function complains if both fields or an either-or pair are nonempty.

either.or.check(t,s) ==
BEGIN
if empty$(s) then
warning$ (can'tyusepyboth, " *utu*u"ufieldsying"L*ucite$)

vuuuoufi

LEND

2022 FUNCTION {either.or.check}
2023 { empty$

2024 'pop$
2025 { "can't use both " swap$ * " fields in " * cite$ * warning$ }
2026 ifs

2027 }
2028

The format.bvolume function is for formatting the volume and perhaps series name of
a multivolume work. If both a volume and a series field are there, we assume the series field
is the title of the whole multivolume work (the title field should be the title of the thing being
referred to), and we add an of <series>. This function is called in mid-sentence.

The format.number.series function is for formatting the series name and perhaps number
of a work in a series. This function is similar to format.bvolume, although for this one the
series must exist (and the volume must not exist). If the number field is empty we output

either the series field unchanged if it exists or else the null string. If both the number and

56

series fields are there we assume the series field gives the name of the whole series (the title
field should be the title of the work being one referred to), and we add an in <series>.

We capitilize Number when this function is used at the beginning of a block.

2029 FUNCTION {is.digit}
2030 { duplicate$ empty$

2031 { pop$ #0 }

2032 { chr.to.int$

2033 duplicate$ "O" chr.to.int$ <
2034 { pop$ #0 }

2035 { "9" chr.to.int$ >
2036 { #0 }

2037 { #1 1}

2038 ifs

2039 }

2040 ifs

2041 }

2042 ifs

2043}
2044
2045 FUNCTION {is.number}

206 { 'S 1=

2047 s empty$

2048 { #0 }

2049 { s text.length$ 'charptr :=

2050 { charptr #0 >

2051 s charptr #1 substring$ is.digit
2052 and

2053 }

2054 { charptr #1 - 'charptr := }
2055 while$

2056 charptr not

2057 }

2058 ifs

2059 }

2060

2061 FUNCTION {format.volume}
2062 { volume empty$ not

2063 { volume is.number

2064 { entry.lang lang.zh =

2065 { n % " yvolume * " %II * }
2066 { "Vol." volume tie.or.space.connect }
2067 ifs

2068 }

2069 { volume }

2070 if$

2071 }

2072 { non }

2073 ifs

2074}

2075

2076 FUNCTION {format.number}

2077 { number empty$ not

2078 { number is.number

2079 { entry.lang lang.zh =

57

2080 { " % " number * " J" * }

2081 { "No." number tie.or.space.connect }
2082 if$

2083 }

2084 { number }

2085 if$

2086 }

2087 {mn

2088 ifs

2089 }

2090

2091 FUNCTION {format.volume.number}
2092 { volume empty$ not

2093 { format.volume }
2094 { format.number }
2095 if$s

2096 }

2097

2098 FUNCTION {format.title.vol.num}
2009 { title

2100 sentence.case.title

2101 'change.sentence.case

2102 'skip$

2103 if$s

2104 entry.numbered

2105 { number empty$ not

2106 { bbl.colon * number * }
2107 'skip$

2108 ifs

2109 }

2110 { format.volume.number 's :=
2111 S empty$ not

2112 { bbl.colon * s * }

2113 'skip$

2114 ifs

2115 }

2116 if$

2117}

2118

2119 FUNCTION {format.series.vol.num.title}
2120 { format.volume.number 's :=

2121 series empty$ not

2122 { series

2123 sentence.case.title

2124 'change.sentence.case
2125 'skip$

2126 ifs

2127 entry.numbered

2128 { bbl.wide.space * }
2129 { bbl.colon *

2130 s empty$ not

2131 { s * bbl.wide.space * }
2132 'skip$

2133 if$

2134 }

58

2135 ifs

2136 title *

2137 sentence.case.title

2138 'change.sentence.case
2139 'skip$

2140 if$

2141 entry.numbered number empty$ not and
2142 { bbl.colon * number * }
2143 'skip$

2144 if$

2145 }

2146 { format.title.vol.num }

2147 if$s

2148 format.btitle
2149 link.title

2150 'add.link
2151 'skip$

2152 ifs

2153 }

2154

2155 FUNCTION {format.booktitle.vol.num}
2156 { booktitle
2157 entry.numbered

2158 'skip$

2159 { format.volume.number 's :=
2160 S empty$ not

2161 { bbl.colon * s * }

2162 'skip$

2163 ifs

2164 }

2165 if$s

2166}

2167

2168 FUNCTION {format.series.vol.num.booktitle}
2169 { format.volume.number 's

2170 series empty$ not

2171 { series bbl.colon *

2172 entry.numbered not s empty$ not and
2173 { s * bbl.wide.space * }

2174 'skip$

2175 ifs

2176 booktitle *

2177 }

2178 { format.booktitle.vol.num }

2179 ifs

2180 format.btitle
2181}

2182

2183 FUNCTION {remove.period}

2184 { 't =

2185 "trls =

2186 { t empty$ not }

2187 { t #1 #1 substring$ 'tmp.str :=
2188 tmp.str "." = not

2189 { s tmp.str * 's :=}

59

2190 'skip$

2191 if$

2192 t #2 global.max$ substring$ 't :=
2193 }

2194 while$

2195 S

2196}

2197

2198 FUNCTION {abbreviate}

2199 { remove.period

2200 't =

2201 t "1" change.case$'s :=
2202 nn

2203 s "physical review letters" =
2204 { "Phys Rev Lett" }
2205 'skip$

2206 ifs

2207 's =

2208 s empty$

2209 { t }

2210 { pop$ s }

2211 ifs

2212}

2213

2214 FUNCTION {get.journal.title}
2215 { short.journal

2216 { shortjournal empty$ not

2217 { shortjournal }

2218 { journal empty$ not

2219 { journal abbreviate }

2220 { journaltitle empty$ not
2221 { journaltitle abbreviate }
2002 { "o }

2223 ifs

2024 }

2225 ifs

2226 }

2207 ifs

2228 }

2229 { journal empty$ not

2230 { journal }

2231 { journaltitle empty$ not

2232 { journaltitle }

2233 { shortjournal empty$ not
2234 { shortjournal }

2235 { "o }

2236 ifs

2237 }

2238 ifs

2239 }

2240 if$

2241 }

2242 ifs

2243}

2244

60

2245 FUNCTION {check.arxiv.preprint}

2246 { "1" change.case$

2047 duplicate$

2248 "arxiv:" 'y :=

2249 'x 1=

2250 y text.length$ 'len :=

2251 x text.length$ len - #1 + 'charptr :=

2052 { charptr #0 >

2253 x charptr len substring$ y = not
2254 and

2255 }

2056 { charptr #1 - 'charptr := }

2057 while$
2258 charptr #0 >

2259 { x charptr #6 + global.max$ substring$ 'x :=
2260 x text.length$ #1 + 'len :=

2261 #1 'charptr :=

2262 { charptr len <

2263 x charptr #1 substring$ " " = not and
2264 x charptr #1 substring$ "[" = not and
2265 }

2266 { charptr #1 + 'charptr := }

2267 while$

2268 x #1 charptr substring$

2269 duplicate$ empty$

2270 { pop$ }

2271 { "https://arxiv.org/abs/" swap$ * 'entry.url :=
2072 #1 'entry.is.electronic :=

2273 #1 'is.pure.electronic :=

2274 }

2275 ifs

2276 }

2277 'skip$

2078 ifs

2279 purify$ #1 #5 substring$ "arxiv" =

2280 { #1 }

2281 { #0 }

2082 ifs

2283 }

2284

2285 FUNCTION {format. journal}
2286 { get.journal.title

2087 duplicate$ empty$ not

2288 { italic.journal entry.lang lang.en = and
2289 'emphasize
2290 'skip$

2291 ifs

2292 link. journal
2293 'add.link
2294 'skip$

2295 ifs

2296 }

2297 'skip$

2298 ifs

2299 }

61

2300

B.4.4 Format entry type mark

2301 FUNCTION {set.entry.mark}
2302 { entry.mark empty$ not

2303 "pop$

2304 { mark empty$ not

2305 { pop$ mark 'entry.mark := }
2306 { 'entry.mark := }

2307 ifs

2308 }

2309 ifs

2310 }

2311
2312 FUNCTION {format.mark}
2313 { show.mark

2314 { entry.mark

2315 show.medium. type

2316 { medium empty$ not
2317 { "/" * medium * }
2318 { entry.is.electronic
2319 { "/oL" * }

2320 'skip$

2321 if$

2322 }

2323 ifs

2324 }

2325 'skip$

2326 ifs

2327 'entry.mark :=

2328 space.before.mark

2329 g

2330 { "\allowbreak" }

2331 ifs

2332 "[" * entry.mark * "]" *
2333 }

2334 { """}

2335 ifs

2336}

2337

B.4.5 Format edition

The format.edition function appends edition to the edition, if present. We lower-

case the edition (it should be something like Thi rd), because this doesn’t start a sentence.

2338 FUNCTION {num.to.ordinal}
2339 { duplicate$ text.length$ 'charptr :=
2340 duplicate$ charptr #1 substring$'s :=

2341 s "1" =

2342 { "st" * }

2343 { s "2" =

2344 { "nd" * }
2345 { s "3" =

62

2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382

{ "rd" * }
{ "th" * }
ifs

if$
}
if$
}

FUNCTION {format.edition}
{ edition empty$
Loy
{ edition is.number
{ edition "1" = not
{ entry.lang lang.zh =
{ edition " JR" * }
{ edition num.to.ordinal " ed." *
ifs
}
Ly
ifs
}
{ entry.lang lang.en =
{ edition change.sentence.case 's :=
s "Revised" = s "Revised edition" =
{ "Rev. ed." }
{ s " ed." * }
ifs
}
{ edition }
ifs

if$

if$

B.4.6 Format publishing items

2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395

H R HER R 25 A IS L son RO SL . BT LIS/ — i AL P
FUNCTION {format.publisher}
{ publisher empty$ not
{ publisher }
{ school empty$ not
{ school }
{ organization empty$ not
{ organization }
{ institution empty$ not
{ institution }
{ mnn }
ifs

if$

63

}

or

2396 }

2397 ifs

2398 }

2399 ifs

2400 }

2401

2402 FUNCTION {format.address.publisher}
2403 { address empty$ not

2404 { address }

2405 { location empty$ not

2406 { location }

2407 {mn

2408 ifs

2409 }

2410 ifs

2411 duplicate$ empty$ not

2412 { format.publisher empty$ not

2413 { bbl.colon * format.publisher * }
2414 { entry.is.electronic not show.missing.address.publisher and
2415 { bbl.colon * bbl.sine.nomine * }
2416 'skip$

2417 ifs

2418 }

2419 ifs

2420 }

2421 { pop$

2422 entry.is.electronic not show.missing.address.publisher and
2423 { format.publisher empty$ not

2424 { bbl.sine.loco bbl.colon * format.publisher * }
2425 { bbl.sine.loco.sine.nomine }

2426 ifs

2427 }

2428 { format.publisher empty$ not

2429 { format.publisher }

2430 {mn

2431 ifs

2432 }

2433 ifs

2434 }

2435 ifs

2436}
2437

B.4.7 Format date

The format.date function is for the month and year, but we give a warning if there’s an
empty year but the month is there, and we return the empty string if they’re both empty.

WP R R LVE R, A e, BRI "5 B A v2.0.2
BB 20 b, CURBERAE . AFHERE .

2438 FUNCTION {extract.before.dash}
2439 { duplicate$ empty$
2440 { popS "" }

64

2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495

{ 's :=
#1 'charptr :=
s text.length$ #1 + 'len :=
{ charptr len <
s charptr #1 substring$
and
}
{ charptr #1 + 'charptr :=
while$
s #1 charptr #1 - substring$
}
ifs
}

FUNCTION {extract.after.dash}
{ duplicate$ empty$
{ pop$ "" }
{ 's :=
#1 'charptr :=
s text.length$ #1 + 'len :=
{ charptr len <
s charptr #1 substring$
and
}
{ charptr #1 + 'charptr :=
while$
{ charptr len <
s charptr #1 substring$
and
}
{ charptr #1 + 'charptr :=
while$

s charptr global.max$ substring$

}
ifs
}

FUNCTION {extract.before.slash}
{ duplicate$ empty$
{ pops "" }
{ 's :=
#1 'charptr :=
s text.length$ #1 + 'len :=
{ charptr len <
s charptr #1 substring$
and
}
{ charptr #1 + 'charptr :=
while$
s #1 charptr #1 - substring$
}
ifs
}

FUNCTION {extract.after.slash}

65

}

}

}

II/I|

}

= not

= not

= not

2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521

2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548

{

duplicate$ empty$
{ p0p$ nn }
{ 's :=
#1 'charptr :=

s text.length$ #1 + 'len :=

{ charptr len <

s charptr #1 substring$ "-" = not
and
s charptr #1 substring$ "/" = not
and
}
{ charptr #1 + 'charptr := }
while$

{ charptr len <

s charptr #1 substring$ "-" =
s charptr #1 substring$ "/" =

or
and

}

{ charptr #1 + 'charptr := }

while$

s charptr global.max$ substring$

if$

- R R I Sy

FUNCTION {format.year}

{

}

year empty$ not
{ year extra.label * }
{ date empty$ not

{ date extract.before.dash extra.label * }

{ entry.is.electronic not

{ "empty year in

'skip$

ifs

urldate empty$ not
{ "[" urldate extract.before.dash * extra.label *
{ mnin }

ifs

}

ifs
}
ifs

" cite$ * warning$ }

FUNCTION {format.periodical.year}

{

year empty$ not

{ year extract.before.slash

nW__n %

year extract.after.slash

duplicate$ empty$
'pop$
{ *1

66

||] n

* o}

2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563

2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586

2587
2588
2589
2590
2591
2592
2593

=
e

2594
2595

if$
}
{ date empty$ not
{ date extract.before.dash }

{ "empty year in " cite$ * warning$
urldate empty$ not
{ "[" urldate extract.before.dash * "]" * }
{ mnin }
ifs
}
ifs$

if$

L RRIHACER 2 (0 H A& 4F
FUNCTION {format.date}
{ date empty$ not

{ type$ "patent" = type$ "newspaper" = or
{ date }
{ entrysubtype empty$ not
{ type$ "article" = entrysubtype "newspaper" = and
{ date }
{ format.year }
if$

}
{ format.year }
if$
}
if$
}
{ year empty$ not
{ format.year }
{ mnn }
if$

ifs

T B H A T P B electronic
FUNCTION {format.editdate}
{ date empty$ not

{ "\allowbreak (" date * ")" * }
{ mnn }

ifs

FEFRAR ST H #0025 URL WA HELR, B LAJLSEH urldate, XA BIAA

BsTRX AREf . (F SR o
FUNCTION {format.urldate}
{ show.urldate show.url and entry.url empty$ not and

67

2596 is.pure.electronic or

2597 urldate empty$ not and

2598 { "\allowbreak[" urldate * "]" * }
2599 {mn

2600 ifs

2601 }

2602

B.4.8 Format pages

By default, BibTeX sets the global integer variable global .max$ to the BibTeX
constant glob_str_size, the maximum length of a global string variable. Analogously,
BibTeX sets the global integer variable entry.max$ to ent_str_size, the maxi-
mum length of an entry string variable. The style designer may change these if necessary
(but this is unlikely)

The n.dashify function makes each single *—' in a string a double ~ ——"' if it’s not
already
pseudoVAR: pageresult: STRING (it 'sywhat's accumulated on the stack)

n.dashify(s) ==
BEGIN

t = s

pageresult := ""

while (not empty$(t))

do
if (first character of t = "-")
then
if (next character isn't)

Luuuuuuuuuuuuuuuthen
LuLLUULUULLLLLuuuuuPageresult = pageresulty*y"--"
UuuULUUULuuuuuuuuutur=utuwithythey"-"yremoved
LuLLLLLLLLULLLuuelse
vuuuuuuuuwuuuwuuuuuuWhiley (firstycharacterpyofuty=4"-")
LuLLuLLLLLLuuLuuuuuuouudo
LUULLLLULLLUULLLLLLLLuuuPageresulty = pageresulty*,"-"
ULUUULUUULLLLUUuuuuuuutur=utuwithythey"-"yremoved
LuLLLLULLLULLLLULLuuOd
vuuuuuuouuuooofi
LuLuLuuuLuuupelse
uuuuuuuuuuuuuuPageresulty = pageresult,*,theyfirstcharacter
vuuuuuuuouuuuutus=utuwithythefirstcharacter ,removed
vuuuouuuouonfl
Luuuuuuwod
uuuuuureturn pageresult
LEND

s FEL DU RS Y Bl (93 2 55] hyphen, 7520 dash %4 hyphen.

2603 % Str —> str
604 % variable used: s, t, b
2605 FUNCTION {normalize.page.range}

68

2606 {

2607 "o swap$

2608 { duplicate$ empty$ not }
2609 {

2610 #1 skip.inter.token.chars.by 't :=
2611 empty$

2612 {mn

2613 'page.range.delimiter

2614 ifs

2615 *ot

2616 #1 tokenize.by 't :=

2617 * ot

2618 }

2619 while$
2620 pop$
2621 }

2622

This function doesn’t begin a sentence so pages isn’t capitalized. Other functions that

use this should keep that in mind.

2623 FUNCTION {format.pages}

2624 |

2625 pages normalize.page.range

2626}

2627

2628 FUNCTION {format.extracted.pages}
2629 { pages empty$

2630 { "}

2631 { pages

2632 only.start.page

2633 { #1 tokenize.by pop$ }
2634 'normalize.page.range
2635 if$

2636 }

2637 ifs

2638}
2639

The format.vol.num.pages function is for the volume, number, and page
range of a journal article. We use the format: vol(number):pages, with some variations for
empty fields. This doesn’t begin a sentence.

WARAEE RS, W5 AT B H I BRI, FrE R o

2640 FUNCTION {format.journal.volume}
o641 { volume empty$ not

2642 { bold.journal.volume

2643 { "\textbf{" volume * "}" * }
2644 { volume }

2645 ifs

2646 }

2647 { """}

2648 ifs

2649 }
2650

69

2651 FUNCTION {format. journal.number}
2652 { number empty$ not

2653
2654
2655
2656
2657

}

{ "\allowbreak (" number * ")" * }

{ nn }
ifs

2658 FUNCTION {format.journal.pages}
2659 { pages emptys$

2660
2661
2662
2663
2664

}

{ nn }

{ format.extracted.pages }
if$

LIRS EIE R, TRk

2665 FUNCTION {format.periodical.year.volume.number}
2666 { year empty$ not

2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698

{ year extract.before.slash }

{ "empty year in periodical " cite$ * warning$ }
ifs
volume empty$ not

{ ", " * volume extract.before.dash * }
'skip$
ifs
number empty$ not
{ "\allowbreak (" * number extract.before.dash * ")"
'skip$
ifs

n__n %

year extract.after.slash empty$
volume extract.after.dash empty$ and
number extract.after.dash empty$ and not
{ year extract.after.slash empty$ not
{ year extract.after.slash * }
{ year extract.before.slash * }
if$
volume empty$ not
{ ", " * volume extract.after.dash * }
'skip$
if$
number empty$ not
{ "\allowbreak (" * number extract.after.dash *
'skip$
if$
}
'skip$
ifs

B.4.9 Format url and doi

fEZE) BisTX ~J 161 {81 /] howpublished 555 url, X HERME S Hr o

70

*

ll) n

}

*

}

2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741

2742
2743
2744
2745
2746
2747
2748
2749
2750
2751

FUNCTION {check.url}

{

}

url empty$ not
{ url 'entry.url :=
#1 'entry.is.electronic
}
{ howpublished empty$ not

{ howpublished #1 #5 substring$
{ howpublished 'entry.url
#1 'entry.is.electronic

}
'skip$
ifs
}
{ note empty$ not

{ note #1 #5 substring$
{ note 'entry.url

I‘\Ill‘l {u

”\url{"

#1 'entry.is.electronic

}
'skip$
ifs
}
'skip$
ifs
ifs

}
if$

FUNCTION {output.url}
{ show.url is.pure.electronic or

entry.url empty$ not and
{ new.block

entry.url #1 #5 substring$

{ entry.url }
{ "\url{" entry.url *
ifs
output
}
'skip$
ifs

i 24l DOI 2

FUNCTION {check.doi}

{

}

doi empty$ not
{ #1 'entry.is.electronic
'skip$

ifs

FUNCTION {is.in.url}

{

's =
s empty$

n } n

HEAMESE URL Hi,

71

Il\llI‘l {u

}

*)

2752 { #1 }

2753 { entry.url empty$

2754 { #0 }

2755 { s text.length$ 'len :=

2756 entry.url "1" change.case$ text.length$ 'charptr :=
2757 { entry.url "1" change.case$ charptr len substring$ s "1" chang
2758 charptr #0 >

2759 and

2760 }

2761 { charptr #1 - 'charptr := }

2762 while$

2763 charptr

2764 }

2765 ifs

2766 }

2767 ifs

2768}

2769
2770 FUNCTION {format.doi}

o7t {0 "

2772 doi empty$ not

2773 { " 's :=

2774 doi 't :=

2775 #0 'numnames :=

2776 { t empty$ not}

2777 { t #1 #1 substring$ 'tmp.str :=
2778 tmp.str "," = tmp.str " " = or t #2 #1 substring$ empty$ or
2779 { t #2 #1 substring$ empty$
2780 { s tmp.str * 's :=}

2781 'skip$

2782 ifs

2783 s empty$ s is.in.url or
2784 'skip$

2785 { numnames #1 + 'numnames :=
2786 numnames #1 >

2787 L

2788 { "DOI: " * }

2789 ifs

2790 "\doi{" s * "}m"m * *

2791 }

2792 ifs

2793 "ls =

2794 }

2795 { s tmp.str * 's := }

2796 ifs

2797 t #2 global.max$ substring$ 't :=
2798 }

2799 while$

2800 }

2801 'skip$

2802 ifs

2803 }

2804
2805 FUNCTION {output.doi}
2806 { doi empty$ not show.doi and

72

2807 show.english.translation entry.lang lang.zh = and not and
2808 { new.block

2809 format.doi output

2810 }

2811 'skip$

2812 if$s

2813}

2814

2815 FUNCTION {check.electronic}
2816 { "" 'entry.url :=

2817 #0 'entry.is.electronic :=
2818 'check.doi

2819 'skip$

2820 ifs

2821 'check.url

2822 'skip$

2823 ifs

2824 medium empty$ not

2825 { medium "MT" = medium "DK" = or medium "CD" = or medium "OL" = or
2826 { #1 'entry.is.electronic := }
2827 'skip$

2828 ifs

2829 }

2830 'skip$

2831 ifs

2832 }

2833

283¢ FUNCTION {format.eprinttype}
2835 { archivePrefix empty$ not

2836 { archivePrefix }

2837 { eprinttype empty$ not
2838 { eprinttype }

2839 { type$ "article" = get.journal.title check.arxiv.preprint and
2840 { "arXiv" }

2841 {mn

2842 if$

2843 }

2844 ifs

2845 }

2846 ifs

2847 '}

2848

2849 FUNCTION {format.note}

2850 { note empty$ not show.note and
2851 { note }

2852 {mr

2853 ifs

2854 }

2855

2856 FUNCTION {output.translation}

2857 { show.english.translation entry.lang lang.zh = and
2858 { translation empty$ not

2859 { translation }

2860 { "[English translation missing!]" }

2861 ifs

73

2862 " (in Chinese)" * output

2863 write$

2864 format.doi duplicate$ empty$ not
2865 { newline$

2866 write$

2867 }

2868 'pop$

2869 ifs

2870 " AN\" write$

2871 newline$

2872 (" write$

2873 "

2874 before.all 'output.state :=
2875 }

2876 'skip$

2877 ifs

2878}
2879

The function empty.misc.check complains if all six fields are empty, and if there’s been

no sorting or alphabetic-label complaint.

2880 FUNCTION {empty.misc.check}
2881 { author empty$ title empty$

2882 year empty$

2883 and and

2884 key empty$ not and

2885 { "all relevant fields are empty in " cite$ * warning$ }
2886 'skip$

2887 ifs

2888}
2889

B.5 Functions for all entry types

Now we define the type functions for all entry types that may appear in the .BIB file—
e.g., functions like ‘article’ and ‘book’. These are the routines that actually generate the
.BBL-file output for the entry. These must all precede the READ command. In addition,
the style designer should have a function ‘default.type’ for unknown types. Note: The fields
(within each list) are listed in order of appearance, except as described for an ‘inbook’ or a

‘proceedings’.

B51 L3

2890 FUNCTION {monograph}
2891 { output.bibitem

2892 output.translation

2893 author empty$ not

2894 { format.authors }

2895 { editor empty$ not

2896 { format.editors }

2897 { "empty author and editor in " cite$ * warning$

74

2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940

(xauthor-year)

bbl.anonymous

(/author-year)
(xnumerical)

non

(/numerical)

}
if$
}
if$
output
year.after.author
{ period.after.author
'new.sentence
'skip$
if$
format.year "year" output.check
}
'skip$
if$
new.block
format.series.vol.num.title "title" output.check
"M" set.entry.mark
format.mark "" output.after
new.block
format.translators output
new.sentence
format.edition output
new.block
format.address.publisher output
year.after.author not
{ format.year "year" output.check }

'skip$
if$
format.pages bbl.pages.colon output.after
format.urldate "" output.after

output.url
output.doi
new.block
format.note output
fin.entry

B.5.2 L AT i STk

An incollection is like inbook, but where there is a separate title for the referenced thing

(and perhaps an editor for the whole). An incollection may CROSSREF a book.

Required: author, title, booktitle, publisher, year

Optional: editor, volume or number, series, type, chapter, pages, address, edition,

month, note

2941
2942

FUNCTION {incollection}
{ output.bibitem

75

2943 output.translation

2944 format.authors output

2945 author format.key output

2946 year.after.author

2947 { period.after.author

2948 'new.sentence

2949 'skip$

2950 ifs

2951 format.year "year" output.check
2952 }

2953 'skip$

2954 ifs

2955 new.block

2956 format.title "title" output.check
2957 "M" set.entry.mark

2958 format.mark "" output.after

2959 new.block

2960 format.translators output

2961 new.slash

2962 format.editors output

2963 new.block

2964 format.series.vol.num.booktitle "booktitle" output.check
2965 new.block

2966 format.edition output

2967 new.block

2968 format.address.publisher output

2969 year.after.author not

2970 { format.year "year" output.check }
2971 'skip$

2972 ifs

2973 format.extracted.pages bbl.pages.colon output.after
2974 format.urldate "" output.after

2975 output.url

2976 output.doi

2977 new.block

2978 format.note output

2979 fin.entry

2980 }
2981

B.5.3 ESHRY

2982 FUNCTION {periodical}
2083 { output.bibitem
2984 output.translation

2985 format.authors output

2986 author format.key output

2987 year.after.author

2988 { period.after.author

2989 'new.sentence

2990 'skip$

2991 ifs

2992 format.year "year" output.check
2993 }

2994 'skip$

76

2995 ifs

2996 new.block

2997 format.title "title" output.check

2998 "J" set.entry.mark

2999 format.mark "" output.after

3000 new.block

3001 format.periodical.year.volume.number output
3002 new.block

3003 format.address.publisher output

3004 year.after.author not

3005 { format.periodical.year "year" output.check }
3006 'skip$

3007 ifs

3008 format.urldate "" output.after

3009 output.url

3010 output.doi

3011 new.block

3012 format.note output

3013 fin.entry

3014}
3015

B.5.4 g iRA i AT SR

The article function is for an article in a journal. An article may CROSSREF another
article.

Required fields: author, title, journal, year

Optional fields: volume, number, pages, month, note

The other entry functions are all quite similar, so no comment wversion will be

given for them.

so0t6 FUNCTION {journal.article}
3017 { output.bibitem

3018 output.translation

3019 format.authors output

3020 author format.key output

3021 year.after.author

3022 { period.after.author

3023 'new.sentence

3024 'skip$

3025 if$

3026 format.year "year" output.check
3027 }

3028 'skip$

3029 if$

3030 new.block

3031 title.in.journal

3032 { format.title "title" output.check
3033 entrysubtype empty$ not

3034 {

3035 entrysubtype "newspaper" =
3036 { "N" set.entry.mark }
3037 { "J" set.entry.mark }

77

3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062

}
{
ifs

if$

"J" set.entry.mark }

format.mark "" output.after
new.block

}

'skip$

if$
format.

journal "journal" output.check

year.after.author not
{ format.date "year" output.check }

'skips
if$
format. journal.volume output
format. journal .number "" output.after
format. journal .pages bbl.pages.colon output.after
format.urldate "" output.after
output.url
output.doi

new.block

format.
fin.ent

note output
ry

B.5.5 LRk
number J5 0 7] LA SRR LRS-

3063 FUNCTION

3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087

{ output.
output.
format.
author

{patent}

bibitem
translation
authors output
format.key output

year.after.author
{ period.after.author

if$

new.sentence
skip$

format.year "year" output.check

}

'skip$

if$

new.block

format.
IIPH Set
format.

title "title" output.check
.entry.mark
mark "" output.after

new.block

format.
format.
output.
output.

date "year" output.check
urldate "" output.after
url
doi

new.block

format.

note output

78

3088 fin.entry
3089 }
3090

B.5.6 %

3091 FUNCTION {electronic}
3002 { #1 #1 check.electronic

3093 #1 'entry.is.electronic :=

3094 #1 'is.pure.electronic :=

3095 output.bibitem

3096 output.translation

3097 format.authors output

3098 author format.key output

3099 year.after.author

3100 { period.after.author

3101 'new.sentence

3102 'skip$

3103 if$

3104 format.year "year" output.check
3105 }

3106 'skip$

3107 if$

3108 new.block

3109 format.series.vol.num.title "title" output.check
3110 "EB" set.entry.mark

3111 format.mark "" output.after

3112 new.block

3113 format.address.publisher output
3114 year.after.author not

3115 { date empty$

3116 { format.date output }

3117 'skip$

3118 if$

3119 }

3120 'skip$

3121 if$

3122 format.pages bbl.pages.colon output.after
3123 format.editdate "" output.after
3124 format.urldate "" output.after
3125 output.url

3126 output.doi

3127 new.block

3128 format.note output

3129 fin.entry

3130}

3131

B.5.7 THEIA

3132 FUNCTION {preprint}
s1i33 { url empty$ not

3134 { url 'entry.url :=
3135 #1 'entry.is.electronic :=
3136 #1 'is.pure.electronic :=

3137 }

79

3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166

{ eprint empty$

}
if$

'skip$

{ archivePrefix empty$
{ eprinttype field.or.null }
{ archivePrefix }

if$

"1" change.case$ "arxiv"
{ "https://arxiv.org/abs/" eprint * 'entry.url
#1 'entry.is.electronic :=

#1 'is.pure.electronic :=

}
'skip$
ifs
}
ifs$

output.bibitem

output.translation

author empty$ not
{ format.authors }
{ editor empty$ not
{ format.editors }
{ "empty author and editor in " cite$ * warning$
(xauthor-year)

bbl.anonymous

(/author-year)
(xnumerical)

non

s167 (/numerical)

3168
3169
3170
3171

3172
3173
3174
3175
3176
3177
3178
3179
3180
3181

3182
3183
3184
3185
3186
3187
3188
3189
3190
3191

3192

}
if$

}
if$

output
year.after.author
{ period.after.author

}

'new.sentence

'skip$
if$
format.year

'skip$

if$
new.

block

title.in. journal
{ format.series.vol.num.title

(x2015)

(/2015)
(x12015)

(/'2015)

llyear n

"A" set.entry.mark

"zZ" set.entry.mark

format .mark
new.block

nn

output.after

80

output.check

"title"

output.check

3193 }

3194 'skip$

3195 ifs

3196 format.edition output
3197 new.block

3198 format.eprinttype output
3199 date empty$ not

3200 { "(" date * ")" * }

3201 { year empty$ not

3202 { "(" year * my" * }
3203 { """}

3204 ifs

3205 }

3206 ifs

3207 " " output.after

3208 format.urldate "" output.after
3209 output.url

3210 output.doi

3211 new.block

3212 format.note output

3213 fin.entry

3214}
3215

B.5.8 HAtSCHERKA

A misc is something that doesn’t fit elsewhere.
Required: at least one of the ‘optional’ fields
Optional: author, title, howpublished, month, year, note
Misc fI2k B gh#I i .

3216 FUNCTION {misc}

3217 { get.journal.title
3218 duplicate$ empty$ not

3219 { check.arxiv.preprint

3220 'preprint

3221 '"journal.article

3222 ifs

3223 }

3224 { pop$

3225 booktitle empty$ not

3226 '"incollection

3227 { archivePrefix empty$ not
3228 eprinttype empty$ not or
3229 'preprint

3230 { publisher empty$ not
3231 'monograph

3232 { entry.is.electronic
3233 'electronic

3234 {

3235 (*12005)

3236 "Z" set.entry.mark
237 (/12005)

s2a8 (x2005)

81

3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261

3262
3263

3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280

"M" set.entry.mark
(/2005)
monograph
}
ifs$

if$

ifs
}
if$
}
if$
empty.misc.check

}

FUNCTION {archive}
{ "A" set.entry.mark
misc

}

FUNCTION {article} { misc }

The book function is for a whole book. A book may CROSSREF another book.
Required fields: author or editor, title, publisher, year

Optional fields: volume or number, series, address, edition, month, note
FUNCTION {book} { monograph }

A booklet is a bound thing without a publisher or sponsoring institution.
Required: title

Optional: author, howpublished, address, month, year, note
FUNCTION {booklet} { book }

FUNCTION {collection}
{ "G" set.entry.mark
monograph

}

FUNCTION {database}
{ "DB" set.entry.mark
electronic

}

FUNCTION {dataset}
{ "DS" set.entry.mark
electronic

}

An inbook is a piece of a book: either a chapter and/or a page range. It may CROSSREF

a book. If there’s no volume field, the type field will come before number and series.

82

Required: author or editor, title, chapter and/or pages, publisher,year
Optional: volume or number, series, type, address, edition, month, note
JE4: BibTeX [HEHERAIH @inbook A2 booktitle , #H“LE"LH, I

biblatex [@inbook IR incollection —Ff, IMR“TFE T H ST AT,
3281 FUNCTION {inbook} {
3282 booktitle empty$

3283 'book
3284 "incollection
3285 ifs

3286}
3287

An inproceedings is an article in a conference proceedings, and it may CROSSREF a
proceedings. If there’s no address field, the month (& year) will appear just before note.

Required: author, title, booktitle, year

Optional: editor, volume or number, series, pages, address, month, organization, pub-

lisher, note

3288 FUNCTION {inproceedings}
289 { "C" set.entry.mark

3290 incollection

3291 }

3292

The conference function is included for Scribe compatibility.

3293 FUNCTION {conference} { inproceedings }
3294

3295 FUNCTION {legislation} { archive }

3296

3297

3298 FUNCTION {map}

3299 { "CM" set.entry.mark

3300 misc

3301 }

3302

A manual is technical documentation.

Required: title

Optional: author, organization, address, edition, month, year, note
3303 FUNCTION {manual} { monograph }
3304

A mastersthesis is a Master’s thesis.

Required: author, title, school, year

Optional: type, address, month, note

3305 FUNCTION {mastersthesis}
6 { "D" set.entry.mark

3307 monograph

3308}

3309

83

3310 FUNCTION {newspaper}

311 { "N" set.entry.mark

3312 article

3313}

3314

3315 FUNCTION {online}

36 { "EB" set.entry.mark
3317 electronic

3318}

3319

A phdthesis is like a mastersthesis.
Required: author, title, school, year

Optional: type, address, month, note

3320 FUNCTION {phdthesis} { mastersthesis }
3321

3322 FUNCTION {thesis} { mastersthesis }
3323

A proceedings is a conference proceedings. If there is an organization but no editor
field, the organization will appear as the first optional field (we try to make the first block
nonempty); if there’s no address field, the month (& year) will appear just before note.

Required: title, year

Optional: editor, volume or number, series, address, month, organization, publisher,

note

3324 FUNCTION {proceedings}
a5 { "C" set.entry.mark
3326 monograph

3327}

3328

3329 FUNCTION {software}
330 { "CP" set.entry.mark
3331 electronic

3332}

3333

3334 FUNCTION {standard}
335 { "S" set.entry.mark
3336 misc

3337}

3338

A techreport is a technical report.
Required: author, title, institution, year

Optional: type, number, address, month, note

3339 FUNCTION {techreport}
340 { "R" set.entry.mark
3341 misc

3342}

3343

84

3344
3345

3346
3347

An unpublished is something that hasn’t been published.

Required: author, title, note

Optional: month, year
FUNCTION {unpublished} { misc }

We use entry type ‘misc’ for an unknown type; BibTeX gives a warning.
FUNCTION {default.type} { misc }

B.6 Common macros

Here are macros for common things that may vary from style to style. Users are encour-

aged to use these macros.

3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371

Months are either written out in full or abbreviated
3348 MACRO {jan}

MACRO

MACRO

MACRO

MACRO

MACRO

MACRO

MACRO

MACRO

MACRO

MACRO

MACRO

{feb}
{mar}
{apr}
{may}
{Jun}
{Jjul}
{aug}
{sep}
{oct}
{nov}

{dec}

{"January"}
{"February"}
{"March"}
{"April"}
{"May"}
{"June"}
{"July"}
{"August"}
{"September"}
{"October"}
{"November"}

{"December"}

Journals are either written out in full or abbreviated; the abbreviations are like those

found in ACM publications.

To get a completely different set of abbreviations, it may be best to make a separate .bib

file with nothing but those abbreviations; users could then include that file name as the first

argument to the \bibliography command

3372 MACRO {acmcs} {"ACM Computing Surveys'}

3373

3374 MACRO {acta}

3375

{"Acta Informatica"}

85

3376 MACRO {cacm} {"Communications of the ACM"}

3377

3378 MACRO {ibmjrd} {"IBM Journal of Research and Development"}
3379

3380 MACRO {ibmsj} {"IBM Systems Journal"}

3381

3382 MACRO {ieeese} {"IEEE Transactions on Software Engineering"}
3383

3384 MACRO {ieeetc} {"IEEE Transactions on Computers"}

3385

3386 MACRO {ieeetcad}

387 {"IEEE Transactions on Computer—-Aided Design of Integrated Circuits"}
3388

3389 MACRO {ipl} {"Information Processing Letters"}

3390

3391 MACRO {jacm} {"Journal of the ACM"}

3392

3393 MACRO {jcss} {"Journal of Computer and System Sciences"}

3394

3395 MACRO {scp} {"Science of Computer Programming"}

3396

3397 MACRO {sicomp} {"SIAM Journal on Computing"}

3398

3399 MACRO {tocs} {"ACM Transactions on Computer Systems"}

3400

3401 MACRO {tods} {"ACM Transactions on Database Systems"}

3402

3403 MACRO {tog} {"ACM Transactions on Graphics"}

3404

3405 MACRO {toms} {"ACM Transactions on Mathematical Software"}
3406

3407 MACRO {toois} {"ACM Transactions on Office Information Systems"}
3408

3400 MACRO {toplas} {"ACM Transactions on Programming Languages and Systems"}
3410

3411 MACRO {tcs} {"Theoretical Computer Science"}

3412

B.7 Format labels

The sortify function converts to lower case after puri £y $ing; it’s used in sorting and
in computing alphabetic labels after sorting

The chop.word(w,len,s) function returns either s or, if the first len letters of s equals w
(this comparison is done in the third line of the function’s definition), it returns that part of s

after w.

3413 FUNCTION {sortify}
sa14 { purify$

3415 "1l" change.case$
3416}

3417

We need the chop.word stuff for the dubious unsorted-list-with-labels case.

86

3418 FUNCTION {chop.word}

sa19 { 's =

3420 'len :=

3421 s #1 len substring$ =

3422 { s len #1 + global.max$ substring$ }
3423 's

3424 if$

3425 }

3426

The format .lab.names function makes a short label by using the initials of the
von and Last parts of the names (but if there are more than four names, (i.e., people) it
truncates after three and adds a superscripted +; it also adds such a + if the last of multiple
authors is others). If there is only one name, and its von and Last parts combined have
just a single name-token (Knuth has a single token, Brinch Hansen has two), we take
the first three letters of the last name. The boolean et.al.char.used tells whether we’ve used a

superscripted +, so that we know whether to include a LaTeX macro for it.

format.lab.names (s) ==
BEGIN
numnames := num.names$ (s)
if numnames > 1 then
if numnames > 4 then
namesleft := 3
else
namesleft := numnames
nameptr := 1
nameresult := ""
while namesleft > 0
do
if (name_ptr = numnames) and
format.name$ (s, nameptr, "{ffo}{vvy}{11l}{Ljit™)
then nameresult := nameresult * "{\etalchar{+}}"
et.al.char.used := true
else nameresult := nameresult *
format.name$ (s, nameptr, "{v{}}{1{}}
nameptr := nameptr + 1
namesleft := namesleft - 1
od
if numnames > 4 then
nameresult := nameresult * "{\etalchar{+}}"
et.al.char.used := true
else
t := format.name$ (s, 1, "{v{}}{1l{}}"™)
if text.length$(t) < 2 then $ there's,justyoneyname-tokel
LuuLuuuuuuuuuuhameresult = text.prefix$ (format.nameS$ (s, 1, "{11}"),
vuuuuuuuuuelse
UuLLUULLUuuuuuuhameresult =yt
LJ_I_H_H_I_H_H_H_H_Ifi
LH_I_H_H_I_Ifi
Luuuuureturngnameresult
LEND

B

87

"others"

Exactly what fields we look at in constructing the primary part of the label depends on

the entry type; this selectivity (as opposed to, say, always looking at author, then editor, then

key) helps ensure that 1 gnored fields, as described in the LaTeX book, really are ignored.

Note that MISC is part of the deepest ‘else’ clause in the nested part of calc.label; thus, any

unrecognized entry type in the database is handled correctly.

There is one auxiliary function for each of the four different sequences of fields we use.

The first of these functions looks at the author field, and then, if necessary, the key field. The

other three functions, which might look at two fields and the key field, are similar, except

that the key field takes precedence over the organization field (for labels—not for sorting).

The calc.label function calculates the preliminary label of an entry, which is formed

by taking three letters of information from the author or editor or key or organization field

(depending on the entry type and on what’s empty, but ignoring a leading The in the

organization), and appending the last two characters (digits) of the year. It is an error if the

appropriate fields among author, editor, organization, and key are missing, and we use the

first three letters of the cite$ in desperation when this happens. The resulting label has the

year part, but not the name part, purifySed (purifySing the year allows some sorting

shenanigans by the user).

This function also calculates the version of the label to be used in sorting.

The final label may need a trailing ’a’, °’b’, etc., to distinguish it from otherwise identical

labels, but we can’t calculated those ext ra . labels until after sorting.

calc.label ==
BEGIN
if type$ = "book" or "inbook" then
author.editor.key.label
else if type$ = "proceedings" then
editor.key.organization.label
else if type$ = "manual" then
author.key.organization.label
else
author.key.label
fi fi fi

sort.label := sortify(label), but use the last four,
END

label := label * substring$ (purify$(field.or.null (year)), -1
% assuming we will also sort, we calculate a sort.la

not two

pel
digits

3427 FUNCTION {format.lab.name}
sazs { "{vv~}{11}{, Jj}{, ff}" format.name$ 't :=
3429 t "others" =

3430 { citation.et.al }

3431 { t get.str.lang 'name.lang :=

3432 name.lang lang.zh = name.lang lang.ja = or
3433 { t #1 "{11}{ff}" format.name$ }

3434 { t #1 "{vv~}{1ll}" format.name$ }

88

3435 ifs
3436 }

3437 ifs
3438}

3439

3440 FUNCTION {format.lab.names}

3441 { 's 1=

3442 #1 'nameptr :=

3443 S num.names$ 'numnames :=

3444 nn

3445 numnames 'namesleft :=

3446 { namesleft #0 > }

3447 { s nameptr format.lab.name citation.et.al =
3448 numnames citation.et.al.min #1 - > nameptr citation.et.al.use.first >
3449 { bbl.space *

3450 citation.et.al

3451 #1 'namesleft :=

3452 }

3453 { nameptr #1 >

3454 { namesleft #1 = citation.and "" = not and
3455 { citation.and * }

3456 { ll’ "% }

3457 ifs

3458 }

3459 'skip$

3460 ifs

3461 s nameptr format.lab.name *

3462 }

3463 ifs

3464 nameptr #1 + 'nameptr :=

3465 namesleft #1 - 'namesleft :=

3466 }

3467 while$

3468 }

3469
3470 FUNCTION {author.key.label}
3471 { author empty$

3472 { key empty$

3473 { cite$ #1 #3 substring$ }
3474 'key

3475 ifs

3476 }

3477 { author format.lab.names }
3478 ifs

3479}

3480

3481 FUNCTION {author.editor.key.label}
ss2 { author empty$

3483 { editor empty$

3484 { key empty$

3485 { cite$ #1 #3 substring$ }
3486 'key

3487 ifs

3488 }

3489 { editor format.lab.names }

89

3490 if$

3491 }

3492 { author format.lab.names }
3493 if$s

3494 }

3495
3496 FUNCTION {author.key.organization.label}
3497 { author empty$

3498 { key empty$

3499 { organization empty$

3500 { cite$ #1 #3 substring$ }
3501 { "The " #4 organization chop.word #3 text.prefix$ }
3502 ifs

3503 }

3504 'key

3505 ifs

3506 }

3507 { author format.lab.names }

3508 ifs

3509 }

3510

3511 FUNCTION {editor.key.organization.label}
ss12 { editor empty$

3513 { key empty$

3514 { organization empty$

3515 { cite$ #1 #3 substring$ }
3516 { "The " #4 organization chop.word #3 text.prefix$ }
3517 ifs

3518 }

3519 'key

3520 ifs

3521 }

3522 { editor format.lab.names }

3523 ifs

3524}

3525
3526 FUNCTION {calc.short.authors}
3527 { type$ "book" =

3528 type$ "inbook" = booktitle empty$ not and
3529 or

3530 '"author.editor.key.label

3531 { type$ "collection" =

3532 type$ "proceedings" =

3533 or

3534 { editor empty$ not

3535 'editor.key.organization.label
3536 'author.key.organization.label
3537 if$

3538 }

3539 "author.key.label

3540 ifs

3541 }

3542 ifs

3543 'short.list :=

3544}

90

3545

IR label HHA ST, R AKFES RAEE, Bk \bibitem 4bHEH
o 3 HMAT 345 bibunits, “name(year)fullname” [&F —WI#LEL 4> HIR A LR, &5
tuna/thuthesis/#630,

3546 FUNCTION {calc.label}
3547 { calc.short.authors

3548 short.list "]" contains

3549 { "{" short.list * "}" * }
3550 { short.list }

3551 if$

3552 e

3553 *

3554 format.year duplicate$ emptys$
3555 short.list key field.or.null = or
3556 { pops "" }

3557 'skip$

3558 if$

3559 duplicate$ "]" contains

3560 { ll{ll swap$ * n}n * }

3561 'skip$

3562 if$

3563 *

3564 'label :=

3565 }
3566

B.8 Sorting

When sorting, we compute the sortkey by executing presort on each entry. The
presort key contains a number of sort i fyed strings, concatenated with multiple blanks be-
tween them. This makes thingslikebrinch percomebeforebrinch hansen per.

The fields used here are: the sort.label for alphabetic labels (as setby calc.label),
followed by the author names (or editor names or organization (with a leading The re-
moved) or key field, depending on entry type and on what’s empty), followed by year, fol-
lowed by the first bit of the title (chopping off a leading The , A , or An). Names are
formatted: Von Last First Junior. The names within a part will be separated by a single blank
(suchas brinch hansen), two will separate the name parts themselves (except the von
and last), three will separate the names, four will separate the names from year (and from
label, if alphabetic), and four will separate year from title.

The sort . format .names function takes an argument that should be in BibTeX
name format, and returns a string containing -separated names in the format described

above. The function is almost the same as format.names.

sse7 (xauthor-year)
3568 FUNCTION {sort.language.label}
369 { entry.lang lang.zh =

91

https://github.com/tuna/thuthesis/issues/630

3570 { lang.zh.order }

3571 { entry.lang lang.ja =

3572 { lang. ja.order }

3573 { entry.lang lang.en =

3574 { lang.en.order }

3575 { entry.lang lang.ru =
3576 { lang.ru.order }
3577 { lang.other.order }
3578 ifs

3579 }

3580 ifs

3581 }

3582 ifs

3583 }

3584 ifs

3585 #64 +

3586 int.to.chr$

3587 }

3588
3589 FUNCTION {sort.format.names}

90 { 's :=

3591 #1 'nameptr :=

3592 mn

3593 S num.names$ 'numnames :=

3594 numnames 'namesleft :=

3595 { namesleft #0 > }

3596 {

3597 s nameptr "{vv{ } }{11{ }}{ ff{ }}{ JFj{ }}" format.namesS
3598 nameptr #1 >

3599 {

3600 " meo*

3601 namesleft #1 = t "others" = and
3602 { "zzzzz" * }

3603 { numnames #2 > nameptr #2 = and
3604 { "zz" * year field.or.null * " kg
3605 "skip$

3606 ifs$s

3607 t sortify *

3608 }

3609 ifs

3610 }

3611 { t sortify * }

3612 ifs

3613 nameptr #1 + 'nameptr :=

3614 namesleft #1 - 'namesleft :=

3615 }

3616 whiles$

3617}

3618

s

The sort.format.title function returns the argument, but first any leading A ’s, An ’s,
or The ’sare removed. The chop.word function uses s, so we need another string variable,

t
3619 FUNCTION {sort.format.title}

92

't

s20 { 't =

3621 "A " #2

3622 "An " #3

3623 "The " #4 t chop.word
3624 chop.word

3625 chop.word

3626 sortify

3627 #1 global.max$ substring$
3628}

3629

The auxiliary functions here, for the presort function, are analogous to the ones for
calc.label; the same comments apply, except that the organization field takes precedence
here over the key field. For sorting purposes, we still remove a leading The from the

organization field.

3630 FUNCTION {anonymous.sort}
331 { entry.lang lang.zh =

3632 { "yi4 ming2" }
3633 { "anon" }

3634 irs

3635 }

3636
3637 FUNCTION {warn.empty.key}
338 { entry.lang lang.zh =

3639 { "empty key in " cite$ * warning$S }
3640 'skip$

3641 ifs

3642}

3643
3644 FUNCTION {author.sort}
s645 { key emptys$S

3646 { warn.empty.key

3647 author empty$

3648 { anonymous.sort }

3649 { author sort.format.names }
3650 ifs

3651 }

3652 { key }

3653 irs

3654}

3655
356 FUNCTION {author.editor.sort}
ses7 { key emptys$S

3658 { warn.empty.key

3659 author emptys$S

3660 { editor emptyS$S

3661 { anonymous.sort }

3662 { editor sort.format.names }
3663 ifs$s

3664 }

3665 { author sort.format.names }

3666 ifs

3667 }

93

3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704

3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716

{ key }
if$
}

FUNCTION {author.organization.sort}
{ key emptys$S
{ warn.empty.key
author emptys$S
{ organization emptyS$S
{ anonymous.sort }

{ "The " #4 organization chop.word sortify }
if$
}
{ author sort.format.names }
if$
}
{ key }
ifs$

}

FUNCTION f{editor.organization.sort}
{ key emptys$S
{ warn.empty.key
editor empty$
{ organization emptyS$
{ anonymous.sort }

{ "The " #4 organization chop.word sortify }
if$
}
{ editor sort.format.names }
if$
}
{ key }
ifs$

}

(/author-year)

ISRy s L) P 22] AR 22
(xnumerical)
INTEGERS { seqg.num }

FUNCTION {init.seq}
{ #0 'seqg.num :=}

FUNCTION {int.to.fix}

{ "000000000" swap$ int.to.strS *
#-1 #10 substrings$

}

(/numerical)

There is a limit, ent ry .max$, on the length of an entry string variable (which is

what its sort . key$ is), so we take at most that many characters of the constructed key,

94

and hope there aren’t many references that match to that many characters!

3717 FUNCTION {presort}
3718 { set.entry.lang

3719 set.entry.numbered

3720 show.url show.doi check.electronic
3721 #0 'is.pure.electronic :=

3722 calc.label

3723 label sortify
3724 ! "
3725 *

s726 (xauthor-year)

3727 sort.language.label

3708 n "

3729 *

3730 types$S "book" =

3731 types "inbook" = booktitle empty$ not and
3732 or

3733 "author.editor.sort

3734 { type$ "collection" =
3735 type$ "proceedings'" =
3736 or

3737 'editor.organization.sort
3738 'author.sort

3739 ifs

3740 }

3741 ifs

3742 *

3743 " "

3744 *

3745 year field.or.null sortify
3746 *

3747 " "

3748 *

3749 cites$

3750 *

3751 #1 entry.max$ substrings$

s7s2 (/author-year)
753 (xnumerical)

3754 seq.num #1 + 'seqg.num :=
3755 seqg.num int.to.fix

s7s6 - (/numerical)

3757 'sort.label :=

3758 sort.label *

3759 #1 entry.max$ substring$
3760 'sort.key$:=

3761 }
3762

Now comes the final computation for alphabetic labels, putting in the *a’s and ’b’s and
so forth if required. This involves two passes: a forward pass to put in the ’b’s, ’c’s and
so on, and a backwards pass to put in the ’a’s (we don’t want to put in ’a’s unless we know
there are ’b’s). We have to keep track of the longest (in width$ terms) label, for use by the
thebibliography environment.

95

VAR: longest.label, last.sort.label, next.extra: string
longest.label.width, last.extra.num: integer

initialize.longest.label ==

BEGIN
longest.label := ""
last.sort.label := int.to.chr$(0)
next.extra := ""
longest.label.width := 0
last.extra.num := 0

END

forward.pass ==

BEGIN
if last.sort.label = sort.label then
last.extra.num := last.extra.num + 1
extra.label := int.to.chr$(last.extra.num)
else
last.extra.num := chr.to.int$("a")
extra.label := ""
last.sort.label := sort.label
fi
END

reverse.pass ==
BEGIN
if next.extra = "b" then
extra.label := "a"
fi
label := label * extra.label
if width$ (label) > longest.label.width then
longest.label := label
longest.label.width := width$ (label)
fi
next.extra := extra.label
END

3763 STRINGS { longest.label last.label next.extra last.extra.label }
3764

3765 INTEGERS { longest.label.width number.label }

3766

3767 FUNCTION {initialize.longest.label}

s7es { """ 'longest.label :=

3769 #0 int.to.chr$ 'last.label :=
3770 "" 'next.extra :=

3771 #0 'longest.label.width :=
3772 #0 'number.label :=

3773 "" 'last.extra.label :=

3774 '}

3775

3776 FUNCTION {forward.pass}
3777 |

s77s (xauthor-year)

3779 last.label label =

96

3780 { "" 'extra.label :=

3781 last.extra.label text.lengthS 'charptr :=

3782 { last.extra.label charptr #1 substring$ "z" =
3783 charptr #0 > and

3784 }

3785 { "a" extra.label * 'extra.label :=

3786 charptr #1 - 'charptr :=

3787 }

3788 whiles$

3789 charptr #0 >

3790 { last.extra.label charptr #1 substring$ chr.to.int$ #1 + int.to.ck
3791 extra.label * 'extra.label :=

3792 last.extra.label #1 charptr #1 - substrings$
3793 extra.label * 'extra.label :=

3794 }

3795 { "a" extra.label * 'extra.label := }

3796 ifs

3797 extra.label 'last.extra.label :=

3798 }

3799 { "a" 'last.extra.label :=

3800 "nolextra.label :=

3801 label 'last.label :=

3802 }

3803 ifs

ss04 (/author-year)

3805 number.label #1 + 'number.label :=

3806 }

3807

3808 FUNCTION {reverse.pass}
3809 {

ss10 (xauthor-year)

3811 next.extra "b" =

3812 { "a" 'extra.label := }
3813 'skip$

3814 ifs

3815 extra.label 'next.extra :=
3816 extra.label

3817 duplicate$S empty$s

3818 'skip$

3819 { "{\natexlab{" swap$ * "}}" * }
3820 ifs

3821 'extra.label :=

sszz (/author-year)

3823 label extra.label * 'label :=
3824}

3825

3826 FUNCTION {bib.sort.order}

ss27 { sort.label ‘'sort.key$:=
3828}

3829

97

B.9 Write bbl file

Now we’re ready to start writing the .BBL file. We begin, if necessary, with a IKTEX
macro for unnamed names in an alphabetic label; next comes stuff from the ‘preamble’
command in the database files. Then we give an incantation containing the command
\begin{thebibliography}{...} wherethe ‘.. is the longest label.

We also call init.state.consts, for use by the output routines.

3830 FUNCTION {begin.bib}
3831 { preamble$ empty$

3832 'skip$

3833 { preamble$ write$ newline$ }

3834 ifs

3835 "\begin{thebibliography}{" number.label int.to.str$ * "}" *

3836 write$ newline$
3837 terms.in.macro

3838 { "\providecommand{\biband} {f1}"

3839 write$ newline$

3840 "\providecommand{\bibetal} {Z}"

3841 write$ newline$

3842 }

3843 'skip$

3844 if$

3845 "\providecommand{\natexlab} [1]{#1}"

3846 write$ newline$

3847 "\providecommand{\url} [1]{#1}"

3848 write$ newline$

3849 "\expandafter\ifx\csname urlstyle\endcsname\relax\else"
3850 write$ newline$

3851 " N\urlstyle{same}\fi"

3852 write$ newline$

3853 "\expandafter\ifx\csname hrefl\endcsnamel\relax"
3854 write$ newline$

3855 " \DeclareUrlCommand\doi{\urlstyle{rm}}"

3856 write$ newline$

3857 " \def\eprint#1#2{#2}"

3858 write$ newline$

3859 "\else"

3860 write$ newline$

3861 " \def\doi#l{\href{https://doi.org/#1}{\nolinkurl{#1}}}"
3862 write$ newline$

3863 " \let\eprint\href"

3864 write$ newline$

3865 "NEL"

3866 write$ newline$

3867 }
3868

Finally, we finish up by writing the ‘\end{thebibliography}’ command.

3869 FUNCTION {end.bib}

3870 { newline$

3871 "\end{thebibliography}" write$ newline$
3872 }

98

3873

B.10 Main execution

Now we read in the .BIB entries.

3874 READ

3875

3876 EXECUTE {init.state.consts}
3877

3878 EXECUTE {load.config}
3879

sse0 (xnumerical)

388t EXECUTE {init.seq}
3882

sss3 (/numerical)

ssss ITERATE {presort}

3885

And now we can sort

3886 SORT

3887

sgse EXECUTE {initialize.longest.label}
3889

890 ITERATE {forward.pass}
3891

3892 REVERSE {reverse.pass}
3893

3go4 ITERATE {bib.sort.order}
3895

3896 SORT

3897

3ges EXECUTE {begin.bib}

3899

Now we produce the output for all the entries

3900 ITERATE {call.type$}
3901

3902 EXECUTE {end.bib}
ss03 (/author-year | numerical)

99

	1 简介
	2 版本 v2.0 的重要修改
	3 使用方法
	4 文献类型
	5 著录项目
	6 文献列表的排序
	7 自定义样式
	8 相关工作
	A 宏包的代码实现
	B BibTeX 样式的代码实现
	B.1 自定义选项
	B.2 The ENTRY declaration
	B.3 Entry functions
	B.4 Formatting chunks
	B.4.1 Detect Language
	B.4.2 Format names
	B.4.3 Format title
	B.4.4 Format entry type mark
	B.4.5 Format edition
	B.4.6 Format publishing items
	B.4.7 Format date
	B.4.8 Format pages
	B.4.9 Format url and doi

	B.5 Functions for all entry types
	B.5.1 专著
	B.5.2 专著中的析出文献
	B.5.3 连续出版物
	B.5.4 连续出版物中的析出文献
	B.5.5 专利文献
	B.5.6 电子资源
	B.5.7 预印本
	B.5.8 其他文献类型

	B.6 Common macros
	B.7 Format labels
	B.8 Sorting
	B.9 Write bbl file
	B.10 Main execution

