
Package ‘salso’
September 16, 2024

Type Package

Title Search Algorithms and Loss Functions for Bayesian Clustering

Version 0.3.42

Description The SALSO algorithm is an efficient randomized greedy search method to find a point es-
timate for a random partition based on a loss function and posterior Monte Carlo sam-
ples. The algorithm is implemented for many loss functions, including the Binder loss and a gen-
eralization of the variation of information loss, both of which allow for un-
equal weights on the two types of clustering mistakes. Efficient implementations are also pro-
vided for Monte Carlo estimation of the posterior expected loss of a given clustering esti-
mate. See Dahl, Johnson, Müller (2022) <doi:10.1080/10618600.2022.2069779>.

License MIT + file LICENSE | Apache License 2.0

URL https://github.com/dbdahl/salso

BugReports https://github.com/dbdahl/salso/issues

Depends R (>= 4.2.0)

SystemRequirements Cargo (Rust's package manager), rustc (>= 1.66.1)

Encoding UTF-8

LazyData TRUE

RoxygenNote 7.3.2

NeedsCompilation yes

Author David B. Dahl [aut, cre] (<https://orcid.org/0000-0002-8173-1547>),
Devin J. Johnson [aut] (<https://orcid.org/0000-0003-2619-6649>),
Peter Müller [aut],
Alex Crichton [ctb] (Rust crates: cfg-if, proc-macro2),
Brendan Zabarauskas [ctb] (Rust crate: approx),
David B. Dahl [ctb] (Rust crates: dahl-bellnumber, dahl-partition,

dahl-salso, roxido, roxido_macro),
David Tolnay [ctb] (Rust crates: proc-macro2, quote, syn,

unicode-ident),
Jim Turner [ctb] (Rust crate: ndarray),
Josh Stone [ctb] (Rust crate: autocfg),
R. Janis Goldschmidt [ctb] (Rust crate: matrixmultiply),

1

https://doi.org/10.1080/10618600.2022.2069779
https://github.com/dbdahl/salso
https://github.com/dbdahl/salso/issues
https://orcid.org/0000-0002-8173-1547
https://orcid.org/0000-0003-2619-6649

2 bell

Sean McArthur [ctb] (Rust crate: num_cpus),
Stefan Lankes [ctb] (Rust crate: hermit-abi),
The Cranelift Project Developers [ctb] (Rust crate: wasi),
The CryptoCorrosion Contributors [ctb] (Rust crates: ppv-lite86,

rand_chacha),
The Rand Project Developers [ctb] (Rust crates: getrandom, rand,

rand_chacha, rand_core, rand_pcg),
The Rust Project Developers [ctb] (Rust crates: libc, num-bigint,

num-complex, num-integer, num-traits, rand, rand_chacha, rand_core),
Ulrik Sverdrup ``bluss'' [ctb] (Rust crate: ndarray),
bluss [ctb] (Rust crates: matrixmultiply, rawpointer)

Maintainer David B. Dahl <dahl@stat.byu.edu>

Repository CRAN

Date/Publication 2024-09-16 12:00:06 UTC

Contents
bell . 2
chips . 3
dlso . 4
enumerate.partitions . 5
enumerate.permutations . 6
iris.clusterings . 6
partition.loss . 7
plot.salso.summary . 11
psm . 12
salso . 13
summary.salso.estimate . 15

Index 17

bell Compute the Bell Number

Description

These functions compute the Bell number (the number of partitions of a given number of items) or
its natural logarithm.

Usage

bell(nItems)

lbell(nItems)

chips 3

Arguments

nItems The size of the set 1, 2, ..., n.

Value

A numeric vector of length one giving the Bell number or its natural logarithm.

Examples

bell(12)
lbell(300)
all.equal(bell(5), exp(lbell(5)))

chips CHiPS Partition Greedy Search

Description

This function provides a partition to a subset of items which has high marginal probability based on
samples from a partition distribution using the CHiPS greedy search method (Dahl, Page, Barrien-
tos, 2024).

Usage

chips(
x,
threshold = 0,
nRuns = 64,
intermediateResults = TRUE,
allCandidates = FALSE,
nCores = 0

)

Arguments

x A B-by-n matrix, where each of the B rows represents a clustering of n items
using cluster labels. For the bth clustering, items i and j are in the same cluster
if x[b, i] == x[b, j].

threshold The minimum marginal probability for the partial partition. Values closer to 1.0
will yield a partition of fewer items and values closer to 0.0 will yield a partition
of more items.

nRuns The number of runs to try, where the best result is returned.
intermediateResults

Should intermediate subset partitions be returned?
allCandidates Should all the final subset partitions from multiple runs be returned?
nCores The number of CPU cores to use, i.e., the number of simultaneous runs at any

given time. A value of zero indicates to use all cores on the system.

4 dlso

Value

If intermediateResults is FALSE, an integer vector giving the estimated subset partition, encoded
using cluster labels with -1 indicating not allocated. If TRUE, a matrix with intermediate subset
partitions in the rows.

Examples

For examples, use 'nCores = 1' per CRAN rules, but in practice omit this.
data(iris.clusterings)
draws <- iris.clusterings
chips(draws, threshold = 0, nRuns = 1)
chips(draws, nCores = 1)

dlso Latent Structure Optimization Based on Draws

Description

This function provides a partition to summarize a partition distribution using the draws-based latent
structure optimization (DLSO) method, which is also known as the least-squares clustering method
(Dahl 2006). The method seeks to minimize an estimation criterion by picking the minimizer among
the partitions supplied. The implementation currently supports the minimization of several partition
estimation criteria. For details on these criteria, see partition.loss.

Usage

dlso(truth, loss = VI(), estimate = NULL)

Arguments

truth An integer vector of cluster labels for n items representing the true clustering.
Two items are in the same cluster if their labels are equal. Or, a matrix of n
columns where each row is a clustering.

loss The loss function to use, as indicated by "binder", "omARI", "VI", "NVI",
"ID", "NID", or the result of calling a function with these names. Also sup-
ported are "binder.psm", "VI.lb", "omARI.approx", or the result of calling a
function with these names, in which case x above can optionally be a pairwise
similarity matrix, i.e., n-by-n symmetric matrix whose (i, j) element gives the
(estimated) probability that items i and j are in the same subset (i.e., cluster) of
a partition (i.e., clustering).

estimate An integer vector of cluster labels having the same length as truth represent-
ing the estimated clustering. Or, a matrix of n columns where each row is a
clustering.

Value

An integer vector giving the estimated partition, encoded using cluster labels.

enumerate.partitions 5

References

D. B. Dahl (2006), Model-Based Clustering for Expression Data via a Dirichlet Process Mixture
Model, in Bayesian Inference for Gene Expression and Proteomics, Kim-Anh Do, Peter Müller,
Marina Vannucci (Eds.), Cambridge University Press.

See Also

partition.loss, psm, summary.salso.estimate, salso

Examples

data(iris.clusterings)
dlso(iris.clusterings, loss=VI())
dlso(iris.clusterings, loss=binder())

Compute expected loss using all draws, but pick the best among the first 10.
dlso(iris.clusterings, loss=VI(), estimate=iris.clusterings[1:10,])

enumerate.partitions Enumerate Partitions of a Set

Description

This function produces a matrix whose rows provide all possible partitions of the set 1, 2, ..., n.
These partitions are provided as cluster labels, where two items are in the same subset (i.e., cluster)
if their labels are equal.

Usage

enumerate.partitions(nItems)

Arguments

nItems The size of the set 1, 2, ..., n, i.e., n.

Value

A matrix of integers, where each row is a partition encoded as a vector of cluster labels.

Examples

enumerate.partitions(5)

6 iris.clusterings

enumerate.permutations

Enumerate Permutations of Items

Description

This function produces a matrix whose rows provide all possible permutations of the set 1, 2, ..., n.

Usage

enumerate.permutations(nItems)

Arguments

nItems The size of the set 1, 2, ..., n, i.e., n.

Value

A matrix of integers, where each row is a permutation.

Examples

enumerate.permutations(5)

iris.clusterings Clusterings of the Iris Data

Description

Randomly generated clusterings for the iris dataset.

Usage

iris.clusterings

Format

A 1000-by-150 matrix of 1000 randomly generated clusterings of the 150 observations in the iris
dataset.

Source

Unknown.

See Also

iris

partition.loss 7

partition.loss Compute Partition Loss or the Expectation of Partition Loss

Description

Given two partitions π∗ and π, these functions compute the specified loss when using π∗ to esti-
mate π. Smaller loss values indicate higher concordance between partitions. These functions also
compute a Monte Carlo estimate of the expectation for the specified loss based on samples or a pair-
wise similarity matrix. This function also supports computing approximations to the expectation of
several losses. Supported criteria are described below. Some criteria only require the pairwise sim-
ilarity matrix (as computed, for example, by psm) whereas others require samples from a partition
distribution. For those criteria that only need the pairwise similarity matrix, posterior samples can
still be provided in the truth argument and the pairwise similarity matrix will automatically be
computed as needed.

Usage

partition.loss(truth, estimate, loss = VI())

binder(truth, estimate, a = 1)

RI(truth, estimate)

omARI(truth, estimate)

omARI.approx(truth, estimate)

ARI(truth, estimate)

VI(truth, estimate, a = 1)

VI.lb(truth, estimate)

NVI(truth, estimate)

ID(truth, estimate)

NID(truth, estimate)

Arguments

truth An integer vector of cluster labels for n items representing the true clustering.
Two items are in the same cluster if their labels are equal. Or, a matrix of n
columns where each row is a clustering.

estimate An integer vector of cluster labels having the same length as truth represent-
ing the estimated clustering. Or, a matrix of n columns where each row is a
clustering.

8 partition.loss

loss The loss function to use, as indicated by "binder", "omARI", "VI", "NVI",
"ID", "NID", or the result of calling a function with these names. Also sup-
ported are "binder.psm", "VI.lb", "omARI.approx", or the result of calling a
function with these names, in which case x above can optionally be a pairwise
similarity matrix, i.e., n-by-n symmetric matrix whose (i, j) element gives the
(estimated) probability that items i and j are in the same subset (i.e., cluster) of
a partition (i.e., clustering).

a (Only used for Binder and VI loss) The argument a is either: i. a nonnegative
scalar in [0, 2] giving (for Binder loss) the cost of placing two items in separate
clusters when in truth they belong to the same cluster, ii. NULL, in which case a
that maximizes the expected loss is found, and iii. a list containing the desired
number of clusters ("nClusters") when searching for a that yields this number
of clusters. In all but the first case, one may want to modifying maxSize in the
salso function. To increase the probability of hitting exactly the desired number
of clusters, the nRuns in the salso function may need to be increased. Without
loss of generality, the cost (under Binder loss) of placing two items in the same
cluster when in truth they belong to separate clusters is fixed 2-a. For VI, a has
a similar interpretation, although is not a unit cost. See Dahl, Johnson, Müller
(2021).

Details

The partition estimation criterion can be specified using the loss argument, which is either a string
or a result of calling the associated functions. These losses are described below:

"binder" Binder. Whereas high values of the Rand index R between π∗ and π correspond to
high concordance between the partitions, the N-invariant Binder loss L for a partition π∗
in estimating π is L = (1 − R) ∗ (n − 1)/n, meaning that low values correspond to high
concordance between the partitions. This package reports the N-invariant Binder loss. The
original Binder loss equals the N-invariant Binder loss multiplied by n2/2. Only the pairwise
similarity matrix is required for this loss, but samples can be provided. As originally discussed
by Binder (1978), two mistakes are possible: 1. Placing two items in separate clusters when
in truth they belong to the same cluster, and 2. Placing two items in the same cluster when
in truth they belong to separate clusters. The default cost of the first mistake is one, but can
be specified with the argument a in [0, 2]. Without loss of generality, the cost of the second
mistake is set as 2-a. For a discussion of general weights, see Dahl, Johnson, and Müller
(2021). For a discussion of the equal weights case, see also Dahl (2006), Lau and Green
(2007), Dahl and Newton (2007), Fritsch and Ickstadt (2009), and Wade and Ghahramani
(2018).

"omARI" One Minus Adjusted Rand Index. Computes the expectation of one minus the adjusted
Rand index (Hubert and Arabie, 1985). Whereas high values of the adjusted Rand index
between π∗ and π correspond to high concordance between the partitions, the loss associated
with the adjusted Rand index for a partition π∗ in estimating π is one minus the adjusted
Rand index between the partitions, meaning that low values correspond to high concordance
between the partitions. Samples from a partition distribution are required for this loss. See
Fritsch and Ickstadt (2009).

"omARI.approx" Approximation of One Minus Adjusted Rand Index. Computes the first-order
approximation of the expectation of one minus the adjusted Rand index. The adjusted Rand in-
dex involves a ratio and the first-order approximation of the expectation is based on E(X/Y) ≈

partition.loss 9

E(X)/E(Y). Only the pairwise similarity matrix is required for this criterion, but samples
can be provided. See Fritsch and Ickstadt (2009).

"VI" Variation of Information. Computes the expectation of the (generalized) variation of infor-
mation loss. Samples from a partition distribution are required for this loss. See Meilă (2007),
Wade and Ghahramani (2018), and Rastelli and Friel (2018). The original variation of in-
formation of Meilă (2007) has been extended to the generalized variation of information of
Dahl, Johnson, and Müller (2021) to allow for unequal weighting of two possible mistakes:
1. Placing two items in separate clusters when in truth they belong to the same cluster, and
2. Placing two items in the same cluster when in truth they belong to separate clusters. The
value a controls the cost of the first mistake and defaults to one, but can be specified with the
argument a in [0, 2]. Without loss of generality, the cost of the second mistake is controlled by
2-a. See Dahl, Johnson, Müller (2021).

"VI.lb" Lower Bound of the Variation of Information. Computes the lower bound of the expec-
tation of the variation of information loss, where the lower bound is obtained by Jensen’s
inequality. Only the pairwise similarity matrix is required for this criterion, but samples can
be provided. See Wade and Ghahramani (2018).

"NVI" Normalized Variation of Information. Computes the expectation of the normalized variation
of information loss. Samples from a partition distribution are required for this loss. See Vinh,
Epps, and Bailey (2010) and Rastelli and Friel (2018).

"ID" Information Distance. Computes the expectation of the information distance (Dmax) loss.
Samples from a partition distribution are required for this loss. See Vinh, Epps, and Bailey
(2010).

"NID" Normalized Information Distance. Computes the expectation of the normalized information
distance loss. Samples from a partition distribution are required for this loss. See Vinh, Epps,
and Bailey (2010) and Rastelli and Friel (2018).

The functions RI and ARI are convenience functions. Note that:

• binder(p1, p2, a=1) = (1 - RI(p1, p2))*(n-1)/n

• omARI(p1, p2) = 1 - ARI(p1, p2)

Value

A numeric vector.

References

W. M. Rand (1971), Objective Criteria for the Evaluation of Clustering Methods. Journal of the
American Statistical Association, 66: 846–850.

D. A. Binder (1978), Bayesian cluster analysis, Biometrika 65, 31-38.

L. Hubert and P. Arabie (1985), Comparing Partitions. Journal of Classification, 2, 193–218.

D. B. Dahl (2006), Model-Based Clustering for Expression Data via a Dirichlet Process Mixture
Model, in Bayesian Inference for Gene Expression and Proteomics, Kim-Anh Do, Peter Müller,
Marina Vannucci (Eds.), Cambridge University Press.

J. W. Lau and P. J. Green (2007), Bayesian model based clustering procedures, Journal of Compu-
tational and Graphical Statistics 16, 526-558.

10 partition.loss

M. Meilă (2007), Comparing Clusterings - an Information Based Distance. Journal of Multivariate
Analysis, 98: 873–895.

D. B. Dahl and M. A. Newton (2007), Multiple Hypothesis Testing by Clustering Treatment Effects,
Journal of the American Statistical Association, 102, 517-526.

A. Fritsch and K. Ickstadt (2009), An improved criterion for clustering based on the posterior simi-
larity matrix, Bayesian Analysis, 4, 367-391.

N. X. Vinh, J. Epps, and J. Bailey (2010), Information Theoretic Measures for Clusterings Compar-
ison: Variants, Properties, Normalization and Correction for Chance, Journal of Machine Learning
Research, 11, 2837-2854.

S. Wade and Z. Ghahramani (2018), Bayesian cluster analysis: Point estimation and credible balls.
Bayesian Analysis, 13:2, 559-626.

R. Rastelli and N. Friel (2018), Optimal Bayesian estimators for latent variable cluster models.
Statistics and Computing, 28, 1169-1186.

D. B. Dahl, D. J. Johnson, and P. Müller (2022), Search Algorithms and Loss Functions for Bayesian
Clustering, Journal of Computational and Graphical Statistics, 31(4), 1189-1201, doi:10.1080/
10618600.2022.2069779.

See Also

psm, salso, dlso

Examples

For examples, use 'nCores=1' per CRAN rules, but in practice omit this.
data(iris.clusterings)
partitions <- iris.clusterings[1:5,]

all.equal(partition.loss(partitions, partitions, loss=binder(a=1.4)),
binder(partitions, partitions, a=1.4))

all.equal(partition.loss(partitions, partitions, loss=omARI()),
omARI(partitions, partitions))

all.equal(partition.loss(partitions, partitions, loss=VI(a=0.8)),
VI(partitions, partitions, a=0.8))

truth <- iris.clusterings[1,]
estimate <- iris.clusterings[2,]

VI(truth, estimate, a=1.0)
n <- length(truth)
all.equal(binder(truth, estimate), (1 - RI(truth, estimate)) * (n-1) / n)
all.equal(omARI(truth, estimate), 1 - ARI(truth, estimate))

https://doi.org/10.1080/10618600.2022.2069779
https://doi.org/10.1080/10618600.2022.2069779

plot.salso.summary 11

plot.salso.summary Heatmap, Multidimensional Scaling, Pairs, and Dendrogram Plotting
for Partition Estimation

Description

This function produces one of four plots: 1. "heatmap": A heatmap showing the pairwise alloca-
tion probabilities that items are clustered. 2. "mds": A scatter plot using classical multidimensional
scaling (also known as principal coordinates analysis) with the exemplar (i.e., the most representa-
tive observation) of each cluster emphasized. 3. "pairs": Pairs plots of all the variables with the
exemplar (i.e., the most representative observation) of each cluster emphasized. 4. "dendrogram":
A dendrogram based on expected partition loss showing the relationships among clusters when
merging pairs of clusters such that the increase in the expectation of the posterior loss is minimized.

Usage

S3 method for class 'salso.summary'
plot(
x,
type = c("heatmap", "mds", "pairs", "dendrogram")[1],
data = NULL,
showLabels = TRUE,
showIDs = length(x$estimate) <= 50,
cexAdjustment = 0.7,
...

)

Arguments

x An object returned by summary(y), where y itself is returned by the salso func-
tion.

type A string equal to "heatmap", "mds", "pairs", or "dendrogram".

data The data from which the partition estimation was obtained. This is required
when type='pairs' and ignored otherwise.

showLabels Should the cluster labels be shown in the plot when type="heatmap"?

showIDs Should the ID of the items be shown in the plot?

cexAdjustment Scalar multiplier for adjust text size.

... Arguments to be passed to methods, such as graphical parameters (see par).

Value

NULL, invisibly.

See Also

salso, summary.salso.estimate, cmdscale.

12 psm

Examples

For examples, use 'nCores=1' per CRAN rules, but in practice omit this.
data(iris.clusterings)
draws <- iris.clusterings
est <- salso(draws, nCores=1)
summ <- summary(est)
plot(summ, type="heatmap")
plot(summ, type="mds")
plot(summ, type="pairs", data=iris)
plot(summ, type="dendrogram")

psm Compute an Adjacency or Pairwise Similarity Matrix

Description

If only one sample is provided, this function computes an adjacency matrix, i.e., a binary matrix
whose (i, j) element is one if and only if elements i and j in the partition have the same cluster
label. If multiple samples are provided (as rows of the x matrix), this function computes the n-by-n
matrix whose (i, j) element gives the relative frequency (i.e., estimated probability) that items i and
j are in the same subset (i.e., cluster). This is the mean of the adjacency matrices of the provided
samples.

Usage

psm(x, nCores = 0)

Arguments

x A B-by-n matrix, where each of the B rows represents a clustering of n items
using cluster labels. For the bth clustering, items i and j are in the same cluster
if x[b,i] == x[b,j].

nCores The number of CPU cores to use, i.e., the number of simultaneous runs at any
given time. A value of zero indicates to use all cores on the system.

Value

A n-by-n symmetric matrix whose (i, j) element gives the relative frequency that that items i and
j are in the same subset (i.e., cluster).

Examples

For examples, use 'nCores=1' per CRAN rules, but in practice omit this.
data(iris.clusterings)
partition <- iris.clusterings[1,]
psmatrix <- psm(partition, nCores=1)
psmatrix[1:6, 1:6]

salso 13

dim(iris.clusterings)
probs <- psm(iris.clusterings, nCores=1)
dim(probs)
probs[1:6, 1:6]

salso SALSO Greedy Search

Description

This function provides a partition to summarize a partition distribution using the SALSO greedy
search method (Dahl, Johnson, and Müller, 2022). The implementation currently supports the min-
imization of several partition estimation criteria. For details on these criteria, see partition.loss.

Usage

salso(
x,
loss = VI(),
maxNClusters = 0,
nRuns = 16,
maxZealousAttempts = 10,
probSequentialAllocation = 0.5,
nCores = 0,
...

)

Arguments

x A B-by-n matrix, where each of the B rows represents a clustering of n items
using cluster labels. For the bth clustering, items i and j are in the same cluster
if x[b,i] == x[b,j].

loss The loss function to use, as indicated by "binder", "omARI", "VI", "NVI",
"ID", "NID", or the result of calling a function with these names. Also sup-
ported are "binder.psm", "VI.lb", "omARI.approx", or the result of calling a
function with these names, in which case x above can optionally be a pairwise
similarity matrix, i.e., n-by-n symmetric matrix whose (i, j) element gives the
(estimated) probability that items i and j are in the same subset (i.e., cluster)
of a partition (i.e., clustering). The loss functions "binder.psm", "VI.lb", and
"omARI.approx" are generally not recommended and the current implementa-
tion requires that maxZealousAttempts = 0 and probSequentialAllocation
= 1.0.

maxNClusters The maximum number of clusters that can be considered by the optimization
algorithm, which has important implications for the interpretability of the re-
sulting clustering and can greatly influence the RAM needed for the optimiza-
tion algorithm. If the supplied value is zero and x is a matrix of clusterings, the

14 salso

optimization is constrained by the maximum number of clusters among the clus-
terings in x. If the supplied value is zero and x is a pairwise similarity matrix,
there is no constraint.

nRuns The number of runs to try, although the actual number may differ for the follow-
ing reasons: 1. The actual number is a multiple of the number of cores speci-
fied by the nCores argument, and 2. The search is curtailed when the seconds
threshold is exceeded.

maxZealousAttempts

The maximum number of attempts for zealous updates, in which entire clusters
are destroyed and items are sequentially reallocated. While zealous updates may
be helpful in optimization, they also take more CPU time which might be better
used trying additional runs.

probSequentialAllocation

For the initial allocation, the probability of sequential allocation instead of using
sample(1:K, ncol(x), TRUE), where K is set according to the maxNClusters
argument.

nCores The number of CPU cores to use, i.e., the number of simultaneous runs at any
given time. A value of zero indicates to use all cores on the system.

... Extra arguments not intended for the end user, including: 1. seconds: Instead
of performing all the requested number of runs, curtail the search after the spec-
ified expected number of seconds. Note that the function will finish earlier if all
the requested runs are completed. The specified seconds does not account for
the overhead involved in starting the search and returning results. 2. maxScans
The maximum number of full reallocation scans. The actual number of scans
may be less than maxScans since the method stops if the result does not change
between scans, and 3. probSingletonsInitialization: When doing a se-
quential allocation to obtain the initial allocation, the probability of placing the
first maxNClusters randomly-selected items in singletons subsets.

Value

An integer vector giving the estimated partition, encoded using cluster labels.

References

D. B. Dahl, D. J. Johnson, and P. Müller (2022), Search Algorithms and Loss Functions for Bayesian
Clustering, Journal of Computational and Graphical Statistics, 31(4), 1189-1201, doi:10.1080/
10618600.2022.2069779.

See Also

partition.loss, psm, summary.salso.estimate, dlso

Examples

For examples, use 'nCores=1' per CRAN rules, but in practice omit this.
data(iris.clusterings)
draws <- iris.clusterings
salso(draws, loss=VI(), nRuns=1, nCores=1)

https://doi.org/10.1080/10618600.2022.2069779
https://doi.org/10.1080/10618600.2022.2069779

summary.salso.estimate 15

salso(draws, loss=VI(a=0.7), nRuns=1, nCores=1)
salso(draws, loss=binder(), nRuns=1, nCores=1)
salso(iris.clusterings, binder(a=NULL), nRuns=4, nCores=1)
salso(iris.clusterings, binder(a=list(nClusters=3)), nRuns=4, nCores=1)

summary.salso.estimate

Summary of Partitions Estimated Using Posterior Expected Loss

Description

Assessing the quality of clusters in a partition estimate is added by this function. The result can
then be plotted with plot.salso.summary. The current implementation of the calculation of these
summaries is not terribly efficient and may be improved in the future.

Usage

S3 method for class 'salso.estimate'
summary(object, alternative, orderingMethod = 1, ...)

Arguments

object An object returned by the salso function.

alternative An optional argument specifying an alternative clustering to use instead of that
provided by object. Use this feature to obtain numerical and graphical sum-
maries of a clustering estimate from other procedures. This clustering must be
provided in canonical form: cluster labels as integers starting at 1 for the first
observation and incrementing by one for each new label.

orderingMethod An integer giving method to use to order the observations for a heatmap plot.
Currently values 1 or 2 are supported.

... Currently ignored.

Value

A list containing the estimate, the pairwise similarity matrix, the mean pairwise similarity matrix,
the score and mean pairwise similarity for each observation, exemplar observation for each cluster,
a dendrogram object, a vector for ordering observations in the heatmap plot, the size of each cluster,
and the number of clusters.

Examples

For examples, use 'nCores=1' per CRAN rules, but in practice omit this.
data(iris.clusterings)
draws <- iris.clusterings
est <- salso(draws, nCores=1)
summ <- summary(est)

16 summary.salso.estimate

plot(summ, type="heatmap")
plot(summ, type="mds")
plot(summ, type="pairs", data=iris)
plot(summ, type="dendrogram")

Index

∗ datasets
iris.clusterings, 6

ARI, 9
ARI (partition.loss), 7

bell, 2
binder (partition.loss), 7

chips, 3
cmdscale, 11

dlso, 4, 10, 14

enumerate.partitions, 5
enumerate.permutations, 6

ID (partition.loss), 7
iris, 6
iris.clusterings, 6

lbell (bell), 2

NID (partition.loss), 7
NVI (partition.loss), 7

omARI (partition.loss), 7

par, 11
partition.loss, 4, 5, 7, 13, 14
plot.salso.summary, 11, 15
psm, 5, 7, 10, 12, 14

RI, 9
RI (partition.loss), 7

salso, 5, 8, 10, 11, 13, 15
summary.salso.estimate, 5, 11, 14, 15

VI (partition.loss), 7

17

	bell
	chips
	dlso
	enumerate.partitions
	enumerate.permutations
	iris.clusterings
	partition.loss
	plot.salso.summary
	psm
	salso
	summary.salso.estimate
	Index

