Here we are exploring the different themes that can be used with tableHTML
library(tableHTML)
Although the package has been designed so that it gives the utmost freedom to the user to style the HTML table as they please, some themes have been included for those who need something quick and nice. The package offers three themes for now: scientific, rshiny-blue, and colorize. To use them, you need to use the add_theme
function.
Notice: When working with themes you can still add extra css (using the add_css_* family from below) but you will not be able to overwrite the styling that is there e.g. to change the width of the lines.
This is the scientifc theme where the table design resembles scientific tables for publishing.
tableHTML(mtcars, widths = c(140, rep(50, 11))) %>%
add_theme('scientific')
mpg | cyl | disp | hp | drat | wt | qsec | vs | am | gear | carb | |
---|---|---|---|---|---|---|---|---|---|---|---|
Mazda RX4 | 21 | 6 | 160 | 110 | 3.9 | 2.62 | 16.46 | 0 | 1 | 4 | 4 |
Mazda RX4 Wag | 21 | 6 | 160 | 110 | 3.9 | 2.875 | 17.02 | 0 | 1 | 4 | 4 |
Datsun 710 | 22.8 | 4 | 108 | 93 | 3.85 | 2.32 | 18.61 | 1 | 1 | 4 | 1 |
Hornet 4 Drive | 21.4 | 6 | 258 | 110 | 3.08 | 3.215 | 19.44 | 1 | 0 | 3 | 1 |
Hornet Sportabout | 18.7 | 8 | 360 | 175 | 3.15 | 3.44 | 17.02 | 0 | 0 | 3 | 2 |
Valiant | 18.1 | 6 | 225 | 105 | 2.76 | 3.46 | 20.22 | 1 | 0 | 3 | 1 |
Duster 360 | 14.3 | 8 | 360 | 245 | 3.21 | 3.57 | 15.84 | 0 | 0 | 3 | 4 |
Merc 240D | 24.4 | 4 | 146.7 | 62 | 3.69 | 3.19 | 20 | 1 | 0 | 4 | 2 |
Merc 230 | 22.8 | 4 | 140.8 | 95 | 3.92 | 3.15 | 22.9 | 1 | 0 | 4 | 2 |
Merc 280 | 19.2 | 6 | 167.6 | 123 | 3.92 | 3.44 | 18.3 | 1 | 0 | 4 | 4 |
Merc 280C | 17.8 | 6 | 167.6 | 123 | 3.92 | 3.44 | 18.9 | 1 | 0 | 4 | 4 |
Merc 450SE | 16.4 | 8 | 275.8 | 180 | 3.07 | 4.07 | 17.4 | 0 | 0 | 3 | 3 |
Merc 450SL | 17.3 | 8 | 275.8 | 180 | 3.07 | 3.73 | 17.6 | 0 | 0 | 3 | 3 |
Merc 450SLC | 15.2 | 8 | 275.8 | 180 | 3.07 | 3.78 | 18 | 0 | 0 | 3 | 3 |
Cadillac Fleetwood | 10.4 | 8 | 472 | 205 | 2.93 | 5.25 | 17.98 | 0 | 0 | 3 | 4 |
Lincoln Continental | 10.4 | 8 | 460 | 215 | 3 | 5.424 | 17.82 | 0 | 0 | 3 | 4 |
Chrysler Imperial | 14.7 | 8 | 440 | 230 | 3.23 | 5.345 | 17.42 | 0 | 0 | 3 | 4 |
Fiat 128 | 32.4 | 4 | 78.7 | 66 | 4.08 | 2.2 | 19.47 | 1 | 1 | 4 | 1 |
Honda Civic | 30.4 | 4 | 75.7 | 52 | 4.93 | 1.615 | 18.52 | 1 | 1 | 4 | 2 |
Toyota Corolla | 33.9 | 4 | 71.1 | 65 | 4.22 | 1.835 | 19.9 | 1 | 1 | 4 | 1 |
Toyota Corona | 21.5 | 4 | 120.1 | 97 | 3.7 | 2.465 | 20.01 | 1 | 0 | 3 | 1 |
Dodge Challenger | 15.5 | 8 | 318 | 150 | 2.76 | 3.52 | 16.87 | 0 | 0 | 3 | 2 |
AMC Javelin | 15.2 | 8 | 304 | 150 | 3.15 | 3.435 | 17.3 | 0 | 0 | 3 | 2 |
Camaro Z28 | 13.3 | 8 | 350 | 245 | 3.73 | 3.84 | 15.41 | 0 | 0 | 3 | 4 |
Pontiac Firebird | 19.2 | 8 | 400 | 175 | 3.08 | 3.845 | 17.05 | 0 | 0 | 3 | 2 |
Fiat X1-9 | 27.3 | 4 | 79 | 66 | 4.08 | 1.935 | 18.9 | 1 | 1 | 4 | 1 |
Porsche 914-2 | 26 | 4 | 120.3 | 91 | 4.43 | 2.14 | 16.7 | 0 | 1 | 5 | 2 |
Lotus Europa | 30.4 | 4 | 95.1 | 113 | 3.77 | 1.513 | 16.9 | 1 | 1 | 5 | 2 |
Ford Pantera L | 15.8 | 8 | 351 | 264 | 4.22 | 3.17 | 14.5 | 0 | 1 | 5 | 4 |
Ferrari Dino | 19.7 | 6 | 145 | 175 | 3.62 | 2.77 | 15.5 | 0 | 1 | 5 | 6 |
Maserati Bora | 15 | 8 | 301 | 335 | 3.54 | 3.57 | 14.6 | 0 | 1 | 5 | 8 |
Volvo 142E | 21.4 | 4 | 121 | 109 | 4.11 | 2.78 | 18.6 | 1 | 1 | 4 | 2 |
tableHTML(mtcars,
rownames = FALSE,
widths = c(140, rep(50, 11)),
row_groups = list(c(10, 10, 12), c('Group 1', 'Group 2', 'Group 3')),
second_headers = list(c(3, 4, 5), c('col1', 'col2', 'col3'))) %>%
add_theme('scientific')
col1 | col2 | col3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
mpg | cyl | disp | hp | drat | wt | qsec | vs | am | gear | carb | |
Group 1 | 21 | 6 | 160 | 110 | 3.9 | 2.62 | 16.46 | 0 | 1 | 4 | 4 |
21 | 6 | 160 | 110 | 3.9 | 2.875 | 17.02 | 0 | 1 | 4 | 4 | |
22.8 | 4 | 108 | 93 | 3.85 | 2.32 | 18.61 | 1 | 1 | 4 | 1 | |
21.4 | 6 | 258 | 110 | 3.08 | 3.215 | 19.44 | 1 | 0 | 3 | 1 | |
18.7 | 8 | 360 | 175 | 3.15 | 3.44 | 17.02 | 0 | 0 | 3 | 2 | |
18.1 | 6 | 225 | 105 | 2.76 | 3.46 | 20.22 | 1 | 0 | 3 | 1 | |
14.3 | 8 | 360 | 245 | 3.21 | 3.57 | 15.84 | 0 | 0 | 3 | 4 | |
24.4 | 4 | 146.7 | 62 | 3.69 | 3.19 | 20 | 1 | 0 | 4 | 2 | |
22.8 | 4 | 140.8 | 95 | 3.92 | 3.15 | 22.9 | 1 | 0 | 4 | 2 | |
19.2 | 6 | 167.6 | 123 | 3.92 | 3.44 | 18.3 | 1 | 0 | 4 | 4 | |
Group 2 | 17.8 | 6 | 167.6 | 123 | 3.92 | 3.44 | 18.9 | 1 | 0 | 4 | 4 |
16.4 | 8 | 275.8 | 180 | 3.07 | 4.07 | 17.4 | 0 | 0 | 3 | 3 | |
17.3 | 8 | 275.8 | 180 | 3.07 | 3.73 | 17.6 | 0 | 0 | 3 | 3 | |
15.2 | 8 | 275.8 | 180 | 3.07 | 3.78 | 18 | 0 | 0 | 3 | 3 | |
10.4 | 8 | 472 | 205 | 2.93 | 5.25 | 17.98 | 0 | 0 | 3 | 4 | |
10.4 | 8 | 460 | 215 | 3 | 5.424 | 17.82 | 0 | 0 | 3 | 4 | |
14.7 | 8 | 440 | 230 | 3.23 | 5.345 | 17.42 | 0 | 0 | 3 | 4 | |
32.4 | 4 | 78.7 | 66 | 4.08 | 2.2 | 19.47 | 1 | 1 | 4 | 1 | |
30.4 | 4 | 75.7 | 52 | 4.93 | 1.615 | 18.52 | 1 | 1 | 4 | 2 | |
33.9 | 4 | 71.1 | 65 | 4.22 | 1.835 | 19.9 | 1 | 1 | 4 | 1 | |
Group 3 | 21.5 | 4 | 120.1 | 97 | 3.7 | 2.465 | 20.01 | 1 | 0 | 3 | 1 |
15.5 | 8 | 318 | 150 | 2.76 | 3.52 | 16.87 | 0 | 0 | 3 | 2 | |
15.2 | 8 | 304 | 150 | 3.15 | 3.435 | 17.3 | 0 | 0 | 3 | 2 | |
13.3 | 8 | 350 | 245 | 3.73 | 3.84 | 15.41 | 0 | 0 | 3 | 4 | |
19.2 | 8 | 400 | 175 | 3.08 | 3.845 | 17.05 | 0 | 0 | 3 | 2 | |
27.3 | 4 | 79 | 66 | 4.08 | 1.935 | 18.9 | 1 | 1 | 4 | 1 | |
26 | 4 | 120.3 | 91 | 4.43 | 2.14 | 16.7 | 0 | 1 | 5 | 2 | |
30.4 | 4 | 95.1 | 113 | 3.77 | 1.513 | 16.9 | 1 | 1 | 5 | 2 | |
15.8 | 8 | 351 | 264 | 4.22 | 3.17 | 14.5 | 0 | 1 | 5 | 4 | |
19.7 | 6 | 145 | 175 | 3.62 | 2.77 | 15.5 | 0 | 1 | 5 | 6 | |
15 | 8 | 301 | 335 | 3.54 | 3.57 | 14.6 | 0 | 1 | 5 | 8 | |
21.4 | 4 | 121 | 109 | 4.11 | 2.78 | 18.6 | 1 | 1 | 4 | 2 |
This theme matches the color of the standard shiny apps.
tableHTML(mtcars, widths = c(140, rep(50, 11))) %>%
add_theme('rshiny-blue')
mpg | cyl | disp | hp | drat | wt | qsec | vs | am | gear | carb | |
---|---|---|---|---|---|---|---|---|---|---|---|
Mazda RX4 | 21 | 6 | 160 | 110 | 3.9 | 2.62 | 16.46 | 0 | 1 | 4 | 4 |
Mazda RX4 Wag | 21 | 6 | 160 | 110 | 3.9 | 2.875 | 17.02 | 0 | 1 | 4 | 4 |
Datsun 710 | 22.8 | 4 | 108 | 93 | 3.85 | 2.32 | 18.61 | 1 | 1 | 4 | 1 |
Hornet 4 Drive | 21.4 | 6 | 258 | 110 | 3.08 | 3.215 | 19.44 | 1 | 0 | 3 | 1 |
Hornet Sportabout | 18.7 | 8 | 360 | 175 | 3.15 | 3.44 | 17.02 | 0 | 0 | 3 | 2 |
Valiant | 18.1 | 6 | 225 | 105 | 2.76 | 3.46 | 20.22 | 1 | 0 | 3 | 1 |
Duster 360 | 14.3 | 8 | 360 | 245 | 3.21 | 3.57 | 15.84 | 0 | 0 | 3 | 4 |
Merc 240D | 24.4 | 4 | 146.7 | 62 | 3.69 | 3.19 | 20 | 1 | 0 | 4 | 2 |
Merc 230 | 22.8 | 4 | 140.8 | 95 | 3.92 | 3.15 | 22.9 | 1 | 0 | 4 | 2 |
Merc 280 | 19.2 | 6 | 167.6 | 123 | 3.92 | 3.44 | 18.3 | 1 | 0 | 4 | 4 |
Merc 280C | 17.8 | 6 | 167.6 | 123 | 3.92 | 3.44 | 18.9 | 1 | 0 | 4 | 4 |
Merc 450SE | 16.4 | 8 | 275.8 | 180 | 3.07 | 4.07 | 17.4 | 0 | 0 | 3 | 3 |
Merc 450SL | 17.3 | 8 | 275.8 | 180 | 3.07 | 3.73 | 17.6 | 0 | 0 | 3 | 3 |
Merc 450SLC | 15.2 | 8 | 275.8 | 180 | 3.07 | 3.78 | 18 | 0 | 0 | 3 | 3 |
Cadillac Fleetwood | 10.4 | 8 | 472 | 205 | 2.93 | 5.25 | 17.98 | 0 | 0 | 3 | 4 |
Lincoln Continental | 10.4 | 8 | 460 | 215 | 3 | 5.424 | 17.82 | 0 | 0 | 3 | 4 |
Chrysler Imperial | 14.7 | 8 | 440 | 230 | 3.23 | 5.345 | 17.42 | 0 | 0 | 3 | 4 |
Fiat 128 | 32.4 | 4 | 78.7 | 66 | 4.08 | 2.2 | 19.47 | 1 | 1 | 4 | 1 |
Honda Civic | 30.4 | 4 | 75.7 | 52 | 4.93 | 1.615 | 18.52 | 1 | 1 | 4 | 2 |
Toyota Corolla | 33.9 | 4 | 71.1 | 65 | 4.22 | 1.835 | 19.9 | 1 | 1 | 4 | 1 |
Toyota Corona | 21.5 | 4 | 120.1 | 97 | 3.7 | 2.465 | 20.01 | 1 | 0 | 3 | 1 |
Dodge Challenger | 15.5 | 8 | 318 | 150 | 2.76 | 3.52 | 16.87 | 0 | 0 | 3 | 2 |
AMC Javelin | 15.2 | 8 | 304 | 150 | 3.15 | 3.435 | 17.3 | 0 | 0 | 3 | 2 |
Camaro Z28 | 13.3 | 8 | 350 | 245 | 3.73 | 3.84 | 15.41 | 0 | 0 | 3 | 4 |
Pontiac Firebird | 19.2 | 8 | 400 | 175 | 3.08 | 3.845 | 17.05 | 0 | 0 | 3 | 2 |
Fiat X1-9 | 27.3 | 4 | 79 | 66 | 4.08 | 1.935 | 18.9 | 1 | 1 | 4 | 1 |
Porsche 914-2 | 26 | 4 | 120.3 | 91 | 4.43 | 2.14 | 16.7 | 0 | 1 | 5 | 2 |
Lotus Europa | 30.4 | 4 | 95.1 | 113 | 3.77 | 1.513 | 16.9 | 1 | 1 | 5 | 2 |
Ford Pantera L | 15.8 | 8 | 351 | 264 | 4.22 | 3.17 | 14.5 | 0 | 1 | 5 | 4 |
Ferrari Dino | 19.7 | 6 | 145 | 175 | 3.62 | 2.77 | 15.5 | 0 | 1 | 5 | 6 |
Maserati Bora | 15 | 8 | 301 | 335 | 3.54 | 3.57 | 14.6 | 0 | 1 | 5 | 8 |
Volvo 142E | 21.4 | 4 | 121 | 109 | 4.11 | 2.78 | 18.6 | 1 | 1 | 4 | 2 |
tableHTML(mtcars,
rownames = FALSE,
widths = c(140, rep(50, 11)),
row_groups = list(c(10, 10, 12), c('Group 1', 'Group 2', 'Group 3')),
second_headers = list(c(3, 4, 5), c('col1', 'col2', 'col3'))) %>%
add_theme('rshiny-blue')
col1 | col2 | col3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
mpg | cyl | disp | hp | drat | wt | qsec | vs | am | gear | carb | |
Group 1 | 21 | 6 | 160 | 110 | 3.9 | 2.62 | 16.46 | 0 | 1 | 4 | 4 |
21 | 6 | 160 | 110 | 3.9 | 2.875 | 17.02 | 0 | 1 | 4 | 4 | |
22.8 | 4 | 108 | 93 | 3.85 | 2.32 | 18.61 | 1 | 1 | 4 | 1 | |
21.4 | 6 | 258 | 110 | 3.08 | 3.215 | 19.44 | 1 | 0 | 3 | 1 | |
18.7 | 8 | 360 | 175 | 3.15 | 3.44 | 17.02 | 0 | 0 | 3 | 2 | |
18.1 | 6 | 225 | 105 | 2.76 | 3.46 | 20.22 | 1 | 0 | 3 | 1 | |
14.3 | 8 | 360 | 245 | 3.21 | 3.57 | 15.84 | 0 | 0 | 3 | 4 | |
24.4 | 4 | 146.7 | 62 | 3.69 | 3.19 | 20 | 1 | 0 | 4 | 2 | |
22.8 | 4 | 140.8 | 95 | 3.92 | 3.15 | 22.9 | 1 | 0 | 4 | 2 | |
19.2 | 6 | 167.6 | 123 | 3.92 | 3.44 | 18.3 | 1 | 0 | 4 | 4 | |
Group 2 | 17.8 | 6 | 167.6 | 123 | 3.92 | 3.44 | 18.9 | 1 | 0 | 4 | 4 |
16.4 | 8 | 275.8 | 180 | 3.07 | 4.07 | 17.4 | 0 | 0 | 3 | 3 | |
17.3 | 8 | 275.8 | 180 | 3.07 | 3.73 | 17.6 | 0 | 0 | 3 | 3 | |
15.2 | 8 | 275.8 | 180 | 3.07 | 3.78 | 18 | 0 | 0 | 3 | 3 | |
10.4 | 8 | 472 | 205 | 2.93 | 5.25 | 17.98 | 0 | 0 | 3 | 4 | |
10.4 | 8 | 460 | 215 | 3 | 5.424 | 17.82 | 0 | 0 | 3 | 4 | |
14.7 | 8 | 440 | 230 | 3.23 | 5.345 | 17.42 | 0 | 0 | 3 | 4 | |
32.4 | 4 | 78.7 | 66 | 4.08 | 2.2 | 19.47 | 1 | 1 | 4 | 1 | |
30.4 | 4 | 75.7 | 52 | 4.93 | 1.615 | 18.52 | 1 | 1 | 4 | 2 | |
33.9 | 4 | 71.1 | 65 | 4.22 | 1.835 | 19.9 | 1 | 1 | 4 | 1 | |
Group 3 | 21.5 | 4 | 120.1 | 97 | 3.7 | 2.465 | 20.01 | 1 | 0 | 3 | 1 |
15.5 | 8 | 318 | 150 | 2.76 | 3.52 | 16.87 | 0 | 0 | 3 | 2 | |
15.2 | 8 | 304 | 150 | 3.15 | 3.435 | 17.3 | 0 | 0 | 3 | 2 | |
13.3 | 8 | 350 | 245 | 3.73 | 3.84 | 15.41 | 0 | 0 | 3 | 4 | |
19.2 | 8 | 400 | 175 | 3.08 | 3.845 | 17.05 | 0 | 0 | 3 | 2 | |
27.3 | 4 | 79 | 66 | 4.08 | 1.935 | 18.9 | 1 | 1 | 4 | 1 | |
26 | 4 | 120.3 | 91 | 4.43 | 2.14 | 16.7 | 0 | 1 | 5 | 2 | |
30.4 | 4 | 95.1 | 113 | 3.77 | 1.513 | 16.9 | 1 | 1 | 5 | 2 | |
15.8 | 8 | 351 | 264 | 4.22 | 3.17 | 14.5 | 0 | 1 | 5 | 4 | |
19.7 | 6 | 145 | 175 | 3.62 | 2.77 | 15.5 | 0 | 1 | 5 | 6 | |
15 | 8 | 301 | 335 | 3.54 | 3.57 | 14.6 | 0 | 1 | 5 | 8 | |
21.4 | 4 | 121 | 109 | 4.11 | 2.78 | 18.6 | 1 | 1 | 4 | 2 |
This theme is used to create MS Excel-like tables (with any color you like). You can also use it to highlight specific rows (usually corresponding to some aggregation function, for example totals or averages). The arguments that can be used with the colorize theme are color
, total_rows
, and id_column
. The default color is steelblue and by default no rows are chosen to be highlighted. You can also highlight the first column with the id_column
argument. The documentation can be found at ?add_theme_colorize
.
df <- mtcars[, 1:6]
df %>%
tableHTML(widths = c(150, rep(70, ncol(df))), rownames = TRUE) %>%
add_theme('colorize')
mpg | cyl | disp | hp | drat | wt | |
---|---|---|---|---|---|---|
Mazda RX4 | 21 | 6 | 160 | 110 | 3.9 | 2.62 |
Mazda RX4 Wag | 21 | 6 | 160 | 110 | 3.9 | 2.875 |
Datsun 710 | 22.8 | 4 | 108 | 93 | 3.85 | 2.32 |
Hornet 4 Drive | 21.4 | 6 | 258 | 110 | 3.08 | 3.215 |
Hornet Sportabout | 18.7 | 8 | 360 | 175 | 3.15 | 3.44 |
Valiant | 18.1 | 6 | 225 | 105 | 2.76 | 3.46 |
Duster 360 | 14.3 | 8 | 360 | 245 | 3.21 | 3.57 |
Merc 240D | 24.4 | 4 | 146.7 | 62 | 3.69 | 3.19 |
Merc 230 | 22.8 | 4 | 140.8 | 95 | 3.92 | 3.15 |
Merc 280 | 19.2 | 6 | 167.6 | 123 | 3.92 | 3.44 |
Merc 280C | 17.8 | 6 | 167.6 | 123 | 3.92 | 3.44 |
Merc 450SE | 16.4 | 8 | 275.8 | 180 | 3.07 | 4.07 |
Merc 450SL | 17.3 | 8 | 275.8 | 180 | 3.07 | 3.73 |
Merc 450SLC | 15.2 | 8 | 275.8 | 180 | 3.07 | 3.78 |
Cadillac Fleetwood | 10.4 | 8 | 472 | 205 | 2.93 | 5.25 |
Lincoln Continental | 10.4 | 8 | 460 | 215 | 3 | 5.424 |
Chrysler Imperial | 14.7 | 8 | 440 | 230 | 3.23 | 5.345 |
Fiat 128 | 32.4 | 4 | 78.7 | 66 | 4.08 | 2.2 |
Honda Civic | 30.4 | 4 | 75.7 | 52 | 4.93 | 1.615 |
Toyota Corolla | 33.9 | 4 | 71.1 | 65 | 4.22 | 1.835 |
Toyota Corona | 21.5 | 4 | 120.1 | 97 | 3.7 | 2.465 |
Dodge Challenger | 15.5 | 8 | 318 | 150 | 2.76 | 3.52 |
AMC Javelin | 15.2 | 8 | 304 | 150 | 3.15 | 3.435 |
Camaro Z28 | 13.3 | 8 | 350 | 245 | 3.73 | 3.84 |
Pontiac Firebird | 19.2 | 8 | 400 | 175 | 3.08 | 3.845 |
Fiat X1-9 | 27.3 | 4 | 79 | 66 | 4.08 | 1.935 |
Porsche 914-2 | 26 | 4 | 120.3 | 91 | 4.43 | 2.14 |
Lotus Europa | 30.4 | 4 | 95.1 | 113 | 3.77 | 1.513 |
Ford Pantera L | 15.8 | 8 | 351 | 264 | 4.22 | 3.17 |
Ferrari Dino | 19.7 | 6 | 145 | 175 | 3.62 | 2.77 |
Maserati Bora | 15 | 8 | 301 | 335 | 3.54 | 3.57 |
Volvo 142E | 21.4 | 4 | 121 | 109 | 4.11 | 2.78 |
df <- mtcars[, 1:6]
df %>%
tableHTML(widths = c(150, rep(70, ncol(df))), rownames = TRUE) %>%
add_theme('colorize', color = 'darkgreen')
mpg | cyl | disp | hp | drat | wt | |
---|---|---|---|---|---|---|
Mazda RX4 | 21 | 6 | 160 | 110 | 3.9 | 2.62 |
Mazda RX4 Wag | 21 | 6 | 160 | 110 | 3.9 | 2.875 |
Datsun 710 | 22.8 | 4 | 108 | 93 | 3.85 | 2.32 |
Hornet 4 Drive | 21.4 | 6 | 258 | 110 | 3.08 | 3.215 |
Hornet Sportabout | 18.7 | 8 | 360 | 175 | 3.15 | 3.44 |
Valiant | 18.1 | 6 | 225 | 105 | 2.76 | 3.46 |
Duster 360 | 14.3 | 8 | 360 | 245 | 3.21 | 3.57 |
Merc 240D | 24.4 | 4 | 146.7 | 62 | 3.69 | 3.19 |
Merc 230 | 22.8 | 4 | 140.8 | 95 | 3.92 | 3.15 |
Merc 280 | 19.2 | 6 | 167.6 | 123 | 3.92 | 3.44 |
Merc 280C | 17.8 | 6 | 167.6 | 123 | 3.92 | 3.44 |
Merc 450SE | 16.4 | 8 | 275.8 | 180 | 3.07 | 4.07 |
Merc 450SL | 17.3 | 8 | 275.8 | 180 | 3.07 | 3.73 |
Merc 450SLC | 15.2 | 8 | 275.8 | 180 | 3.07 | 3.78 |
Cadillac Fleetwood | 10.4 | 8 | 472 | 205 | 2.93 | 5.25 |
Lincoln Continental | 10.4 | 8 | 460 | 215 | 3 | 5.424 |
Chrysler Imperial | 14.7 | 8 | 440 | 230 | 3.23 | 5.345 |
Fiat 128 | 32.4 | 4 | 78.7 | 66 | 4.08 | 2.2 |
Honda Civic | 30.4 | 4 | 75.7 | 52 | 4.93 | 1.615 |
Toyota Corolla | 33.9 | 4 | 71.1 | 65 | 4.22 | 1.835 |
Toyota Corona | 21.5 | 4 | 120.1 | 97 | 3.7 | 2.465 |
Dodge Challenger | 15.5 | 8 | 318 | 150 | 2.76 | 3.52 |
AMC Javelin | 15.2 | 8 | 304 | 150 | 3.15 | 3.435 |
Camaro Z28 | 13.3 | 8 | 350 | 245 | 3.73 | 3.84 |
Pontiac Firebird | 19.2 | 8 | 400 | 175 | 3.08 | 3.845 |
Fiat X1-9 | 27.3 | 4 | 79 | 66 | 4.08 | 1.935 |
Porsche 914-2 | 26 | 4 | 120.3 | 91 | 4.43 | 2.14 |
Lotus Europa | 30.4 | 4 | 95.1 | 113 | 3.77 | 1.513 |
Ford Pantera L | 15.8 | 8 | 351 | 264 | 4.22 | 3.17 |
Ferrari Dino | 19.7 | 6 | 145 | 175 | 3.62 | 2.77 |
Maserati Bora | 15 | 8 | 301 | 335 | 3.54 | 3.57 |
Volvo 142E | 21.4 | 4 | 121 | 109 | 4.11 | 2.78 |
df <- mtcars[, 1:6]
df['Mean', ] <- (df %>% apply(2, mean))
df %>%
tableHTML(widths = c(150, rep(70, ncol(df))), rownames = TRUE) %>%
add_theme('colorize', color = c('steelblue', 'red'))
mpg | cyl | disp | hp | drat | wt | |
---|---|---|---|---|---|---|
Mazda RX4 | 21 | 6 | 160 | 110 | 3.9 | 2.62 |
Mazda RX4 Wag | 21 | 6 | 160 | 110 | 3.9 | 2.875 |
Datsun 710 | 22.8 | 4 | 108 | 93 | 3.85 | 2.32 |
Hornet 4 Drive | 21.4 | 6 | 258 | 110 | 3.08 | 3.215 |
Hornet Sportabout | 18.7 | 8 | 360 | 175 | 3.15 | 3.44 |
Valiant | 18.1 | 6 | 225 | 105 | 2.76 | 3.46 |
Duster 360 | 14.3 | 8 | 360 | 245 | 3.21 | 3.57 |
Merc 240D | 24.4 | 4 | 146.7 | 62 | 3.69 | 3.19 |
Merc 230 | 22.8 | 4 | 140.8 | 95 | 3.92 | 3.15 |
Merc 280 | 19.2 | 6 | 167.6 | 123 | 3.92 | 3.44 |
Merc 280C | 17.8 | 6 | 167.6 | 123 | 3.92 | 3.44 |
Merc 450SE | 16.4 | 8 | 275.8 | 180 | 3.07 | 4.07 |
Merc 450SL | 17.3 | 8 | 275.8 | 180 | 3.07 | 3.73 |
Merc 450SLC | 15.2 | 8 | 275.8 | 180 | 3.07 | 3.78 |
Cadillac Fleetwood | 10.4 | 8 | 472 | 205 | 2.93 | 5.25 |
Lincoln Continental | 10.4 | 8 | 460 | 215 | 3 | 5.424 |
Chrysler Imperial | 14.7 | 8 | 440 | 230 | 3.23 | 5.345 |
Fiat 128 | 32.4 | 4 | 78.7 | 66 | 4.08 | 2.2 |
Honda Civic | 30.4 | 4 | 75.7 | 52 | 4.93 | 1.615 |
Toyota Corolla | 33.9 | 4 | 71.1 | 65 | 4.22 | 1.835 |
Toyota Corona | 21.5 | 4 | 120.1 | 97 | 3.7 | 2.465 |
Dodge Challenger | 15.5 | 8 | 318 | 150 | 2.76 | 3.52 |
AMC Javelin | 15.2 | 8 | 304 | 150 | 3.15 | 3.435 |
Camaro Z28 | 13.3 | 8 | 350 | 245 | 3.73 | 3.84 |
Pontiac Firebird | 19.2 | 8 | 400 | 175 | 3.08 | 3.845 |
Fiat X1-9 | 27.3 | 4 | 79 | 66 | 4.08 | 1.935 |
Porsche 914-2 | 26 | 4 | 120.3 | 91 | 4.43 | 2.14 |
Lotus Europa | 30.4 | 4 | 95.1 | 113 | 3.77 | 1.513 |
Ford Pantera L | 15.8 | 8 | 351 | 264 | 4.22 | 3.17 |
Ferrari Dino | 19.7 | 6 | 145 | 175 | 3.62 | 2.77 |
Maserati Bora | 15 | 8 | 301 | 335 | 3.54 | 3.57 |
Volvo 142E | 21.4 | 4 | 121 | 109 | 4.11 | 2.78 |
Mean | 20.090625 | 6.1875 | 230.721875 | 146.6875 | 3.5965625 | 3.21725 |
df <- mtcars[, 1:6]
df['Mean', ] <- (df %>% apply(2, mean))
df %>%
tableHTML(widths = c(150, rep(70, ncol(df))), rownames = TRUE) %>%
add_theme('colorize', color = c('steelblue', 'red'), total_rows = nrow(df))
mpg | cyl | disp | hp | drat | wt | |
---|---|---|---|---|---|---|
Mazda RX4 | 21 | 6 | 160 | 110 | 3.9 | 2.62 |
Mazda RX4 Wag | 21 | 6 | 160 | 110 | 3.9 | 2.875 |
Datsun 710 | 22.8 | 4 | 108 | 93 | 3.85 | 2.32 |
Hornet 4 Drive | 21.4 | 6 | 258 | 110 | 3.08 | 3.215 |
Hornet Sportabout | 18.7 | 8 | 360 | 175 | 3.15 | 3.44 |
Valiant | 18.1 | 6 | 225 | 105 | 2.76 | 3.46 |
Duster 360 | 14.3 | 8 | 360 | 245 | 3.21 | 3.57 |
Merc 240D | 24.4 | 4 | 146.7 | 62 | 3.69 | 3.19 |
Merc 230 | 22.8 | 4 | 140.8 | 95 | 3.92 | 3.15 |
Merc 280 | 19.2 | 6 | 167.6 | 123 | 3.92 | 3.44 |
Merc 280C | 17.8 | 6 | 167.6 | 123 | 3.92 | 3.44 |
Merc 450SE | 16.4 | 8 | 275.8 | 180 | 3.07 | 4.07 |
Merc 450SL | 17.3 | 8 | 275.8 | 180 | 3.07 | 3.73 |
Merc 450SLC | 15.2 | 8 | 275.8 | 180 | 3.07 | 3.78 |
Cadillac Fleetwood | 10.4 | 8 | 472 | 205 | 2.93 | 5.25 |
Lincoln Continental | 10.4 | 8 | 460 | 215 | 3 | 5.424 |
Chrysler Imperial | 14.7 | 8 | 440 | 230 | 3.23 | 5.345 |
Fiat 128 | 32.4 | 4 | 78.7 | 66 | 4.08 | 2.2 |
Honda Civic | 30.4 | 4 | 75.7 | 52 | 4.93 | 1.615 |
Toyota Corolla | 33.9 | 4 | 71.1 | 65 | 4.22 | 1.835 |
Toyota Corona | 21.5 | 4 | 120.1 | 97 | 3.7 | 2.465 |
Dodge Challenger | 15.5 | 8 | 318 | 150 | 2.76 | 3.52 |
AMC Javelin | 15.2 | 8 | 304 | 150 | 3.15 | 3.435 |
Camaro Z28 | 13.3 | 8 | 350 | 245 | 3.73 | 3.84 |
Pontiac Firebird | 19.2 | 8 | 400 | 175 | 3.08 | 3.845 |
Fiat X1-9 | 27.3 | 4 | 79 | 66 | 4.08 | 1.935 |
Porsche 914-2 | 26 | 4 | 120.3 | 91 | 4.43 | 2.14 |
Lotus Europa | 30.4 | 4 | 95.1 | 113 | 3.77 | 1.513 |
Ford Pantera L | 15.8 | 8 | 351 | 264 | 4.22 | 3.17 |
Ferrari Dino | 19.7 | 6 | 145 | 175 | 3.62 | 2.77 |
Maserati Bora | 15 | 8 | 301 | 335 | 3.54 | 3.57 |
Volvo 142E | 21.4 | 4 | 121 | 109 | 4.11 | 2.78 |
Mean | 20.090625 | 6.1875 | 230.721875 | 146.6875 | 3.5965625 | 3.21725 |
Instead of using the umbrella function add_theme
, you could also explicitly use add_theme_colorize
. The two functions are identical in terms of the output. To see the documentation visit ?add_theme_colorize
.
# one total row
x1 <- sample(1:100, 12)
x2 <- sample(1:100, 12)
x3 <- sample(1:100, 12)
df <- data.frame(Month = month.abb, x1, x2, x3,
stringsAsFactors = FALSE)
df[nrow(df) + 1, ] <- c('Total', sum(x1), sum(x2), sum(x3))
df %>%
tableHTML(widths = rep(50, 4), rownames = FALSE) %>%
add_theme_colorize(color = 'darkred', total_rows = nrow(df))
Month | x1 | x2 | x3 |
---|---|---|---|
Jan | 75 | 42 | 19 |
Feb | 84 | 21 | 36 |
Mar | 68 | 37 | 15 |
Apr | 95 | 56 | 51 |
May | 32 | 52 | 5 |
Jun | 86 | 81 | 41 |
Jul | 3 | 33 | 98 |
Aug | 34 | 93 | 52 |
Sep | 44 | 84 | 60 |
Oct | 70 | 70 | 43 |
Nov | 24 | 4 | 76 |
Dec | 38 | 78 | 66 |
Total | 653 | 651 | 562 |
df_q <- rbind(
df[1:3, ],
c('Sum1', sum(x1[1:3]), sum(x2[1:3]), sum(x3[1:3])),
df[4:6, ],
c('Sum2', sum(x1[4:6]), sum(x2[4:6]), sum(x3[4:6])),
df[7:9, ],
c('Sum3', sum(x1[7:9]), sum(x2[7:9]), sum(x3[7:9])),
df[10:12, ],
c('Sum4', sum(x1[10:12]), sum(x2[10:12]), sum(x3[10:12])))
# Two colors and an id_column
df_q %>%
tableHTML(widths = rep(50, 5),
rownames = FALSE,
row_groups = list(c(4, 4, 4, 4),
c('Q1', 'Q2', 'Q3', 'Q4'))) %>%
add_theme_colorize(color = c('pink3', 'yellow2'),
total_rows = c(4, 8, 12, 16), id_column = TRUE)
Month | x1 | x2 | x3 | |
---|---|---|---|---|
Q1 | Jan | 75 | 42 | 19 |
Feb | 84 | 21 | 36 | |
Mar | 68 | 37 | 15 | |
Sum1 | 227 | 100 | 70 | |
Q2 | Apr | 95 | 56 | 51 |
May | 32 | 52 | 5 | |
Jun | 86 | 81 | 41 | |
Sum2 | 213 | 189 | 97 | |
Q3 | Jul | 3 | 33 | 98 |
Aug | 34 | 93 | 52 | |
Sep | 44 | 84 | 60 | |
Sum3 | 81 | 210 | 210 | |
Q4 | Oct | 70 | 70 | 43 |
Nov | 24 | 4 | 76 | |
Dec | 38 | 78 | 66 | |
Sum4 | 132 | 152 | 185 |