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Abstract

We describe the R package gmvarkit, which provides tools for estimating and analyzing
the reduced form and structural Gaussian mixture vector autoregressive model, the Stu-
dentŠs t mixture vector autoregressive model, and the Gaussian and StudentŠs t mixture
vector autoregressive model. These three models constitute an appealing family of mix-
ture autoregressive models that we call the GSMVAR models. The model parameters are
estimated with the method of maximum likelihood by running multiple rounds of a two-
phase estimation procedure in which a genetic algorithm is used to Ąnd starting values for
a gradient based method. For evaluating the adequacy of the estimated models, gmvarkit

utilizes so-called quantile residuals and provides functions for graphical diagnostics and for
calculating formal diagnostic tests. gmvarkit also enables to simulate from the GSMVAR
processes, to estimate generalized impulse response functions and generalized forecast er-
ror variance decompositions, and to forecast future values of the process, for example. We
illustrate the use of gmvarkit with a quarterly series consisting of two U.S. variables: the
percentage change of real GDP and the percentage change of GDP implicit price deĆator.

Keywords: mixture vector autoregressive model, structural mixture vector autoregressive model,
regime-switching, Gaussian mixture, StudentŠs t mixture, mixture VAR, mixture SVAR.
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1. Introduction

Linear vector autoregressive (VAR) model is a standard tool in time series econometrics. It can
be employed to answer questions about the statistical relationships of different variables or to
forecast future values of the process, for example. Structural VAR model allows to trace out
the effects of economic shocks that have been identiĄed by the researcher. With an appropriate
choice of the autoregressive order p, a linear VAR is often able to Ąlter out autocorrelation
from the series very well. If the errors are assumed to follow an autoregressive conditional het-
eroskedasticity (ARCH) process, the model is also often able to adequately Ąlter out conditional
heteroskedasticity from the series.

In some cases, linear VAR models are not, however, capable to capture all the relevant char-
acteristics of the series. This includes shifts in the mean or volatility, and changes in the
autoregressive dynamics of the process. Such nonlinear features frequently occur in economic
time series when the underlying data generating dynamics vary in time, for example, depending
the speciĄc state of the economy.

Various types of time series models capable of capturing this kind of regime-switching behavior
have been proposed, one of them being the class of mixture models introduced by Le, Martin,
and Raftery (1996) and further developed by, among others, Kalliovirta, Meitz, and Saikkonen
(2015), Kalliovirta et al. (2015), Meitz, Preve, and Saikkonen (2021), Virolainen (2025), and
Virolainen (2021, 2022). Following the recent developments of Kalliovirta, Meitz, and Saikkonen
(2016), Virolainen (2025), and Virolainen (2022), we consider the Gaussian mixture vector au-
toregressive (GMVAR) model, the StudentŠs t mixture vector autoregressive (StMVAR) model,
and the Gaussian and StudentŠs t mixture autoregressive (G-StMVAR) model. These three
models constitute an appealing family of mixture vector autoregressive models that we call the
GSMVAR models.

A GSMVAR process generates each observation from one of its mixture components, which
are either conditionally homoskedastic linear Gaussian vector autoregressions or conditionally
heteroskedastic linear StudentŠs t vector autoregressions. The mixture component that gen-
erates each observation is randomly selected according to the probabilities determined by the
mixing weights that, for a pth order model, depend on the full distribution of the previous p
observations. Consequently, the regime-switching probabilities may depend on the level, vari-
ability, kurtosis, and temporal dependence of the past observations. The speciĄc formulation
of the mixing weights also leads to attractive theoretical properties such as ergodicity and full
knowledge of the stationary distribution of p + 1 consecutive observations.

This paper describes the R package gmvarkit providing a comprehensive set of easy-to-use
tools for GSMVAR modeling, including unconstrained and constrained maximum likelihood
(ML) estimation of the model parameters, quantile residual based model diagnostics, simulation
from the processes, forecasting, estimation generalized impulse response function (GIRF) and
generalized forecast error variance decomposition (GFEVD), and more. Both, reduced form
and structural GSMVAR models are covered. The emphasis is on estimation, as it can, in our
experience, be rather tricky. In particular, due to the endogenously determined mixing weights,
the log-likelihood function has a large number of modes and large areas of the parameter space
where the log-likelihood function is Ćat in multiple directions. The log-likelihood functionŠs
global maximum point is also frequently located very near the boundary of the parameter
space. However, such near-the-boundary estimates often maximize the log-likelihood function
for a technical reason, and it might be more appropriate to consider an alternative estimate
based on the largest local maximum point that is clearly in the interior of the parameter space.

The model parameters are estimated by running multiple rounds of a two-phase estimation
procedure in which a modiĄed genetic algorithm is used to Ąnd starting values for a gradient
based variable metric algorithm. Because of the multimodality of the log-likelihood function,
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some of the estimation rounds may end up in different local maximum points, thereby enabling
the researcher to build models not only based on the global maximum point but also on the local
ones. The estimated models can be conveniently examined with the summary and plot methods.
For evaluating their adequacy, gmvarkit utilizes multivariate quantile residual diagnostics in
the framework presented in Kalliovirta and Saikkonen (2010), including graphical diagnostics
as well as diagnostic tests that take into account uncertainty about the true parameter value.
Forecasting is based on a Monte Carlo simulation method. For univariate modeling, we suggest
using the CRAN distributed R package uGMAR (Virolainen 2018).

The remainder of this paper is organized as follows. Section 2 introduces the GSMVAR models
and discusses some of their properties. For structural models, identiĄcation of the shocks is
also covered. Section 3 discusses estimation of the model parameters. In particular, we discuss
many important practical aspects of the estimation that might not be obvious to researchers
unfamiliar with (S)GSMVAR modeling. We also illustrates how the GSMVAR models can
be estimated and examined with gmvarkit and how parameter constraints can be tested. In
Section 4, we describe quantile residuals and demonstrate how they can be utilized to evaluate
model adequacy in gmvarkit. Section 5 discusses impulse response analysis based on generalized
impulse response functions and generalized forecast error variance decompositions. Section 6
shows how the GSMVAR models can be built with given parameter values. In Section 7,
we Ąrst show how to simulate observations from a GSMVAR process, and then we illustrate
how to forecast future values of a GSMVAR process with a simulation-based Monte Carlo
method. Section 8 concludes, and some useful functions in gmvarkit are collected to a single
table in Section 8. Appendix A provides density functions and some properties of multivariate
Gaussian and StudentŠs t distributions, and Appendix B derives closed form expressions for
the multivariate quantile residuals of the GSMVAR models. Finally, Appendix C presents the
implemented Monte Carlo algorithm for estimating the generalized impulse response functions
and their distributional properties.

Throughout this paper, we illustrate the use of gmvarkit with a quarterly series consisting of two
U.S. variables: the percentage change of real GDP and the percentage change of GDP implicit
price deĆator, covering the period from 1959Q1 to 2019Q4. We deploy the notation nd(µ, Γ) for
the d-dimensional normal distribution with mean µ and (positive deĄnite) covariance matrix Γ,
and td(µ, Γ, ν) for the d-dimensional t-distribution with mean µ, (positive deĄnite) covariance
matrix Γ, and ν > 2 degrees of freedom. The corresponding density functions are denoted as
nd(·;µ, Γ) and td(·;µ, Γ, ν), respectively. By 1p = (1, ..., 1) (p × 1), we denote p-dimensional
vector of ones. Finally, ⊗ denotes Kronecker product.

2. Models

This section introduces the GMVAR model (Kalliovirta et al. 2016), the StMVAR model (Viro-
lainen 2022), and the G-StMVAR model (Virolainen 2022), a family of mixture vector autore-
gressive models that we call the GSMVAR models. First, we deĄne the component processes of
the GSMVAR models - linear VARs based on either Gaussian or StudentŠs t distribution. Then,
we introduce the reduced form GSMVAR models. For brevity, we only give the deĄnition of
the more general G-StMVAR model but explain how the GMVAR and StMVAR models are ob-
tained as special cases of it, namely, by taking all the component models to be of either Gaussian
or StudentŠs t type. After deĄning the reduced form GSMVAR model, we introduce structural
version of the models incorporating statistically identiĄed structural shocks. IdentiĄcation of
the shocks is also brieĆy discussed.

2.1. Linear Gaussian and StudentŠs t vector autoregressions

To develop theory and notation, consider Ąrst the component processes of the Gaussian and
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StudentŠs t mixture vector autoregressive models. For a pth order linear Gaussian or StudentŠs
t vector autoregression zt, we have

zt = ϕ0 +
p
∑

i=1

Aizt−1 + Ω
1/2
t εt, ε ∼ IID(0, Id), (1)

where Ω
1/2
t is a symmetric square root matrix of the positive deĄnite (d × d) covariance matrix

Ωt, and ϕ0 ∈ R
d. The (d × d) autoregression matrices are assumed to satisfy Ap ≡ [A1 : ... :

Ap] ∈ S
d×dp, where

S
d×dp = ¶[A1 : ... : Ap] ∈ R

d×dp : det(Id −
p
∑

i=1

Aiz
i) ̸= 0 for ♣z♣ ≤ 1♢ (2)

deĄnes the usual stability condition of a linear vector autoregression.

In the case of Gaussian VAR, the errors εt are assumed standard normal distributed and the co-
variance matrices Ωt = Ω are time invariant. Denoting zt = (zt, ..., zt−p+1) and z+

t = (zt, zt−1),
it is well known that the stationary solution to (1) satisĄes

zt ∼ ndp(1p ⊗ µ, Σp)

z+
t ∼ nd(p+1)(1p+1 ⊗ µ, Σp+1)

zt♣zt−1 ∼ nd(ϕ0 +Apzt−1, Ω),

(3)

where the last line deĄnes the conditional distribution of zt given zt−1. Denoting by Σ(h) the
lag h (h = 0, ±1, ±2, ...) autocovariance matrix of zt, the quantities µ, Σp, Σ1, Σ1p, Σp+1 are
given as (see, e.g., Lütkepohl 2005, pp. 23, 28-29)

µ =(Id −
p
∑

i=1

Ai)
−1ϕ0 (d × 1)

vec(Σp) =(I(dp)2 −A⊗A)−1vec(Ω) ((dp)2 × 1)

Σ1 =Σ(0) (d × d)

Σ(p) =A1Σ(p − 1) + · · · + ApΣ(0) (d × d)

Σ1p =[Σ(1) : ... : Σ(p − 1) : Σ(p)] = ApΣp (d × dp)

Σp+1 =



Σ1 Σ1p

Σ′
1p Σp

]

(d(p + 1) × d(p + 1))

(4)

where

Σp =













Σ(0) Σ(1) · · · Σ(p − 1)
Σ(−1) Σ(0) · · · Σ(p − 2)

...
...

. . .
...

Σ(−p + 1) Σ(−p + 2) · · · Σ(0)













(dp×dp)

,

A =

















A1 A2 · · · Ap−1 Ap

Id 0 · · · 0 0
0 Id 0 0
...

. . .
...

...
0 0 . . . Id 0

















(dp×dp)

, and Ω =













Ω 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 . . . 0













(dp×dp)

.

(5)

Virolainen (2022) shows that there are exists conditionally heteroskecastic StudentŠs t vector
autoregressions with distributional properties similar to the Gaussian VARs. Using the notation
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described above, these StudentŠs t VARs are obtained from (1) by assuming εt ∼ td(0, Id, ν +dp)
and

Ωt =
ν − 2 + (z − 1p ⊗ µ)′Σ−1

p (z − 1p ⊗ µ)

ν − 2 + dp
Ω. (6)

The StudentŠs t VARs are stationary and satisfy (Virolainen 2022, Theorem 1)

zt ∼ tdp(1p ⊗ µ, Σp, ν)

z+
t ∼ td(p+1)(1p+1 ⊗ µ, Σp+1, ν)

zt♣zt−1 ∼ td(ϕ0 +Apzt−1, Ωt, ν + dp).

(7)

The conditional variance (6) consists of a constant covariance matrix that is multiplied by a time-
varying scalar that depends on the quadratic form of the preceding p observations through the
autoregressive parameters. In this sense, the model has a ŚVAR(p)ŰARCH(p)Š representation,
but the ARCH type conditional variance is not as general as in the conventional multivariate
ARCH process (e.g., Lütkepohl 2005, Section 16.3) that allows the entries of the conditional
covariance matrix to vary relative to each other.

We refer often to the linear Gaussian VARs as GMVAR type, because they are similar to the
component processes of the GMVAR model (Kalliovirta et al. 2016). Likewise, we often refer
to the linear StudentŠs t VARs as StMVAR type, because they are similar to the component
processes of the StMVAR model (Virolainen 2022). The G-StMVAR model (Virolainen 2022)
incorporates both types of component processes. Because the GMVAR are StMVAR models
are obtained as special cases of the G-StMVAR model by assuming that all the component
processes are either GMVAR or StMVAR type, we will only give the deĄnition of the more
general G-StMVAR model.

2.2. The Gaussian and StudentŠs t mixture vector autoregressive model

Let yt (t = 1, 2, ...) be the real valued d-dimensional time series of interest, and let Ft−1 denote
σ-algebra generated by the random vectors ¶ys, s < t♢. In a G-StMVAR model (Virolainen
2022) with autoregressive order p and M mixture components (or regimes), the observations yt

are assumed to be generated by

yt =
M
∑

m=1

sm,t(µm,t + Ω
1/2
m,tεm,t), (8)

µm,t =ϕm,0 +
p
∑

i=1

Am,iyt−i, (9)

where the following conditions hold.

Condition 1

1. For m = 1, ..., M1 ≤ M , the random vectors εm,t are IID nd(0, Id) distributed, and for m =
M1 + 1, ..., M , they are IID td(0, Id, νm + dp) distributed. For all m, εm,t are independent
of Ft−1.

2. For each m = 1, ..., M ‚ ϕm,0 ∈ R
d, Am,p ≡ [Am,1 : ... : Am,p] ∈ S

d×dp (the set S
d×dp is

defined in (2)), and Ωm is positive definite. For m = 1, ..., M1, the conditional covariance
matrices are constants, Ωm,t = Ωm. For m = M1 + 1, ..., M , the conditional covariance
matrices Ωm,t are as in (6), except that z is replaced with yt−1 = (yt−1, ..., yt−p) and the
regime specific parameters ϕm,0, Am,p,Ωm,νm are used to define the quantities therein.
For m = M1 + 1, ..., M , also νm > 2.
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3. The unobservable regime variables s1,t, ..., sM,t are such that at each t, exactly one of
them takes the value one and the others take the value zero according to the conditional
probabilities expressed in terms of the (Ft−1-measurable) mixing weights αm,t ≡ Pr(sm,t =
1♣Ft−1) that satisfy

∑M
m=1 αm,t = 1.

4. Conditionally on Ft−1, (s1,t, ..., sM,t) and εm,t are assumed independent.

The conditions νm > 2 are made to ensure the existence of second moments. This deĄnition
implies that the G-StMVAR model generates each observation from one of its mixture compo-
nents, linear Gaussian or StudentŠs t vector autoregression discussed in Section 2.1, and that
the mixture component is selected randomly according to the probabilities given by the mixing
weights αm,t. The Ąrst M1 mixture components are assumed to be linear Gaussian VARs, and
the last M2 ≡ M − M1 mixture components are assumed to be linear StudentŠs t VARs. If
all the component processes are Gaussian VARs (M1 = M), the G-StMVAR model reduces to
the GMVAR model of Kalliovirta et al. (2016). If all the component processes are StudentŠs t
VARs (M1 = 0), the G-StMVAR model reduced to the StMVAR model of Virolainen (2022).

The deĄnition (8), (9), and Condition 1 leads to a model in which the conditional density
function of yt conditional on its past, Ft−1, is given as

f(yt♣Ft−1) =
M1
∑

m=1

αm,tnd(yt; µm,t, Ωm) +
M
∑

m=M1+1

αm,ttd(yt; µm,t, Ωm,t, νm + dp). (10)

The conditional densities nd(yt; µm,t, Ωm,t) and td(yt; µm,t, Ωm,t, νm + dp) are obtained from (3)
and (7), respectively. The explicit expressions of the density functions are given in Appendix A.
To fully deĄne the G-StMVAR model, it is then left to specify the mixing weights αm,t.

The mixing weights are deĄned as as weighted ratios of the component process stationary
densities corresponding to the previous p observations. In order to formally specify the mixing
weights, we Ąrst deĄne the following function for notational convenience. Let

dm,dp(y; 1p ⊗ µm, Σm,p, νm) =

{

ndp(y; 1p ⊗ µm, Σm,p), when m ≤ M1,
tdp(y; 1p ⊗ µm, Σm,p, νm), when m > M1,

(11)

where the dp-dimensional densities ndp(y; 1p ⊗ µm, Σm,p) and tdp(y; 1p ⊗ µm, Σm,p, νm) corre-
spond to the stationary distribution of the mth component process (given in equations (3) and
(7)). Denoting yt−1 = (yt−1, ..., yt−p), the mixing weights of the G-StMVAR model are deĄned
as

αm,t =
αmdm,dp(yt−1; 1p ⊗ µm, Σm,p, νm)

∑M
n=1 αndn,dp(yt−1; 1p ⊗ µn, Σn,p, νn)

, (12)

where αm ∈ (0, 1), m = 1, ..., M , are mixing weights parameters assumed to satisfy
∑M

m=1 αm =
1, µm = (Id −

∑p
i=1 Am,i)

−1ϕm,0, and covariance matrix Σm,p is given in (4) and (5) but using
the regime speciĄc parameters to deĄne the quantities therein.

Because the mixing weights are weighted component processŠs stationary densities corresponding
to the previous p observations, an observation is more likely to be generated from a regime with
higher relative weighted likelihood. This is a convenient feature for forecasting but it also allows
the researcher to associate speciĄc characteristics to different regimes. Moreover, it turns out
that this speciĄc formulation of the mixing weights leads to attractive properties such as full
knowledge of the stationary distribution of p + 1 consecutive observations and ergodicity of the
process. SpeciĄcally, yt = (yt, ..., yt−p+1) has stationary distribution that is characterized by
the density (Virolainen 2022, Theorem 2)

f(y) =
M
∑

m=1

αmndp(y; 1p ⊗ µm, Σm,p) +
M
∑

m=M1+1

αmtdp(y; 1p ⊗ µm, Σm,p, νm). (13)
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gmvarkit collects the parameters of a G-StMVAR model to the ((M(d + d2p + d(d + 1)/2 + 2) −
M1 − 1) × 1) vector θ = (ϑ1, ...,ϑM , α1, ..., αM−1,ν), where ϑm = (ϕm,0, vec(Am,p), vech(Ωm))
and ν = (νM1+1, ..., νM ). The last mixing weight parameter αM is not parametrized because
it is obtained from the restriction

∑M
m=1 αm = 1. A G-StMVAR model with autoregressive

order p, and M1 GMVAR type and M2 StMVAR type mixture components is referred to as
G-StMVAR(p, M1, M2) model, whenever the order of the model needs to be emphasized. If
the model imposes constraints or is a structural model, the parameter vector is different. For
details, see the documentation.

2.3. Structural G-StMVAR model

gmvarkit currently supports two types of structural models: structural models identiĄed re-
cursively by the lower-triangular Cholesky decomposition and structural models identiĄed by
conditional heteroskedasticity. Recursive identiĄcation of the structural shocks et is automat-
ically assumed for reduced form models. In that case, the (time-varying) impact matrix Bt is
simply the lower-triangular Cholesky decomposition of the conditional covariance matrix of the

reduced form error ut = Btet =
∑M

m=1 sm,tΩ
1/2
m,tεm,t, that is, of

∑M
m=1 αm,tΩm,t. The rest of this

section discusses structural models identiĄed by conditional heteroskedasticity as in Virolainen
(2025); see also Virolainen (2022).

We write the structural G-StMVAR model identiĄed by conditional heteroskedasticity (Viro-
lainen 2022) as

yt =
M
∑

m=1

sm,t(ϕm,0 +
p
∑

i=1

Am,iyt−i) + Btet (14)

and

ut ≡ Btet =











































u1,t ∼ nd(0, Ω1,t) if s1,t = 1 (with probability α1,t)
...

uM1,t ∼ nd(0, ΩM1,t) if sM1,t = 1 (with probability αM1,t)
uM1+1,t ∼ td(0, ΩM1+1,t, νM1+1 + dp) if sM1+1,t = 1 (with probability αM1+1,t)

...
uM,t ∼ td(0, ΩM,t, νM + dp) if sM,t = 1 (with probability αM,t)

(15)
where the probabilities are expressed conditionally on Ft−1 and et (d × 1) in an orthogonal
structural error. For the GMVAR type regimes, m = 1, ..., M1‚ Ωm,t = Ωm. For the StMVAR
type regimes, m = M1 + 1, ..., M , Ωm,t = ωm,tΩm, where

ωm,t =
νm − 2 + (yt−1 − 1p ⊗ µm)′Σ−1

m,p(yt−1 − 1p ⊗ µm)

νm − 2 + dp
. (16)

The invertible (d×d) "B-matrix" Bt, which governs the contemporaneous relations of the shocks,
is time-varying and a function of yt−1, ..., yt−p. With a particular choice of Bt, the conditional
covariance matrix of the structural error can be normalized to an identity matrix. Consequently,
a constant sized structural shock will be ampliĄed according to the conditional variance of the
reduced form error, thereby reĆecting the speciĄc state of the economy.

We have Ωu,t ≡ Cov(ut♣Ft−1) =
∑M1

m=1 αm,tΩm +
∑M

m=M1+1 αm,tωm,tΩm, while the conditional

covariance matrix of the structural error et = B−1
t ut (which are not IID but are martingale

differences and therefore uncorrelated) is obtained as

Cov(et♣Ft−1) =
M1
∑

m=1

αm,tB
−1
t ΩmB′−1

t +
M
∑

m=M1+1

αm,tωm,tB
−1
t ΩmB′−1

t . (17)
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Therefore, we need to choose the B-matrix so that the structural shocks are orthogonal regardless
of which regime they come from.

We employ the following decomposition to simultaneously diagonalize all the error term covari-
ance matrices:

Ωm = WΛmW ′, m = 1, ..., M, (18)

where the diagonal of Λm = diag(λm1, ..., λmd), λmi > 0 (i = 1, ..., d), contains the eigenvalues
of the matrix ΩmΩ−1

1 and the columns of the nonsingular W are the related eigenvectors (that
are the same for all m by construction). When M = 2, the decomposition (18) always exists,
but for M ≥ 3 its existence requires that the matrices share the common eigenvectors in W .
This is, however, testable.

Lanne, Lütkepohl, and Maciejowsla (2010, Proposition 1) show that for a given ordering of
the eigenvalues, W is unique apart from changing all signs a column, as long as for all i ̸=
j ∈ ¶1, ..., d♢ there exists an m ∈ ¶2, ..., M♢ such that λmi ̸= λmj (for m = 1, Λm = Id and
λm1 = · · · = λmd = 1). A locally unique B-matrix that ampliĄes a constant sized structural
shock according to the conditional variance of the reduced form error is therefore obtained as

Bt = W (
M1
∑

m=1

αm,tΛm +
M
∑

m=M1+1

αm,tωm,tΛm)1/2. (19)

Since B−1
t ΩmB′−1

t = Λm(
∑M1

n=1 αn,tΛn +
∑M

n=M1+1 αn,tωn,tΛn)−1, the B-matrix (19) simulta-
neously diagonalizes Ω1, ..., ΩM , and Ωu,t (and thereby also Ω1,t, ..., ΩM,t) for each t so that
Cov(et♣Ft−1) = Id.

2.4. IdentiĄcation of the structural shocks

With the decomposition (18) of Ω1, ..., ΩM and the B-matrix (19), a statistical identiĄcation of
the shocks is achieved as long as each pair of the eigenvalues is distinct for some m. In order
to identify structural shocks with economic interpretations, they need to be uniquely related
to the economic shocks through the constraints on the B-matrix (or equally W ) that only the
shock of interest satisĄes. Virolainen (2025, Proposition 1) gives formal conditions for global
identiĄcation of any subset of the shocks when the relevant pairs eigenvalues are distinct in
some regime. He also derives conditions for globally identifying some of the shocks when one of
the relevant pairs of the eigenvalues is identical in all regimes. For convenience, we repeat the
conditions in the former case below, but in the latter case, we refer to Virolainen (2025, where
also the following Proposition is proven).

Proposition 1 Suppose Ωm = WΛmW ′, m = 1, ..., M , where the diagonal of Λ = diag(λm1, ..., λmd),
λmi > 0 (i = 1, ..., d), contains the eigenvalues of the matrix ΩmΩ−1

1 and the columns of the
nonsingular W are the related eigenvectors. Then, the last d1 structural shocks are uniquely
identified if

1. for all j > d − d1 and i ̸= j there exists an m ∈ ¶2, ..., M♢ such that λmi ̸= λmj,

2. the columns of W in a way that for all i ̸= j > d − d1, the ith column cannot satisfy the
constraints of the jth column as is nor after changing all signs in the ith column, and

3. there is at least one (strict) sign constraint in each of the last d1 columns of W .

Condition 3 Ąxes the signs in the last d1 columns of W , and therefore the signs of the instan-
taneous effects of the corresponding shocks. However, since changing the signs of the columns
is effectively the same as changing the signs of the corresponding shocks, and the structural
shock has a distribution that is symmetric about zero, this condition is not restrictive. The
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assumption that the last d1 shocks are identiĄed is not restrictive either, as one may always
reorder the structural shocks accordingly.

For example, if d = 3, λm1 ̸= λm3 for some m, and λm2 ̸= λm3 for some m, the third structural
shock can be identiĄed with the following constraints:

Bt =







∗ ∗ ∗
+ + −
+ + +






or







− ∗ +
− + −
∗ + +






or







+ 0 −
∗ ∗ ∗
+ ∗ +






(20)

and so on, where ” ∗ ” signiĄes that the element is not constrained, ” + ” denotes strict positive
and ” − ” a strict negative sign constraint, and ”0” means that the element is constrained to
zero. Because imposing zero or sign constraints on W equals to placing them on Bt, they may
be justiĄed economically. Furthermore, besides a single sign constraint in each column, the
constraints are over-identifying and can thus be also justiĄed statistically. Sign constraints,
however, donŠt reduce the dimension of the parameter space, making some of the measures such
as the conventional likelihood ratio test and information criteria unsuitable for testing them.
Quantile residual diagnostics, on the other hand, can be used to evaluate how well the restricted
model is able to encapsulate the statistical properties of the data compared to the unrestricted
alternative.

If condition 1 of Proposition 1 is strengthened to state that for all i ̸= j there exists an
m ∈ ¶2, ..., M♢ such that λmi ̸= λmj , the model is statistically identiĄed even though only
the last d1 structural shocks have been identiĄed with the proposition. Consequently, the
constraints imposed in condition 2 become testable. If it cannot be assumed that all the pairs
of the eigenvalues are distinct in some regime, then the testing problem is nonstandard and
the conventional asymptotic distributions of likelihood ratio and Wald test statistics become
unreliable. Note, however, that since placing zero or sign constraints on W equals to placing
them on the B-matrix (19), the constraints imposed in condition 2 can be justiĄed economically
as usual.

3. Estimation

3.1. Log-likelihood function

gmvarkit employs the method of maximum likelihood (ML) for estimating the parameters of
the G-StMVAR model. Even the exact log-likelihood function is available, as the station-
ary distribution p consecutive observations in known. Suppose the observed time series is
y−p+1, ..., y0, y1, ..., yT and that the initial values are stationary. Then, the log-likelihood func-
tion of the G-StMVAR model takes the form

L(θ) = log

(

M
∑

m=1

αmdm,dp(y0; 1p ⊗ µm, Σm,p, νm)



+
M
∑

m=1

lt(θ), (21)

where dm,dp(·; 1p ⊗ µm, Σm,p, νm) is deĄned in (11) and

lt(θ) = log





M1
∑

m=1

αm,tnd(yt; µm,t, Ωm) +
M
∑

m=M1+1

αm,ttd(yt; µm,t, Ωm,t, νm + dp)



 . (22)

If stationarity of the initial values seems unreasonable, one can condition on the initial values
and base the estimation on the conditional log-likelihood function, which is obtained by dropping
the Ąrst term on the right hand side of (21).
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Virolainen (2022, Theorem 3) shows that the ML estimator of the G-StMVAR model is strongly
consistent and has the conventional limiting distribution under the conventional high-level con-
ditions. In the case of a GMVAR model (M1 = M), however, establishing asymptotic normality
of the ML estimator requires less unveriĄed assumptions (Kalliovirta et al. 2016, Theorem 3).

Structural models identiĄed by the lower-triangular Cholesky decomposition use the same
parametrization as the reduced form models (more speciĄcally, reduced form models used to
structural analysis assume the recursive identiĄcation automatically). If there are two regimes
in the model (M = 2), the structural G-StMVAR model identiĄed by conditional heteroskedas-
ticity is obtained from estimated reduced form model by decomposing the covariance matrices
Ω1, ..., ΩM as in (18). If M ≥ 3 or overidentifying constraints are imposed on Bt through W ,
the model can be reparametrized with W and Λm (m = 2, ..., M) instead of Ω1, ..., ΩM , and
the log-likelihood function can be maximized subject to the new set of parameters and con-
straints.1 In this case, the decomposition (18) is plugged in to the log-likelihood function and
vech(Ω1), ..., vech(ΩM ) are replaced with vec(W ) and λ2, ...,λM in the parameter vector θ,
where λm = (λm1, ..., λmd).

3.2. Two-phase estimation procedure

Finding the ML estimate amounts maximizing the log-likelihood function (21) (and (22)) over
a high dimensional parameter space satisfying the constraints summarized in Virolainen (2022,
Assumption 1). Due to the complexity of the log-likelihood function, numerical optimization
methods are required. The maximization problem can, however, be challenging in practice.
This is particularly due to the mixing weightsŠ complex dependence on the preceding obser-
vations, which induces a large number of modes to the surface of the log-likelihood function,
and large areas to the parameter space where it is Ćat in multiple directions. Also, the popular
EM algorithm (Redner and Walker 1984) is virtually useless here, as at each maximization step
one faces a new optimization problem that is not much simpler than the original one. Follow-
ing Meitz, Preve, and Saikkonen (2018), Meitz et al. (2021), and Virolainen (2021, 2018), we
therefore employ a two-phase estimation procedure in which a genetic algorithm is used to Ąnd
starting values for a gradient based method.

The genetic algorithm in gmvarkit is, at core, mostly based on the description by Dorsey and
Mayer (1995) but several modiĄcations have been deployed to improve its performance. The
modiĄcations include the ones proposed by Patnaik and Srinivas (1994) and Smith, Dike, and
Stegmann (1995) as well as further adjustments that take into account model speciĄc issues
related to the mixing weightsŠ dependence on the preceding observations. For a more detailed
description of the genetic algorithm and its modiĄcations, see Virolainen (2021, Appendix A),
where the genetic algorithm is discussed in the univariate context. After running the genetic
algorithm, the estimation is Ąnalized with a variable metric algorithm (Nash 1990, algorithm
21, implemented by R Core Team 2020) using central difference approximation for the gradient
of the log-likelihood function (see Section 3.4).

3.3. Examples of unconstrained estimation

In this section, we demonstrate how to estimate GSMVAR models with gmvarkit and provide
several examples in order to illustrate various frequently occurring situations. In addition to
the ordinary estimation, we particularly show how a GSMVAR model can be built based on
a local-only maximum point when the ML estimate seems unreasonable. By default, gmvarkit

Ąlters inappropriate estimates automatically, but here we do not use this feature to demonstrate
the issue of inappropriate local estimates. We also consider the estimation of the appropriate

1Namely, instead of constraining vech(Ω1), ..., vech(ΩM ) so that Ω1, ..., ΩM are positive definite, we impose
the constraints λmi > 0 for all m = 2, ..., M and j = 1, ..., d.
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G-StMVAR model when the estimated StMVAR model contains overly large degrees of freedom
estimates (see the related discussion in Virolainen 2022). In the examples, we only consider p = 1
models for simplicity and because then the code outputs Ąt in the margins better, estimation
times are shorter, etc. This order may not be best in the modeling perspective, however.

In gmvarkit, the GSMVAR models are deĄned as class gsmvar S3 objects, which can be cre-
ated with given parameter values using the constructor function GSMVAR (see Section 6) or by
using the estimation function fitGSMVAR, which estimates the parameters and then builds the
model. For estimation, fitGSMVAR needs to be supplied with a multivariate time series and the
arguments specifying the model. The necessary arguments for specifying the model include the
autoregressive order p, the number of mixture components M, and model, which should be either
"GMVAR", "StMVAR", or "G-StMVAR". For GMVAR and StMVAR models, the argument M is a
positive integer, whereas for the G-StMVAR model it is a length two numeric vector specifying
the number of GMVAR type regimes in the Ąrst element and the number of StMVAR type
regimes in the second.

Additional arguments may be supplied to fitGSMVAR in order to specify, for example, whether
the exact log-likelihood function should be used instead of the conditional one (conditional),
how many estimation rounds should be performed (ncalls), and how many central processing
unit (CPU) cores should be used in the estimation (ncores). Some of the estimation rounds
may end up in local-only maximum points or saddle points, but reliability of the estimation
results can be improved by increasing the number of estimation rounds. A large number of
estimation rounds may be required particularly when the number of mixture components is
large, as the surface of the log-likelihood function becomes increasingly more challenging. It
is also possible to adjust the settings of the genetic algorithm that is used to Ąnd the starting
values. The available options are listed in the documentation of the function GAfit to which
the arguments adjusting the settings will be passed.

In general, we recommend being conservative with choice of M due to the identifa-
tion problems induced if the number of regimes is chosen too large. Also, estimation
of models that contain more than two regimes can be extremely challenging. An-
other important thing to know about estimation is that the estimation algorithm
performs very poorly if some of the AR coefficients are very large, substantially
larger than one. This means that you need to scale each component time series
so that they vary approximately in the same magnitude. For instance, typically
in macroeconomic time series, log-differences should be multiplied by hundred. If
the suitable scales are not obvious, you can try out different scales and estimate
linear VARs with your favorite package to see whether the AR coeffients are in a
reasonable range. When a suitable scale is found, proceed to the GSMVAR models.

We illustrate the use of gmvarkit with a quarterly series consisting of two U.S. variables: the
percentage change of real GDP and the percentage change of GDP implicit price deĆator, cov-
ering the period from 1959Q1 to 2019Q4. The following code Ąts a StMVAR(p = 1, M = 2)
model to this series (gdpdef) using the conditional log-likelihood function and performing 16
estimation rounds with 8 CPU cores. In practice, hundreds or even thousands of estima-
tion rounds is often required to obtain reliable results. The larger the dimension of
the series is and the larger the order of the model is, the more estimation rounds is
required. We use only 16 estimation rounds in this simplistic example to shorten the estima-
tion time, knowing beforehand that the given seeds produce the desired result (in this simplistic
case, majority the estimation rounds end up in the MLE anyway, though).

The argument seeds supplies the seeds that initialize the random number generator at the
beginning of each call to the genetic algorithm, thereby yielding reproducible results. The
argument filter_estimates=FALSE turns off automatic Ąltering of inappropriate estimates.

R> library(gmvarkit)
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R> data("gdpdef", package="gmvarkit")

R> fit12t <- fitGSMVAR(gdpdef, p=1, M=2, model="StMVAR", ncalls=16, ncores=8,

+ seeds=1:16, filter_estimates=FALSE)

Using 8 cores for 16 estimations rounds...

Optimizing with a genetic algorithm...

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=16s

Results from the genetic algorithm:

The lowest loglik: -277.038

The mean loglik: -258.416

The largest loglik: -252.168

Optimizing with a variable metric algorithm...

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=05s

Results from the variable metric algorithm:

The lowest loglik: -276.974

The mean loglik: -252.439

The largest loglik: -243.719

Calculating approximate standard errors...

Finished!

Warning messages:

1: In warn_df(p = p, M = M, params = params, model = model) :

The model contains overly large degrees of freedom parameters. Consider

switching to the appropriate G-StMVAR model by settingthe corresponding

regimes to GMVAR type with the function 'stmvar_to_gstmvar'.

2: In warn_eigens(ret) :

Regime 2 has near-singular error term covariance matrix! Consider building

a model from the next-largest local maximum with the function 'alt_gsmvar'

by adjusting its argument 'which_largest'.

The progression of the estimation process is reported with a progress bar giving an estimate of
the remaining estimation time. Also statistics on the spread of the log-likelihoods are printed
after each estimation phase. The progress bars are generated during parallel computing with
the package pbapply (Solymos and Zawadzki 2020).

The function throws a warning (the second warning) because at least one the regimes contains
a near-singular covariance matrix. This kind of unreasonable boundary points can often be
disregarded, and the model can be built based on a reasonable estimate found from a local
maximum that is clearly in the interior of the parameter space. Models based on the next-
best local maximum can be built with the function alt_gsmvar by adjusting its argument
which_largest.

The following code builds a StMVAR model based on the second-largest local maximum found
in the estimation:

R> fit12t_alt <- alt_gsmvar(fit12t, which_largest=2)

Warning message:

In warn_df(p = p, M = M, params = params, model = model) :

The model contains overly large degrees of freedom parameters. Consider

switching to the appropriate G-StMVAR model by setting the corresponding

regimes to GMVAR type with the function 'stmvar_to_gstmvar'.

The estimates can be examined with the print.
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R> print(fit12t_alt)

Reduced form StMVAR model:

p = 1, M = 2, d = 2, #parameters = 21, #observations = 244 x 2,

conditional log-likelihood, intercept parametrization, no AR parameter

constraints

Regime 1

Mixing weight: 0.83

Regime means: 0.78, 0.54

Df parameter: 7.57

Y phi0 A1 Omega 1/2

1 y1 = [ 0.55 ] + [ 0.33 -0.04 ] y1.1 + ( [ 0.42 0.00 ] ) eps1

2 y2 [ 0.12 ] [ 0.05 0.71 ] y2.1 ( ARCH_mt [ 0.00 0.04 ] ) eps2

Regime 2

Mixing weight: 0.17

Regime means: 0.66, 1.67

Df parameter: 92497.86

Y phi0 A1 Omega 1/2

1 y1 = [ 1.60 ] + [ 0.13 -0.61 ] y1.1 + ( [ 1.21 -0.04 ] ) eps1

2 y2 [ 0.48 ] [ -0.03 0.72 ] y2.1 ( ARCH_mt [ -0.04 0.14 ] ) eps2

The parameter estimates are reported for each mixture component separately so that the es-
timates can be easily interpreted. Each regimeŠs autoregressive formula is presented in the
form

yt = φm,0 + Am,1yt−1 + ... + Am,pyt−p + Ω
1/2
m,tεm,t. (23)

If Ω
1/2
m,t is time varying, it printed in the form Ω

1/2
m,t = (ARCH_mtΩm)1/2 where ARCH_mt is

the ωm,t deĄned in (16). No numerical value is given to the ARCH scalar, as it is time-varying.
The other statistics are listed above the formula, including the mixing weight pameter αm, the
unconditional mean µm, and the degrees freedom parameter νm.

The above printout shows that the second regimeŠs degrees of freedom parameter estimate is
very large, which might induce numerical problems. However, since a StMVAR model with some
degrees of freedom parameters tending to inĄnity coincides with the G-StMVAR model with
the corresponding regimes switched to GMVAR type, one may avoid the problems by switching
to the appropriate G-StMVAR model (see Virolainen 2022). Switching to the appropriate G-
StMVAR model is recommended also because it removes the redundant degrees of freedom
parameters from the model, thereby reducing its complexity. The function stmvar_to_gstmvar

does this switch automatically by Ąrst removing the large degrees of freedom parameters and
then estimating the G-StMVAR model with a variable metric algorithm (Nash 1990, algorithm
21) using the induced parameter vector as the initial value.

To exemplify, the following code switches all the regimes of the StMVAR model fit12t_alt with
a degrees of freedom parameter estimate larger than 100 to GMVAR type, and then estimates
the corresponding G-StMVAR model.

R> fit12gs <- stmvar_to_gstmvar(fit12t_alt, maxdf=100)

We use the summary method to obtain a more detailed printout of the estimated the G-StMVAR
model:
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R> summary(fit12gs)

Reduced form G-StMVAR model:

p = 1, M1 = 1, M2 = 1, d = 2, #parameters = 20, #observations = 244 x 2,

conditional log-likelihood, intercept parametrization, no AR parameter

constraints

log-likelihood: -247.50, AIC: 534.99, HQIC: 563.13, BIC: 604.85

Regime 1 (GMVAR type)

Moduli of 'bold A' eigenvalues: 0.75, 0.10

Cov. matrix 'Omega' eigenvalues: 1.21, 0.14

Mixing weight: 0.17

Regime means: 0.66, 1.67

Y phi0 A1 Omega 1/2

1 y1 = [ 1.60 ] + [ 0.13 -0.61 ] y1.1 + [ 1.21 -0.04 ] eps1

2 y2 [ 0.48 ] [ -0.03 0.72 ] y2.1 [ -0.04 0.14 ] eps2

Error term correlation matrix:

[,1] [,2]

[1,] 1.000 -0.087

[2,] -0.087 1.000

Regime 2 (StMVAR type)

Moduli of 'bold A' eigenvalues: 0.70, 0.34

Cov. matrix 'Omega' eigenvalues: 0.42, 0.04

Mixing weight: 0.83

Regime means: 0.78, 0.54

Df parameter: 7.57

Y phi0 A1 Omega 1/2

1 y1 = [ 0.55 ] + [ 0.33 -0.04 ] y1.1 + ( [ 0.42 0.00 ] ) eps1

2 y2 [ 0.12 ] [ 0.05 0.71 ] y2.1 ( ARCH_mt [ 0.00 0.04 ] ) eps2

Error term correlation matrix:

[,1] [,2]

[1,] 1.000 0.014

[2,] 0.014 1.000

Print approximate standard errors with the function 'print_std_errors'.

In the G-StMVAR model, estimates for GMVAR type regimes are reported before StMVAR type
regimes, in a decreasing order according to the mixing weight parameter estimates. As shown
above, the model fit12gs incorporates one GMVAR type regime and one StMVAR type regime.
Estimates of the unconditional mean, the Ąrst p autocovariances and autocorrelations (including
the unconditional covariance matrix) can be obtained from the element $uncond_moments of the
model object. The conditional moments calculated using the data are available for the process
($total_cmeans and $total_ccovs) as well as for the regimes separately ($regime_cmeans

and $regime_ccovs). These conditional moments can be conveniently plotted along the series
with the function cond_moment_plot.
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Approximate standard errors can be printed with the function print_std_errors, which prints
the standard errors in the same form as the print method prints the estimates. Note that the last
mixing weight parameter estimate does not have an approximate standard error because it is not
parametrized. Likewise, there is no standard error for the intercepts if mean parametrization is
used (by setting parametrization = "mean" in fitGSMVAR) and vice versa. In order to obtain
standard errors for the regimewise unconditional means or intercepts, one can easily swap
between the mean and intercept parametrizations with the function swap_parametrization.

To exemplify, the following code prints approximate standard errors for the model fit12gs:

R> print_std_errors(fit12gs)

Reduced form model:

p = 1, M = 2, conditional log-likelihood, intercept parametrization,

no AR parameter constraints

APPROXIMATE STANDARD ERRORS

Regime 1 (GMVAR type)

Mixing weight: 0.124

Y phi0 A1 Omega 1/2

1 Y1 = [ 0.759 ] + [ 0.149 0.386 ] Y1.1 + [ 0.264 0.061 ] eps1

2 Y2 [ 0.234 ] [ 0.050 0.118 ] Y2.1 [ 0.061 0.029 ] eps2

Regime 2 (StMVAR type)

Df parameter: 2.740

Y phi0 A1 Omega 1/2

1 Y1 = [ 0.127 ] + [ 0.079 0.196 ] Y1.1 + ( [ 0.070 0.011 ] eps1

2 Y2 [ 0.037 ] [ 0.024 0.064 ] Y2.1 ( ARCH_mt [ 0.011 0.008 ] eps2

Missing values are reported when gmvarkit is not able to calculate the standard error. This
typically happens either because there is an overly large degrees of freedom parameter estimate
in the model or because the estimation algorithm did not stop a local maximum. In the former
case, switch to the appropariate G-StMVAR with the function stmvar_to_gstmvar. In the
latter case, make sure the estimate in not an unreasonable near-the-boundary point. If it is, it
might appropriate the consider the next-best local maximum with the function alt_gsmvar. If
it is not a near-the-boundary point, try running more iterations of the variable metric algorithm
with the function iterate_more. Section 3.4 discusses how to evaluate with gmvarkit whether
the estimate is a local maximum (and how to improve the reliability that it is the global
maximum).

Other statistics reported in the summary printout include the log-likelihood and values of the
information criteria, moduli of the eigenvalues of the Šbold AŠ matrix (see (5)) and eigenvalues of
the covariance matrix Ωm. If some of the moduli are very close to one, the related estimates are
near the boundary of the stationarity region. If some of the eigenvalues of Ωm close to zero, the
related estimates are near the boundary of positive-deĄniteness region. As mentioned already
multiple times, this kind of near-the-boundary point might be unreasonable and maximize the
log-likelihood function for a technical reason, so it might be more appropriate to consider the
next-best local maximum with the function alt_gsmvar.

This is possible in gmvarkit, because the estimation function fitGSMVAR stores the estimates
from all the estimation rounds so that a GSMVAR model can be built based on any one of them,
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most conveniently with the function alt_gsmvar. The desired estimation round can be speciĄed
either with the argument which_round or which_largest. The former speciĄes the round in
the estimation order, whereas the latter speciĄes it in a decreasing order of the log-likelihoods.

It is also possible to automatically Ąlter out inappropriate estimates by setting the argument
filter_estimates=TRUE in fitSGMVAR. Then, the function will automatically Ąlter out esti-
mates that it deems "inappropriate". That is, estimates that are not likely solutions of interest.
SpeciĄcally, solutions that incorporate a near-singular error term covariance matrix (any eigen-
value less than 0.002), mixing weights such that they are close to zero for almost all t for at
least one regime, or mixing weight parameter estimate close to zero (or one). It also Ąlters out
estimates with any modulus "bold A" eigenvalues larger than 0.9985, as the solution is near the
boundary of the stationarity region and likely not a local maximum. fitSGMVAR then returns
the solution based on the largest log-likelihood that is not Ąltered out. Other solutions can be
studied by using the function alt_gsmvar as usual.

3.4. Further examination of the estimates

In addition to examining the summary printout, it is often useful to visualize the model by
plotting the mixing weights together with the time series and the modelŠs (marginal) stationary
density together with a kernel density estimate of the time series. That is exactly what the plot
method for GSMVAR models does. The following command creates the time series plot along
with estimated mixing weights:

R> plot(fit12gs, type="series")

The resulting plot is presented in Figure 1.

And the following command creates the stationary density plot:

R> plot(fit12gs, type="density")

The resulting plot is presented in Figure 2. If the argument type is not speciĄed, both of the
Ągures will be plotted.

It is also sometimes interesting to examine the time series of (one-step) conditional means and
variances of the process along with the time series the model was Ątted to. This can be done
conveniently with the function cond_moment_plot, where the argument which_moment should
be speciĄed with "mean" or "variance" accordingly. In addition to the conditional moment of
the process, cond_moment_plot also displays the conditional means or variances of the regimes
multiplied by the mixing weights. Note, however, that the conditional variance of the process is
not generally the same as the weighted sum of regimewise conditional variances, as it includes
a component that encapsulates heteroskedasticity caused by variation in the conditional mean.

The variable metric algorithm employed in the Ąnal estimation does not necessarily stop at a
local maximum point. The algorithm might also stop at a saddle point or near a local maximum,
when the algorithm is not able to increase the log-likelihood, or at any point, when the maximum
number of iterations has been reached. In the latter case, the estimation function throws a
warning, but saddle points and inaccurate estimates need to be detected by the researcher.

It is well known that in a local maximum point, the gradient of the log-likelihood function is zero,
and the eigenvalues of the Hessian matrix are all negative. In a local minimum, the eigenvalues
of the Hessian matrix are all positive, whereas in a saddle point, some of them are positive
and some negative. Nearly numerically singular Hessian matrices occur when the surface of
the log-likelihood function is very Ćat about the estimate in some directions. This particularly
happens when the model contains overly large degrees of freedom parameter estimates or the
mixing weights αm,t are estimated close to zero for all t = 1, ..., T for some regime m.
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Figure 1: The Ągure produced by the command plot(fit12gs, type="series"). On the top,
a quarterly series consisting of two U.S. variables: the percentage change of real GDP and the
percentage change of GDP implicit price deĆator, covering the period from 1959Q1 to 2019Q4.
On the bottom, the estimated mixing weights of the G-StMVAR model fit12gs Ątted the
series.

gmvarkit provides several functions for evaluating whether the estimate is a local maximum
point. The function get_foc returns the (numerically approximated) gradient of the log-
likelihood function evaluated at the estimate, and the function get_soc returns eigenvalues
of the (numerically approximated) Hessian matrix of the log-likelihood function evaluated at
the estimate. The numerical derivatives are calculated using a central difference approximation

∂L(θ)

∂θi
≈

f(θ + h(i)) − f(θ − h(i))

2h
, h > 0, (24)

where θi is the ith element of θ and h(i) = (0, ..., 0, h, 0, ..., 0) contains h as its ith element. By
default, the difference h = 6 · 10−6 is used for all parameters except for overly large degrees of
freedom parameters, whose partial derivatives are approximated using larger differences. The
difference is increased for large degrees of freedom parameters, because the limited precision of
the Ćoat point presentation induces artiĄcially rugged surfaces to the their proĄle log-likelihood
functions, and the increased differences diminish the related numerical error. On the other
hand, as the surface of the proĄle log-likelihood function is very Ćat about a large degrees of
freedom parameter estimate, large differences work well for the approximation.

For example, the following code calculates the Ąrst order condition for the G-StMVAR model
fit12gs:

R> get_foc(fit12gs)

[1] 1.475392e-03 2.520058e-03 1.593868e-03 -4.325443e-03

[5] 3.426033e-03 1.272343e-03 -7.762371e-04 -4.553748e-03
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Figure 2: The Ągure produced by the command plot(fit12gs, type="density"). Kernel
density estimates of the marginal series of the data the model was Ątted to (black solid line),
the stationary marginal density of the estimated G-StMVAR model (grey dashed line), and
the marginal stationary densities of the component processes multiplied by the mixing weight
parameter estimates (blue and red dashed lines).

[9] 3.181280e-03 3.919771e-03 -2.321276e-02 4.170381e-03

[13] -1.782989e-02 3.166647e-03 -3.229744e-03 -3.738130e-03

[17] -9.082465e-03 2.232360e-02 -7.895506e-03 9.746278e-06

and the following code calculates the second order condition:

R> get_soc(fit12gs)

[1] -1.329154e-01 -1.389172e+00 -1.273009e+01 -1.865806e+01

[5] -2.067262e+01 -5.037907e+01 -8.094178e+01 -1.070554e+02

[9] -1.715455e+02 -2.124879e+02 -2.769413e+02 -3.371079e+02

[13] -4.467047e+02 -1.104002e+03 -1.130339e+03 -1.261037e+03

[17] -1.820865e+03 -9.262083e+03 -1.302900e+04 -3.456585e+04

All eigenvalues of the Hessian matrix are negative, which points to a local maximum, but the
gradient of the log-likelihood function seems to somewhat deviate from zero. The gradient
might be inaccurate, because it is based on a numerical approximation. It is also possible that
the estimate is inaccurate, because it is based on approximative numerical estimation, and the
estimates are therefore not expected to be exactly accurate. Whether the estimate is a local
maximum point with accuracy that is reasonable enough, can be evaluated by plotting the
graphs of the proĄle log-likelihood functions about the estimate. In gmvarkit, this can be done
conveniently with the function profile_logliks.
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Figure 3: The Ągure produced by the command profile_logliks(fit12gs, scale=0.02,

precision=200). The graphs of the proĄle log-likelihood functions of the G-StMVAR model
drawn about the estimate. The red vertical lines denote the estimate.

The exemplify, the following command plots the graphs of proĄle log-likelihood functions of the
estimated G-StMVAR model fit12gs:

R> profile_logliks(fit12gs, scale=0.02, precision=200)

The resulting plot is presented in Figure 3.

The output shows that the estimateŠs accuracy is reasonable, as changing any individual pa-
rameter value marginally would not increase the log-likelihood much. The argument scale can
be adjusted to shorten or lengthen the interval shown in the horizontal axis. If one zooms in
enough by setting scale to a very small number, it can be seen that the estimate is not exactly
at the local maximum, but it is so close that moving there would not increase the log-likelihood
notably. The argument precision can be adjusted to increase the number of points the graph
is based on. For faster plotting, it can be decreased, and for more precision, it can be increased.
The argument which_pars is used to specify the parameters whose proĄle log-likelihood func-
tions should be plotted. This argument is particularly useful when creating as many plots as
there are parameters in the model to a single Ągure would cause the individual plots to be
very small. In such a case, proĄle log-likelihood functions for subsets of the parameters can be
plotted separately by specifying this argument accordingly.

We have discussed tools that can be utilized to evaluate whether the found estimate is a local
maximum with a reasonable accuracy. It is, however, more difficult to establish that the estimate
is the global maximum. With gmvarkit, the best way to increase the reliability that the found
estimate is the global maximum, is to run more estimation rounds by adjusting the argument
ncalls of the estimation function fitGSMVAR.

If the model is very large, a very large number of estimation rounds may be required to Ąnd the
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global maximum. If there are two regimes in the model, p is reasonable, and the dimension of the
time series at most four, the required number of estimation rounds typically varies from several
hundred to several thousand depending on the model and the data. In the simpler models, less
estimation rounds are required. In the larger models, and in particular if M > 2 or d > 4,
a signiĄcantly large number of estimation rounds may be required obtain the MLE. Another
thing that makes the estimation more challenging, are exotic parameter constraints that do
not reduce the dimension of the parameter much. Constraints that greatly reduce complexity
of the parameter space (such as constraining the autoregressive matrices to be identical in all
regimes2), on the other hand, make the estimation easier and reliable estimation of such models
thereby require less estimation rounds.

3.5. Estimation of the structural GSMVAR model

As explained, gmvarkit currently supports two types of structural models: structural models
identiĄed recursively by the lower triangular Cholesky decomposition and structural models
identiĄed by conditional heteroskedasticity. Recursive identiĄcation is assumed for reduced form
models, and thus do not require any further estimation. Generalized impulse response functions
and generalized forecast error variance decompositions can be estimated for recursively identiĄed
models by using the reduced form models directly in the functions GIRF and GFEVD. The rest of
this section discusses estimation of structural models identiĄed by conditional heteroskedasticity
as in Virolainen (2025) and Virolainen (2022), which employ a parametrization different to the
reduced form models.

The structural GSMVAR models are estimated similarly to the reduced form version, expect
that the model is parametrized with W and λmi, m = 2, ..., M , i = 1, ..., d instead of the covari-
ance matrices Ωm, m = 1, ..., M . The estimation is can be done with the function fitGSMVAR

but now the argument structural_pars needs to be supplied with a list providing the con-
straints on W (which equally imposes the constraints on the B-matrix), and optionally, linear
constraints on the λmi parameters or constraints restricting λmi to Ąxed values.

The list structural_pars should contain at least the element W which is a (dxd) matrix matrix
with its entries imposing constraints on W : NA indicating that the element is unconstrained, a
positive value indicating strict positive sign constraint, a negative value indicating strict negative
sign constraint, and zero indicating that the element is constrained to zero. The elements named
C_lambda and fixed_lambdas are optional (and alternative to each other).

If C_lambda is speciĄed, it should be a (d(M−1)×r) constraint matrix that satisĄes (λ2, ..., λM ) =
Cλγ where λm = (λm1, ..., λmd) and γ is the new (rx1) parameter subject to which the model
is estimated (similarly to AR parameter constraints). The entries of C_lambda must be either
positive or zero. Ignore (or set to NULL) if the eigenvalues λmi should not be constrained. Note
that other constraints than constraining some of the λmi to be identical are not recommended
but if such constraints are imposed, the argument lambda_scale in the genetic algorithm (see
?GAfit) should be adjusted accordingly. If some of the λmi are constrained to be identical,
make sure the appropriate zero constraints placed in the W matrix, because otherwise the MLE
does not identify and you probably wonŠt obtain any useful estimates (see Virolainen 2025,
Proposition 2).

If fixed_lambdas is speciĄed, it should be a d(M − 1) length numeric vector (λ2, ..., λM )
specifying Ąxed values for the eigenvalue parameters λmi. They should be strictly larger than
zero. Ignore (or set to NULL) if the eigenvalues λmi should not be constrained. Note that you
cannot use both C_lambda and fixed_lambdas at the same time.

Reliable estimation of structural GSMVAR models typically requires much more

2Models constrained in this way can often be reliably estimated with a reasonable number of estimation rounds
even when M > 2
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estimation rounds than the estimation of the reduced form models. However, when
M = 2, every reduced form model has an implied statistically identiĄed structural
model, which can be built without any additional estimation (this will be discussed
next). We recommend considering this implied model Ąrst. Then, if overidentifying
constraints are to be imposed on the B-matrix (or equally W ), we recommend using
the unrestricted estimate to create an initial guess for the constrained parameter
vector and pass this to the genetic algorithm as an initial population. See the help
page ?GAfit for the arguments that can be passed by fitGSMVAR to the genetic algorithm.
Create the initial guess for the parameter vector by using the form given in documentation of
the argument initpop. If M ̸= 2, the structural model needs to be estimated in the normal
way with fitGSMVAR, however.

Building structural model based on a reduced form model

If the number of regimes is two (M = 2), a structural model can be built based on a reduced form
model, because the matrix decomposition used in the simultaneous diagonalization of the error
term covariance matrices always exists. This can be done with function gsmvar_to_sgsmvar

which should be supplied with the reduced form model, and it then returns a corresponding
structural model. After creating the structural model, the columns of W can be reordered
with the function reorder_W_columns which also reorders all λmi accordingly (and hence the
resulting model will coincide with the original reduced form model). Also, all signs any column
of W can be swapped with the function swap_W_signs.

The exemplify, the following code creates statistically identiĄed structural model based on the
reduced form model fit12gs and then prints the estimates.

R> fit12gss <- gsmvar_to_sgsmvar(fit12gs)

R> fit12gss

Structural G-StMVAR model:

p = 1, M1 = 1, M2 = 1, d = 2, #parameters = 20, #observations = 244 x 2,

conditional log-likelihood, intercept parametrization, no AR parameter

constraints

Regime 1 (GMVAR type)

Mixing weight: 0.17

Regime means: 0.66, 1.67

Y phi0 A1 Omega 1/2

1 y1 = [ 1.60 ] + [ 0.13 -0.61 ] y1.1 + [ 1.21 -0.04 ] eps1

2 y2 [ 0.48 ] [ -0.03 0.72 ] y2.1 [ -0.04 0.14 ] eps2

Regime 2 (StMVAR type)

Mixing weight: 0.83

Regime means: 0.78, 0.54

Df parameter: 7.57

Y phi0 A1 Omega 1/2

1 y1 = [ 0.55 ] + [ 0.33 -0.04 ] y1.1 + ( [ 0.42 0.00 ] ) eps1

2 y2 [ 0.12 ] [ 0.05 0.71 ] y2.1 ( ARCH_mt [ 0.00 0.04 ] ) eps2

Structural parameters:

W lamb2
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1 [ 0.95 -0.55 ] [ 0.36 ]

2 [ 0.16 0.34 ] , [ 0.28 ]

The B-matrix (or equally W) is subject to 0 zero constraints and 2 sign

constraints. The eigenvalues lambda_{mi} are not subject to linear constraints.

Estimates for the structural parameters, W and the eigenvalues, are printed last.

If there is only one mixture component, i.e., M == 1, gsmvar_to_sgsmvar returns a symmetric
and pos. def. square root matrix of the error term covariance matrix by default. But one
may also employ lower triangular Cholesky identiĄcation by setting cholesky = TRUE in the
arguments.

Estimating overidentiĄed structural GSMVAR models

Sometimes is appropriate to impose overidentifying constraints on W (or equally the B-matrix).
With preliminary estimates from the just-identiĄed model in the case M > 1 or any model
in the case M = 1, it is convenient to use the function estimate_sgsmvar. It takes in a
reduced form or structural GSMVAR model as a class ŠgsmvarŠ object and new constraints in
the argument new_W as a matrix expressing the sign or zero constraints. Strictly positive or
negative elements signify strict sign constraints, zeros zero constraints, and NA values that the
element is unconstrained.

estimate_sgsmvar then creates preliminary estimate based on the supplied model and the
constraints, and then runs the two-phase estimation with settings of the genetic algorithm such
that the search is focused on the neighbourhood of the preliminary estimate. Thus, it will lead
to the correct ML estimate only if the unconstrained estimate is close to the constrained one in
the Ąrst place. It is therefore useful for imposing zero constraints for elements that are close to
zero in the unrestricted estimate, for instance.

It is important to make sure that supplied model readily satisĄes the sign con-
straints that are imposed. To achieve this, you can swap the signs in each column
of the W matrix with the function swap_W_signs. If the sign constraints are not not
readily satisĄe, the preliminary estimate switches the signs and will probably lead
to incorrect estimate.

estimate_sgsmvar can also be used to estimate models that are not identiĄed, i.e., one regime
models. If it supplied with a reduced form model, it will Ąrst apply the function gsmvar_to_sgsmvar,
then impose the constraints and Ąnally estimate the model.

3.6. Constrained estimation

Linear constraints on the autoregressive parameters

Imposing linear constraints on the autoregressive parameters of GMVAR model is straightfor-
ward in gmvarkit. The constraints are expressed in a somewhat general form which allows to
impose a wide class of constraints but one needs to take the time to construct the constraint
matrix carefully for each particular case.

We consider constraints of form

(φ1, ...,φM ) = Cψ, (25)

φm = (vec(Am,1), ..., vec(Am,p)) (pd2x1), m = 1, ..., M, (26)

C is known (Mpd2xq) constraint matrix (of full column rank) andψ is unknown (qx1) parameter
vector.
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The parameter vector for constrained model has the size ((M(d + d(d + 1)/2 + 1) + q − 1)x1)
and the form

θ = (ϕ1,0, ..., ϕM,0,ψ, α1, ..., αM−1,ν), (27)

where ψ is the (qx1) parameter vector containing constrained autoregressive parameters. As in
the case of regular models, instead of the intercept parametrization that takes use of intercept
terms ϕm,0, one may use the mean parametrization with regimewise means µm instead (m =
1, ..., M).

Examples of linear constraints

Consider the following two common uses of linear constraints: restricting the autoregressive
matrices to be the same for all regimes and constraining some AR parameters to zero. Of
course also some other constraints may be useful, but we chose to show illustrative examples of
these two, as they are taken use of in Kalliovirta et al. (2016).

Restricting AR matrices to be the same for all regimes

To restrict the AR matrices to be the same for all regimes, we want φm to be the same for all
m = 1, ..., M . The parameter vector ψ (qx1) then corresponds to any φm = φ, and therefore
q = pd2. For the constraint matrix we choose

C = [Ipd2 : · · · : Ipd2 ]′ (Mpd2xpd2), (28)

that is, M pieces of (pd2xpd2) diagonal matrices stacked on top of each other, because then

Cψ = (ψ, ...,ψ) = (φ, ...,φ). (29)

For instance, if there are two regimes in the model, the appropriate constraint matrix then
created as

R> p <- 1 # The autoregressive order of the model

R> d <- 2 # Whatever the dimension of the time series is

R> I_pd2 <- diag(p*d^2) # The appropriate diagonal matrix

R> (C1 <- rbind(I_pd2, I_pd2)) # Stack them on top of each other

[,1] [,2] [,3] [,4]

[1,] 1 0 0 0

[2,] 0 1 0 0

[3,] 0 0 1 0

[4,] 0 0 0 1

[5,] 1 0 0 0

[6,] 0 1 0 0

[7,] 0 0 1 0

[8,] 0 0 0 1

The command fitGSMVAR(gdpdef, p=1, M=2, model="GMVAR", constraints=C1) would then
estimate a GMVAR(1, 2) model with the AR matrices constrained to be the same in both
regimes. In practice, you might want to adjust the number of CPU cores used, the of estima-
tion rounds, and set seeds. Notably, with the dimension of the time series being only two and
p = 1 with two regimes, almost all of the estimation rounds end up in the MLE. Also, because
model has the AR matrices constrained to be the same for all regimes, the estimation is much
easier than with freely estimated models.
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Restricting AR parameters to be the same for all regimes and constraining non-diagonal
elements of coefficient matrices to be zero

The previous example shows how to restrict the AR parameters to be the same for all regimes,
but say we also want to constrain the non-diagonal elements of coefficient matrices Am,i (m =
1, ..., M, i = 1, ..., p) to be zero. We have the constrained parameter ψ (qx1) representing the un-
constrained parameters (φ1, ...,φM ), where the restrictions imply φm = φ = (vec(A1), ..., vec(Ap))
(pd2x1) and the elements of vec(Ai) (i = 1, ..., p) corresponding to the diagonal are zero.

For illustrative purposes, letŠs consider a GMVAR model with autoregressive degree p = 2,
number of mixture components M = 2 and number of time series in the system d = 2. Then
we have

φ = (A1(1, 1), 0, 0, A1(2, 2), A2(1, 1), 0, 0, A2(2, 2)) (8x1) and (30)

ψ = (A1(1, 1), A1(2, 2), A2(1, 1), A2(2, 2)) (4x1), (31)

where Al(i, j) is the ijth elements of Al. By a direct calculation, we can see that choosing the
constraint matrix

C =



c̃

c̃

]

(Mpd2x4), (32)

where

c̃ =





























1 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 1





























(pd2x4) (33)

satisĄes Cψ = (φ, ...,φ).

The above constraint matrix can be created as

R> c_tilde <- matrix(0, nrow=2*2^2, ncol=4)

R> c_tilde[c(1, 12, 21, 32)] <- 1

R> C2 <- rbind(c_tilde, c_tilde)

R> C2

[,1] [,2] [,3] [,4]

[1,] 1 0 0 0

[2,] 0 0 0 0

[3,] 0 0 0 0

[4,] 0 1 0 0

[5,] 0 0 1 0

[6,] 0 0 0 0

[7,] 0 0 0 0

[8,] 0 0 0 1

[9,] 1 0 0 0

[10,] 0 0 0 0

[11,] 0 0 0 0

[12,] 0 1 0 0

[13,] 0 0 1 0

[14,] 0 0 0 0

[15,] 0 0 0 0

[16,] 0 0 0 1
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The command fitGSMVAR(gdpdef, p=2, M=2, model="GMVAR", constraints=C2) would then
estimate a GMVAR(2, 2) model with the AR matrices constrained to be the same in both regimes
and the off-diagonal elements constrained to zero (again, you may want to adjust the arguments
ncalls, ncores, and seeds when estimating the model in practice).

Constraining the unconditional means of some regimes to be the same

In addition to constraining the autoregressive parameters, gmvarkit allows to constrain the un-
conditional means of some regimes to be the same. This feature is, however, only available
for models that are parametrized with the unconditional means instead of intercepts (because
some of the estimation is always done with mean-parametrization and one cannot generally
swap the parametrization when constraints are imposed on means/intercepts). With the mean-
parametrization employed (by setting parametrization="mean"), one may deĄne groups of
regimes that have the same mean parameters using the argument same_means. For instance,
with three regime model (M = 3) the argument same_means=list(c(1, 3), 2) sets the un-
conditional means of the Ąrst and third regimes to be the same while allows the second regime
to have different mean.

One can also combine linear constraints on the AR parameters with constraining some of the
means to be the same. This allows, for instance, to estimate a model in which only the co-
variance matrix varies in time. To exemplify, the following code (which is not executed in this
vignette) estimates a GMVAR(p = 4, M = 2) model such that the unconditional means and au-
toregression matrices are constrained be the same in both regimes. The resulting model thereby
has time-varying covariance matrix but otherwise it is linear.

R> I_pd2 <- diag(4*2^2) # The appropriate diagonal matrix for the constraint matrix

R> C3 <- rbind(I_pd2, I_pd2) # Stack them on top of each other

R> fit42cm <- fitGSMVAR(gdpdef, p=4, M=2, model="GMVAR", parametrization="mean",

+ same_means=list(1:2), constraints=C3, ncalls=16, ncores=8, seeds=1:16)

Using 8 cores for 16 estimations rounds...

Optimizing with a genetic algorithm...

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=31s

Results from the genetic algorithm:

The lowest loglik: -227.251

The mean loglik: -225.743

The largest loglik: -224.648

Optimizing with a variable metric algorithm...

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=03s

Results from the variable metric algorithm:

The lowest loglik: -223.311

The mean loglik: -223.311

The largest loglik: -223.311

Calculating approximate standard errors...

Finished!

Constraining the mixing weight parameters alphas to Ąxed values

It is also possible to constrain the mixing weight parameters α1, ..., αM−1 to some Ąxed val-
ues. To do so, specify the Ąxed values in the argument weight_constraints as a (M −
1 × 1) vector (α1, ..., αM−1). Each element should be strictly between zero and one, and the
sum of all of them should be strictly less than one. For instance, when M = 2, specifying
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weight_constraints=0.6 constraints the mixing weights parameters of the Ąrst regime as
α1 = 0.6 (and hence α2 = 0.4).

3.7. Testing parameter constraints

One way to asses the validity of the imposed constraints is to compare the values of information
criteria of the constrained and unconstrained models. gmvarkit, however, also provides functions
for testing the constraints with the likelihood ratio test, Wald test, and RaoŠs test, which
are applicable as the ML estimator of a GSMVAR model has the conventional asymptotic
distribution (as long as the model is correctly speciĄed and one is willing to assume the validity
of the required unveriĄed assumptions; see Virolainen 2022, Theorem 3, and Kalliovirta et al.
(2016), Theorem 3). For a discussion on the tests, see Buse (1982) and the references therein,
for example.

The likelihood ratio test considers the null hypothesis that the true parameter value θ0 satisĄes
some constraints imposed on these parameters (such that the constrained parameter space is
a subset of the parameter space, which is presented in Virolainen 2022, Assumption 2 for the
GSMVAR models). Denoting by L̂U and L̂C the (maximized) log-likelihoods based on the
unconstrained and constrained ML estimates, respectively, the test statistic takes the form

LR = 2(L̂U − L̂C). (34)

Under the null, the test statistic is asymptotically χ2-distributed with the degrees of freedom
given by the difference in the dimensions of the unconstrained and constrained parameter spaces.
With gmvarkit, the likelihood ratio test can be calculated with the function LR_test, which
takes the unconstrained model (a class gsmvar object) as its Ąrst argument and the constrained
model as the second argument.

gmvarkit implements the Wald test of the null hypothesis

Aθ0 = c, (35)

where A is a (k × d) matrix with full row rank, c is a (k × 1) vector, θ0 is the true parameter
value, d is the dimension of the parameter space, and k is the number of constraints. The Wald
test statistic takes the form

W = (Aθ̂ − c)′[AJ (θ̂)−1A′]−1(Aθ̂ − c), (36)

where J (θ̂) is the observed information matrix evaluated at the ML estimate θ̂. Under the
null, the test statistic is asymptotically χ2-distributed with k degrees of freedom (which is
the difference in dimensions of the constrained and unconstrained parameter spaces). With
gmvarkit, the Wald test can be calculated with function Wald_test, which takes the estimated
unconstrained model (as a class gsmvar object) as the Ąrst argument, the matrix A as the
second argument, and the vector c as the third argument.

RaoŠs test is implemented to the function Rao_test (see function documentation on how to use
it).

Note that the standard tests are not applicable if the number of GMVAR or StMVAR type
regimes is chosen too large, as then some of the parameters are not identiĄed, causing the result
of the asymptotic normality of the ML estimator to break down. This particularly happens
when one tests for the number of regimes in the model, as the under the null some of the
regimes are reduced from the model3 (see the related discussion in Virolainen 2022). Similar
caution applies for testing whether a regime is of the GMVAR type against the alternative that

3Meitz and Saikkonen (2021) have, however, recently developed such tests for mixture models with Gaussian
conditional densities
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it is of the StMVAR type: then νm = ∞ under the null for the regime m to be tested, which
violates the assumption that the parameter value is in the interior of a compact subset of the
parameter space (see Virolainen 2022, Theorem 3 and Assumption 1).

4. Quantile residual based model diagnostics

In the GSMVAR models, the empirical counterparts of the error terms εm,t in (8) cannot be
calculated, because the regime that generated each observation is unknown, making the con-
ventional residual based diagnostics unavailable. Therefore, gmvarkit utilizes so called quantile
residuals, which are suitable for evaluating adequacy of the GSMAR models.

Denote by yt, t = 1, 2, ..., the time series of interest and Ft−1 the σ-algebra generated by the
random variables or vectors ¶yt−j , j > 0♢. Moreover, let θ denote the relevant parameter vector.
Kalliovirta (2012) deĄnes univariate quantile residuals as

Rt,θ = Φ−1(F (yt;θ ♣ Ft−1)), (37)

where Φ(·)−1 is the standard normal quantile function and F (· ♣ Ft−1) is the conditional distri-
bution function of the considered model.

Kalliovirta and Saikkonen (2010) deĄne multivariate quantile residuals analogously to the uni-
variate ones but by taking into account the dependence of the component time series from each
other. Denote Aj−1 = σ(y1,t, ..., yj−1,t) and by f(·♣σ(Ft−1, Aj−1)) = fj−1,t−1(·) the conditional
density function conditional on the σ-algebra σ(Ft−1, Aj−1)

The conditional density function of the random vector yt can be expressed in a product form
by conditioning to the components yt in addition to the history Ft−1 as

f(yt; θ♣Ft−1) =
d
∏

j=1

fj−1,t−1(yj,t;θ), (38)

where yj,t is the jth component of yt and f0,t−1(y1,t;θ) = f1,t−1(y1,t;θ) is the marginal condi-
tional density function of y1,t conditional on Ft−1.

The conditional distribution functions corresponding to the density functions fj−1,t−1(·;θ) in
(38) are of the form

Fj−1,t−1(yj,t;θ) =

∫ yj,t

−∞
fj−1,t−1(u;θ)du. (39)

The multivariate quantile residuals are then deĄned as

Rt,θ =













R1t,θ

R2t,θ
...

Rdt,θ













=













Φ−1(F0,t−1(y1,t;θ))
Φ−1(F1,t−1(y2,t;θ))

...
Φ−1(Fd−1,t−1(yd,t;θ))













, (40)

and its empirical counterpart, rt,θ̂, is obtained by replacing the parameter θ with its maximum

likelihood estimate θ̂. Closed form expressions for the quantile residuals of the G-StMVAR
model (which encompasses GMVAR and StMVAR models as special cases) are derived in Ap-
pendix B

For a correctly speciĄed GSMVAR model employing the ML estimator, the empirical coun-
terparts of multivariate quantile residuals are asymptotically multivariate standard normal
(Kalliovirta and Saikkonen 2010, Lemma 3). They can therefore be utilized in graphical diagnos-
tic simalarly to the conventional PearsonŠs residuals. For the graphical diagnostics, gmvarkit

provides function diagnostic_plot which plots the quantile residual time series, auto- and
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crosscorrelations of the quantile residuals, auto- and crosscorrelations of the squared quantile
residuals, and normal quantile-quantile plots as well as histrograms of the quantile residuals.

Kalliovirta and Saikkonen (2010) also propose three diagnostic tests for testing normality, au-
tocorrelation, and conditional heteroskedasticity of the quantile residuals. The tests can be
based either on the data or on a simulation procedure. If the sample is short, tests based on
the data can be too forgiving, so to obtain more reliable test results the simulation procedure
is recommended (with sample size of at least several thousand). The tests can be calculated
with gmvarkit by using the function quantile_residual_tests. The simulation procedure is
employed if the argument nsim is set larger the number of observations (in each component time
series). In this case, nsim sets the length of the sample path used in the simulation procedure.
If one is concerned about autocorrelation or conditional heteroskedasticity in a specigic lag, the
(standardized) individual statistics discussed in Kalliovirta and Saikkonen (2010) can be ex-
amined. The function quantile_residual_tests returns them automatically for the speciĄed
lags.

5. Impulse response analysis

5.1. Generalized impulse response function

We consider the generalized impulse response function (GIRF) (Koop, Pesaran, and Potter
1996) deĄned as

GIRF(n, δj , Ft−1) = E[yt+n♣δj , Ft−1] − E[yt+n♣Ft−1], (41)

where n is the chosen horizon, Ft−1 = σ¶yt−j , j > 0♢ as before, the Ąrst term on the right side is
the expected realization of the process at time t + n conditionally on a structural shock of sign
and size δj ∈ R in the jth element of et at time t and the previous observations, and the second
term on the right side is the expected realization of the process conditionally on the previous
observations only. GIRF thus expresses the expected difference in the future outcomes when
the speciĄc structural shock hits the system at time t as opposed to all shocks being random.

Due to the p-step Markov property of the GSMVAR model, conditioning on (the σ-algebra
generated by) the p previous observations yt−1 ≡ (yt−1, ..., yt−p) is effectively the same as
conditioning on Ft−1 at the time t and later. The history yt−1 can be either Ąxed or random,
but with random history the GIRF becomes a random vector, however. Using Ąxed yt−1 makes
sense when one is interested in the effects of the shock in a particular point of time, whereas
more general results are obtained by assuming that yt−1 follows the stationary distribution
of the process. If one is, on the other hand, concerned about a speciĄc regime, yt−1 can be
assumed to follow the stationary distribution of the corresponding component model.

In practice, the GIRF and its distributional properties can be approximated with a Monte Carlo
algorithm that generates independent realizations of the process and then takes the sample
mean for point estimate. If yt−1 is random and follows the distribution G, the GIRF should be
estimated for different values of yt−1 generated from G, and then the sample mean and sample
quantiles can be taken to obtain the point estimate and conĄdence intervals. The algorithm
implemented in gmvarkit is presented in Appendix C.

Because the GSMVAR model allows to associate speciĄc features or economic interpretations
for different regimes, and because regime-switches are the source of asymmetries in the im-
pulse responses, it might be interesting to also examine the effects of a structural shock to the
mixing weights αm,t, m = 1, ..., M . We then consider the related GIRFs E[αm,t+n♣δj ,yt−1] −
E[αm,t+n♣yt−1] for which point estimates and conĄdence intervals can be constructed similarly
to (41).

In gmvarkit, the GIRF can be estimated with the function GIRF which should be supplied with
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the estimated GSMVAR model or a GSMVAR built with hand-speciĄed parameter values using
the function GSMVAR. If a reduced form model is supplied to GIRF, recursive identiĄcation by
lower-triangular Cholesky decomposition is automatically assumed. The size of the structural
shock can be set with the argument shock_size. If not speciĄed, the size of one standard devi-
ation is used; that is, the size one. Among other arguments, the function may also be supplied
with the argument init_regimes which speciĄes from which regimesŠ stationary distributions
the initial values are generated from (if more than one regime is speciĄed, the initial values will
be generated from a mixture of the stationary distributions with the relative mixing proportions
given by the mixing weight parameters). If more than one regime is speciĄed, a mixture dis-
tribution with weights given by the mixing weight parameters is used. Alternatively, one may
specify Ąxed initial values with the argument init_values. Note that the conĄdence intervals
(whose conĄdence level can be speciĄed with the argument ci) reĆect uncertainty about the
initial value only and not about the parameter estimates.

Due to the nonlinear nature of the model, GIRFs estimated from different starting values, or with
different sign or magnitude of the shock, generally move the variables differently. Sometimes it
is, however, of interest to scale the impulse responses so that they correspond to movement of
some speciĄc sign and magnitude of some speciĄc variable. In gmvarkit, this is most conveniently
achieved with the arguments scale and scale_type. The argument scale can be speciĄed in
order to scale the GIRFs to some of the shocks so that they correspond to a speciĄc magnitude of
instantaneous or peak response of some speciĄc variable. For a single shock, it should a length
three vector where the shock of interest is given in the Ąrst element (an integer in 1, ..., d),
the variable according to which the GIRFs should be scaled in the second element (an integer
in 1, ..., d), and the magnitude of the given variableŠs instantaneous or peak response in the
third element (a non-zero real number). If the GIRFs of multiple shocks should be scaled,
provide a matrix which has one column for each of the shocks with the columns being the
length three vectors described above. The argument scale_type should be either "instant"

or "peak" specifying whether you want to scale according to the instantaneous movement of
peak response. If "peak", the scale is based on the largest magnitude of peak response in
absolute value. Scaling according to peak response wonŠt based on values after the horizon
speciĄed in the argument "scale_horizon". Note that if you scale the GIRFs, the scaled
GIRFs of mixing weights can be outside the interval from zero to one.

Because estimating the GIRF and their conĄdence intervals is computationally demanding,
parallel computing is taken use of to shorten the estimation time. The number of CPU cores
used can be set with the argument ncores. The objects returned by the GIRF function have their
own plot and print methods. Also, cumulative impulse responses of the speciĄed variables
can be obtained directly by specifying the argument which_cumulative.

5.2. Generalized forecast error variance decomposition

We consider the generalized forecast error variance decomposition (GFEVD) (Lanne and Nyberg
2016) that is deĄned for variable i, shock j, and horizon n as

GFEVD(n, yit, δj , Ft−1) =

∑n
l=0 GIRF(l, δj , Ft−1)2

i
∑d

k=1

∑n
l=0 GIRF(l, δk, Ft−1)2

i

, (42)

where n is the chosen and GIRF(l, δj , Ft−1)i is the ith element of the related GIRF (see also
the notation described for GIRF in the previous section). That is, the GFEVD is otherwise
similar to the conventional forecast error variance decomposition but with GIRFs in the place of
conventional impulse response functions. Because the GFEVDs sum to unity (for each variable),
they can be interpreted in a similar manner to the conventional FEVD.

In gmvarkit, the GFEVD can be estimated with the function GFEVD. As with the GIRF, the
GFEVD is dependent on the initial values. The type of the initial values is set with the argument
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initval_type, and there are three options:

1. "data" which estimates the GFEVDs for all, or a subset of, possible length p histories in
the data, and then the Ąnal GFEVD is obtained as the sample mean over them.

2. "random" which generates the initial values from the stationary distribution of the process
or from the mixture of the stationary distributions of some speciĄc regime(s) with the
relative mixing proportions given by the mixing weight parameters. The initial regimes
can be set with the argument init_regimes. The GFEVD is calculated for each initial
value, and then the Ąnal GFEVD is obtained as the sample mean over them.

3. "fixed" which estimates the GFEVD for a single Ąxed initial value that is set with the
argument init_values.

The shock size is the same for all scalar components of the structural shock and it can be
adjusted with the argument shock_size. If the GIRFs for some variables should be cumulative
before calculating the GFEVD, specify them with the argument which_cumulative. Finally,
note that the GFEVD objects have their own plot and print methods.

5.3. Linear impulse response functions

It is also possible to calculate linear impulse response functions (IRF) based on a speciĄc regime
of the estimated model by using the function linear_IRF. If the autoregressive dynamics of the
model are linear (i.e., either M = 1 or mean and AR parameters are constrained identical across
the regimes), conĄdence bounds can be estimated based on a type of a Ąxed-design wild residual
bootstrap method. gmvarkit implements the method proposed Herwartz and Lütkepohl (2014).

6. Building a GSMVAR model with speciĄc parameter values

The function GSMVAR facilitates building GSMVAR models without estimation, for instance, in
order to simulate observations from a GSMVAR process with speciĄc parameter values. The
parameter vector (of length M(d + d2p + d(d + 1)/2 + 2) − M1 − 1 for unconstrained reduced
form models) has the form θ = (ϑ1, ...,ϑM , α1, ..., αM−1,ν) where

ϑm = (φm,0, vec(Am,1), ..., vec(Am,p), vech(Ωm)), m = 1, ..., M, and (43)

ν = (νM1+1, ..., νM ). (44)

In the GMVAR model (when M1 = M), the vector ν is omitted, as the GMVAR model does
not contain degrees of freedom parameters. For models imposing additional constraints on the
paremeters, the parameter vectors are expressed in a different way. They are only presented in
the package documentation for brevity, because the hand-speciĄed parameter values can be set
to satisfy any constraints as is.

In a structural GSMVAR model, the parameter vector has the form

θ = (φ1,0, ..., φM,0, vec(A1), ..., vec(AM ), vec(W ),λ1, ...,λM , α1, ..., αM−1,ν), (45)

Am = (vec(Am,1), ..., vec(Am,p)) (46)

λm = (λm1, ..., λmd). (47)

For constrained structural models (including constraints on the structural parameters), see the
documentation of GSMVAR (or any other relevant function).

In addition to the parameter vector, GSMVAR should be supplied with arguments p and M specify-
ing the order of the model similarly to the estimation function fitGSMVAR discussed in Section
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3.3. If one wishes to parametrize the model with the regimewise unconditional means (µm)
instead of the intercepts (φm,0), the argument parametrization should be set to "mean" in
which case the intercept parameters φm,0 are replaced with µm in the parameter vector. By
default, gmvarkit uses intercept parametrization.

To exemplify, we build a reduced form StMVAR p = 1, M = 1, d = 2 model. The model has
intercept parametrization and parameter values φ1,0 = (0, 1) vec(A1,1) = (0.2, 0.2, 0.2, −0.2),
vech(Ω1) = (1, 0.1, 1), and ν1 = 3. After building the model, we use the print method to
examine it:

R> params112 <- c(0, 1, 0.2, 0.2, 0.2, -0.2, 1, 0.1, 1, 3)

R> mod112 <- GSMVAR(p=1, M=1, d=2, params=params112, model="StMVAR")

R> mod112

Reduced form StMVAR model:

p = 1, M = 1, d = 2, #parameters = 10,

conditional log-likelihood, intercept parametrization, no AR parameter

constraints

Regime 1

Mixing weight: 1.00

Regime means: 0.22, 0.87

Df parameter: 3.00

Y phi0 A1 Omega 1/2

1 y1 = [ 0.00 ] + [ 0.20 0.20 ] y1.1 + ( [ 1.00 0.10 ] ) eps1

2 y2 [ 1.00 ] [ 0.20 -0.20 ] y2.1 ( ARCH_mt [ 0.10 1.00 ] ) eps2

It is possible to include data in the models built with GSMVAR by either providing the data in
the argument data when creating the model or by adding the data afterwards with the function
add_data. When the model is supplied with data, the mixing weights, one-step conditional
means and variances, and quantile residuals can be calculated and included in the model. The
function add_data can also be used to update data to an estimated GSMVAR model without
re-estimating the model.

7. Simulation and forecasting

7.1. Simulation

gmvarkit implements the S3 method simulate for simulating observations from GSMVAR pro-
cesses (see ?simulate.gsmvar). The method requires the process to be given as a class gsmvar

object, which are typically created either by estimating a model with the function fitGSMVAR

or by specifying the parameter values by hand and building the model with the constructor
function GSMVAR. The initial values required to simulate the Ąrst p observations can be either
set by hand (with the argument init_values) or drawn from the stationary distribution of the
process (by default) or from a (mixture of) stationary distribution(s) of given regime(s). The
argument nsim sets the length of the sample path to be simulated.

To give an example, the following code sets the random number generator seed to one and
simulates 500 observations long sample from the StMVAR process built in Section 6:

R> mysim <- simulate(mod112, nsim=500, seed=1)
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Our implementation of simulate returns a list containing the simulated sample path in $sample,
the mixture component that generated each observation in $component, and the mixing weights
in $mixing_weights.

7.2. Simulation based forecasting

Deriving multiple-steps-ahead point predictions and prediction intervals analytically for the
GSMVAR models is very complicated, so gmvarkit employs the following simulation-based
method. By using the last p observations of the data up to the date of forecasting as initial
values, a large number of sample paths for the future values of the process are simulated. Then,
sample quantiles from the simulated sample paths are calculated to obtain prediction intervals,
and the median or mean is used for point predictions. A similar procedure is also applied to
forecast future values of the mixing weights, which might be of interest because the researcher
can often associate statistical characteristics or economic interpretations to the regimes.

Forecasting is most conveniently done with the predict method (see ?predict.gsmvar). The
available arguments include the number of steps ahead to be predicted (n_ahead), the number
sample paths the forecast is based on (nsim), possibly multiple conĄdence levels for predic-
tion intervals (pi), prediction type (pred_type), and prediction interval type (pi_type). The
prediction type can be either median, mean, or for one-step-ahead forecasts also the exact con-
ditional mean, cond_mean. The prediction interval type can be any of "two-sided", "upper",
"lower", or "none".

To exemplify, the following code forecasts the two-dimensional time-series of U.S. GDP and
GDP deĆator growth using the G-StMVAR(1, 1, 1) model fit12gs estimated in Section 3.3.
The forecast is 10 steps (quarters in this case) ahead, based on 10000 Monte Carlo repetitions
with the point forecast based on the mean of those repetitions. The prediction intervals are
two-sided with conĄdence levels 0.95 and 0.90. Finally, the argument mix_weights states that
also future values of the the mixing weights should be forecasted. After completing the forecast,
the function plots the results by default (to not plot the prediction, set plot_res=FALSE is the
arguments).

R> mypred <- predict(fit12gs, n_ahead=10, nsim=10000, pred_type="mean",

+ pi_type="two-sided", pi=c(0.95, 0.90),

+ mix_weights=TRUE)

The resulting plot is presented in Figure 4.

8. Summary

Mixture vector autoregressive models are a valuable tool in modeling multivariate time series
in which the data generating dynamics vary in time. We described the R package gmvarkit,
which accommodates the GMVAR model (Kalliovirta et al. 2016), the StMVAR model (Viro-
lainen 2022), and the G-StMVAR model (Virolainen 2022) - an appealing family of mixture
vector autoregressive models that call the GSMVAR models. We discussed several features
provided by gmvarkit for GSMVAR modeling: unconstrained and constrained maximum like-
lihood estimation of the model parameters, hypothesis testing, quantile residual based model
diagnostics, estimation of generalized impulse response function and generalized forecast error
variance decomposition, simulation, forecasting, and more. For convenience, we have collected
some useful functions in gmvarkit to Table 1. For all the exported functions and their usage,
see the reference manual.



32 A Family of Mixture Autoregressive Models in R

GDP

2012 2014 2016 2018 2020 2022

−
1

0
1

2
3

GDPDEF

2012 2014 2016 2018 2020 2022

−
1
.0

0
.0

1
.0

2
.0

Mixing weights

2012 2014 2016 2018 2020 2022

0
.0

0
.4

0
.8

regime 1

regime 2

Figure 4: The Ągure produced by the predict method applied to the model fit12gs. The Ąrst
top Ągures show the point and interval predictions 10 steps ahaed for the time series, and the
bottom Ągure for the mixing weights. Two-sided prediction intervals with conĄdence levels 95%
and 90%, point forecast based on mean. Prediction based on 10000 Monte Carlo repetitions.

Computational details

Some of the estimation results (and thereby everything that is calculated based on the estimates)
may vary slightly when running the code on different computers. This is likely due to the
numerical error caused by the limited precision of the Ćoat point representation.
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A table of some useful functions

Related to Name Description
Estimation fitGSMVAR Estimate a GSMVAR model.

alt_gsmvar Build a GSMVAR model based on results from any
estimation round.

stmvar_to_gstmvar Estimate a G-StMVAR model based on a StMVAR
(or G-StMVAR) model with large degrees of freedom
parameters.

gsmvar_to_sgsmvar Obtain a structural GSMVAR model identiĄed by
heteroskedasticity based on a reduced form model.

iterate_more Run more iterations of the variable metric algorithm
for a preliminary estimated GSMVAR model.

Estimates summary (method) Detailed printout of the estimates.
plot (method) Plot the series with the estimated mixing weights

and a kernel density estimates of the (marginal) se-
ries with the (marginal) stationary densities of the
model.

get_foc Calculate numerically approximated gradient of the
log-likelihood function evaluated at the estimate.

get_soc Calculate eigenvalues of numerically approximated
Hessian of the log-likelihood function evaluated at
the estimate.

profile_logliks Plot the graphs of the proĄle log-likelihood functions.
cond_moment_plot Plot the model implied one-step conditional means

or variances.
Diagnostics quantile_residual_tests Calculate quantile residual tests.

diagnostic_plot Plot quantile residual diagnostics.
Forecasting predict (method) Forecast future observations and mixing weights of

the process.
Simulation simulate (method) Simulate from a GSMVAR process.
Create model GSMVAR Construct a GSMVAR model based on speciĄc pa-

rameter values.
Hypothesis testing LR_test Calculate likelihood ratio test.

Wald_test Calculate Wald test.
Rao_test Calculate RaoŠs test.

Impulse response analysis GIRF Estimate generalized impulse response functions.
GFEVD Estimate generalized forecast error variance decom-

position.
linear_IRF Estimate linear impulse response functions.

Other add_data Add data to a GSMVAR model
swap_parametrization Swap between mean and intercept parametrizations

Table 1: Some useful functions in gmvarkit sorted according to their usage. The note "method" in
parentheses after the name of a function signiĄes that it is an S3 method for a class gsmvar object
(often generated by the function fitGSMVAR or GSMVAR).
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A. Properties of multivariate Gaussian and StudentŠs t distribution

Denote a d-dimensional real valued vector by y. It is well known that the density function of a
d-dimensional Gaussian distribution with mean µ and covariance matrix Σ is

nd(y; µ, Σ) = (2π)−d/2det(Σ)−1/2 exp



−
1

2
(y − µ)′Σ−1(y − µ)

}

. (48)

Similarly to Meitz et al. (2021) but differing from the standard form, we parametrize the Stu-
dentŠs t-distribution using its covariance matrix as a parameter together with the mean and the
degrees of freedom. The density function of such a d-dimensional t-distribution with mean µ,
covariance matrix Σ, and ν > 2 degrees of freedom is

td(y; µ, Σ, ν) = Cd(ν)det(Σ)−1/2

(

1 +
(y − µ)′Σ−1(y − µ)

ν − 2

−(d+ν)/2

, (49)

where

Cd(ν) =
Γ
(

d+ν
2

)

√

πd(ν − 2)dΓ
(

ν
2

)

, (50)

and Γ (·) is the gamma function. We assume that the covariance matrix Σ is positive deĄnite
for both distributions.

Consider a partition X = (X1, X2) of either Gaussian or t-distributed (with ν degrees of free-
dom) random vector X such that X1 has dimension (d1 × 1) and X2 has dimension (d2 × 1).
Consider also a corresponding partition of the mean vector µ = (µ1, µ2) and the covariance
matrix

Σ =



Σ11 Σ12

Σ′
12 Σ22

]

, (51)

where, for example, the dimension of Σ11 is (d1 × d1). In the Gaussian case, X1 then has
the marginal distribution nd1

(µ1, Σ11) and X2 has the marginal distribution nd2
(µ2, Σ22). In

the StudentŠs t case, X1 has the marginal distribution td1
(µ1, Σ11, ν) and X2 has the marginal

distribution td2
(µ2, Σ22, ν) (see, e.g., Ding (2016), also in what follows).

When X has Gaussian distribution, the conditional distribution of the random vector X1 given
X2 = x2 is

X1 ♣ (X2 = x2) ∼ nd1
(µ1♣2(x2), Σ1♣2(x2)), (52)

where

µ(x2) ≡ µ1♣2(x2) = µ1 + Σ12Σ−1
22 (x2 − µ2) and (53)

Ω ≡ Σ1♣2(x2) = Σ11 − Σ12Σ−1
22 Σ′

12. (54)

When X has t-distribution, the conditional distribution of the random vector X1 given X2 = x2

is
X1 ♣ (X2 = x2) ∼ td1

(µ1♣2(x2), Σ1♣2(x2), ν + d2), (55)

where

µ(x2) = µ1♣2(x2) = µ1 + Σ12Σ−1
22 (x2 − µ2) and (56)

Ω(x2) ≡ Σ1♣2(x2) =
ν − 2 + (x2 − µ2)′Σ−1

22 (x2 − µ2)

ν − 2 + d2
(Σ11 − Σ12Σ−1

22 Σ′
12). (57)

In particular, we have

nd(x; µ, Σ) = nd1
(x1; µ1♣2(x2), Σ1♣2(x2))td2

(x2; µ2, Σ22) and (58)

td(x; µ, Σ, ν) = td1
(x1; µ1♣2(x2), Σ1♣2(x2), ν + d2)td2

(x2; µ2, Σ22, ν). (59)
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B. Quantile residuals of the G-StMVAR model

The conditional density function of the d-dimensional G-StMVAR process yt conditional on
Ft−1 is

ft−1(yt;θ) =
M1
∑

m=1

αm,tnd(yt; µm,t, Ωm) +
M
∑

m=M1+1

αm,ttd(yt; µm,t, Ωm,t, νm + dp), (60)

where nd(·; µm,t, Ωm, νm + dp) is the density function of d-dimensional normal distribution with
mean µm,t and covariance matrix Ωm; and td(·; µm,t, Ωm, νm + dp) is the density function of
d-dimensional t-distribution with mean µm,t, covariance matrix Ωm,t, and νm + dp degrees of
freedom.

Denote y
(k)
t = (y1,t, ..., yk,t) (k × 1), k ≤ d, µ

(k)
m,t = (µ1,m,,t, ..., µk,m,t) (k × 1), k ≤ d, and

by Ω
(k)
m,t (Ω

(k)
m ) the upper left (k × k) block matrix of Ωm,t (Ωm). Then, the properties of

the marginal distributions of multivariate Gaussian and t-distributions (see Appendix A) show

that conditional on Ft−1, the random vectors y
(j)
t , j = 1, .., d, follow the distribution that is

a mixture M1 j-dimensional normal distributions (with means µ
(j)
m,t and covariance matrices

Ω
(j)
m ) and M2 ≡ M − M1 j-dimensional t-distributions (with means µ

(j)
m,t, covariance matrices

Ω
(j)
m,t, and νm + dp degrees of freedom). The mixing weights αm,t are not affected, as they are

Ft−1-measurable. Therefore, the marginal density function of y
(j)
t is

ft−1(y
(j)
t ;θ) =

M1
∑

m=1

αm,tnj(y
(j)
t ; µ

(j)
m,t, Ω(j)

m ) +
M
∑

m=M1+1

αm,ttj(y
(j)
t ; µ

(j)
m,t, Ω

(j)
m,t, νm + dp), (61)

The conditional density function f0,t−1(y1,t;θ) in (38) is obtained from (61) by choosing j = 1.
For j = 2, ..., d, the conditional density functions fj−1,t−1(yj,t;θ) are obtained by substituting
the equation (61) to the formula of conditional density function:

fj−1,t−1 (yj,t;θ) =
ft−1(y

(j)
t ;θ)

ft−1(y
(j−1)
t ;θ)

=

∑M1

m=1 αm,tnj(y
(j)
t ; µ

(j)
m,t, Ω

(j)
m ) +

∑M
m=M1+1 αm,ttj(y

(j)
t ; µ

(j)
m,t, Ω

(j)
m,t, νm + dp)

∑M1

n=1 αn,tnj−1(y
(j−1)
t ; µ

(j−1)
n,t , Ω

(j−1)
n ) +

∑M
n=M1+1 αn,ttj−1(y

(j−1)
t ; µ

(j−1)
n,t , Ω

(j−1)
n , νm + dp)

.

(62)

It follows from the properties of the conditional distributions of multivariate normal distribution
that we may express the j-dimensional normal distributions as

nj(y
(j)
t ; µ

(j)
m,t, Ω(j)

m ) = n1(yj,t; µm,t,j♣j−1, Ωm,j♣j−1)nj−1(y
(j−1)
t ; µ

(j−1)
m,t , Ω(j−1)

m ), (63)

where µm,t,j♣j−1 and Ωm,j♣j−1 are the conditional mean and covariance matrix of yj,t conditional
on σ(Aj−1, Ft−1). Likewise, it follows from the properties of the conditional distributions of
multivariate t-distribution that we may express the j-dimensional t-distributions as

tj(y
(j)
t ; µ

(j)
m,t, Ω

(j)
m,t, νm + dp) =t1(yj,t; µm,t,j♣j−1, Ωm,t,j♣j−1, νm + dp + j − 1)

× tj−1(y
(j−1)
t ; µ

(j−1)
m,t , Ω

(j−1)
m,t , νm + dp),

(64)

where µm,t,j♣j−1 and Ωm,t,j♣j−1 are the conditional mean and covariance matrix of yj,t conditional
on σ(Aj−1, Ft−1).
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By denoting

βm,t,j ≡
αm,tnj−1(y

(j−1)
t ; µ

(j−1)
m,t , Ω

(j−1)
m )

∑M1

n=1 αn,tnj−1(y
(j−1)
t ; µ

(j−1)
n,t , Ω

(j−1)
n ) +

∑M
n=M1+1 αn,ttj−1(y

(j−1)
t ; µ

(j−1)
n,t , Ω

(j−1)
n,t , νn + dp)

(65)
for m = 1, .., M1, j = 2, ..., d, and

βm,t,j ≡
αm,ttj−1(y

(j−1)
t ; µ

(j−1)
m,t , Ω

(j−1)
m,t , νm + dp)

∑M1

n=1 αn,tnj−1(y
(j−1)
t ; µ

(j−1)
n,t , Ω

(j−1)
n ) +

∑M
n=M1+1 αn,ttj−1(y

(j−1)
t ; µ

(j−1)
n,t , Ω

(j−1)
n,t , νn + dp)

(66)
for m = M1 + 1, ..., M , j = 2, ..., d, and using the expressions (63) and (64), we can express the
conditional density function (62) as

fj−1,t−1 (yj,t;θ) =
M1
∑

m=1

βm,t,jn1(yj,t; µm,t,j♣j−1, Ωm,j♣j−1)

+
M
∑

m=M1+1

βm,t,jt1(yj,t; µm,t,j♣j−1, Ωm,t,j♣j−1, νm + dp + j − 1), j = 2, .., d.

(67)

For m = 1, ..., M1, the conditional means µm,t,j♣j−1 and covariance matrices Ωm,j♣j−1 are as in

(53) and (54) when for each j = 2, ..., d and m = 1, ..., M we consider the partition y
(j)
t =

(y
(j−1)
t , yj,t), µ

(j)
m,t = (µ

(j−1)
m,t , µj,m,t), and

Ω(j)
m =



Ω
(j−1)
m Ω(j−1),j,m

Ω′
(j−1),j,m Ωm(j, j)

]

, (68)

where Ωm(j, j) is the jjth elementh of Ωm and Ω(j−1),j,m ((j − 1) × 1) consists of the rows
1, ..., j − 1 of the jth column of Ωm. In particular, we have

µm,t,j♣j−1 = µj,m,t + Ω′
(j−1),j,m(Ω(j−1)

m )−1(y
(j−1)
t − µ

(j−1)
m,t ), (69)

Ωm,j♣j−1 = Ωm(j, j) − Ω′
(j−1),j,m(Ω(j−1)

m )−1Ω(j−1),j,m. (70)

For m = M1 + 1, .., M , the conditional means µm,t,j♣j−1 and covariance matrices Ωm,t,j♣j−1 are
as in (56) and (57) when for each j = 2, ..., d and m = 1, ..., M we consider the partition

y
(j)
t = (y

(j−1)
t , yj,t), µ

(j)
m,t = (µ

(j−1)
m,t , µj,m,t), and

Ω
(j)
m,t =



Ω
(j−1)
m,t Ω(j−1),j,m,t

Ω′
(j−1),j,m,t Ωm,t(j, j)

]

, (71)

where Ωm,t(j, j) is the jjth elementh of Ωm,t and Ω(j−1),j,m,t ((j − 1) × 1) consists of the rows
1, ..., j − 1 of the jth column of Ωm,t. In particular, taking use of the relation Ωm,t = ωm,tΩm

(where ωm,t is scalar), we have

µm,t,j♣j−1 = µj,m,t + Ω′
(j−1),j,m,t(Ω

(j−1)
m,t )−1(y

(j−1)
t − µ

(j−1)
m,t )

= µj,m,t + Ω′
(j−1),j,m(Ω(j−1)

m )−1(y
(j−1)
t − µ

(j−1)
m,t ),

(72)

and

Ωm,t,j♣j−1 =
νm + dp + (y

(j−1)
t − µ

(j−1)
m,t )′(Ω

(j−1)
m,t )−1(y

(j−1)
t − µ

(j−1)
m,t )

νm + dp + j − 3
Ω̃m,t,j♣j−1

=
νm + dp + ω−1

m,t(y
(j−1)
t − µ

(j−1)
m,t )′(Ω

(j−1)
m )−1(y

(j−1)
t − µ

(j−1)
m,t )

νm + dp + j − 3
Ω̃m,t,j♣j−1,

(73)
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where

Ω̃m,t,j♣j−1 ≡ Ωm,t(j, j) − Ω′
(j−1),j,m,t(Ω

(j−1)
m,t )−1Ω(j−1),j,m,t

= ωm,t(Ωm(j, j) − Ω′
(j−1),j,m(Ω(j−1)

m )−1Ω(j−1),j,m).
(74)

It then remains to Ąnd expressions for the conditional distribution functions Fj−1,t−1(yj,t;θ),
j = 1, ..., d, in (40). For notational convenience, we write

fj−1,t−1(yj,tθ) =
M1
∑

m=1

βm,t,jn1(yj,t; µm,t,j♣j−1, Ωm,j♣j−1)

+
M
∑

m=M1+1

βm,t,jt1(yj,t; µm,t,j♣j−1, Ωm,t,j♣j−1, νm + dp + j − 1)

(75)

for all j = 1, ..., d by deĄning βm,t,1 ≡ αm,t, µm,t,1♣0 ≡ µ
(1)
m,t, Ωm,1♣0 ≡ Ω

(1)
m , and Ωm,t,1♣0 ≡ Ω

(1)
m,t.

For j = 2, ..., d, these quantities are deĄned in (65), (66), (69), (70), (72), and (73). Then,

Fj−1,t−1(yj,t;θ) =
M1
∑

m=1

βm,t,j

∫ yj,t

−∞
n1(u; µm,t,j♣j−1, Ωm,j♣j−1)du

+
M
∑

m=M1+1

βm,t,j

∫ yj,t

−∞
t1(u; µm,t,j♣j−1, Ωm,t,j♣j−1, νm + dp + j − 1)du,

(76)

where we seek to solve the integrals inside the sums.

Regarding the Ąrst sum, for m = 1, ..., M1, it is easy to see that the integrals can be expressed
using the stardard normal distribution function Φ(·) as

∫ yj,t

−∞
n1(u; µm,t,j♣j−1, Ωm,j♣j−1)du = Φ





yj,t − µm,t,j♣j−1
√

Ωm,j♣j−1



 . (77)

Next, consider the second sum, m = M1 + 1, ..., M . By taking use of the symmetry of the
t-distribution about its mean, we obtain

∫ yj,t

−∞
t1(u; µm,t,j♣j−1, Ωm,t,j♣j−1, νm + dp + j − 1)du

=
1

2
+

∫ yj,t

µm,t,j|j−1

t1(u; µm,t,j♣j−1, Ωm,t,j♣j−1, νm + dp + j − 1)du.
(78)

By applying the change of variables ũm,t,j = u − µm,t,j♣j−1 in the integral, the RHS of (78) can
be expressed as

1

2
+

Γ
(

νm+dp+j
2

)

√

π(νm + dp + j − 3)Γ
(

νm+dp+j−1
2

)Ω
−1/2
m,t,j♣j−1

∫ ỹm,t,j

0

(

1 +
ũ2

m,t,j

am,t,j

−bm,j

dũm,t,j , (79)

where ỹm,t,j ≡ yj,t − µm,t,j♣j−1, am,t,j ≡ (νm + dp + j − 3)Ωm,t,j♣j−1, and bm,j ≡ (νm + dp + j)/2.

Then, by applying the change of variables zm,t,j = ũ2
m,t,j/ỹm,t,j , we can express the integral in

(79) as

∫ ỹm,t,j

0

(

1 +
ũ2

m,t,j

am,t,j

−bm,j

dũm,t,j =
1

2

∫ ỹm,t,j

0

(

ỹm,t,j

zm,t,j

1/2(

1 +
zm,t,j ỹm,t,j

am,t,j

−bm,j

dzm,t,j . (80)
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By applying the third change of variables xm,t,j = zm,t,j/ỹm,t,j and using the properties of the
gamma function, the RHS of (80) can be expressed as

ỹm,t,j

2

∫ 1

0
x

−1/2
m,t,j

(

1 − xm,t,j

(

−
ỹ2

m,t,j

am,t,j

−bm,j

dxm,t,j = ỹm,t,j × 2F1

(

1

2
, bm,j ,

3

2
; −

ỹ2
m,t,j

am,t,j



, (81)

where the hypergeometric function is deĄned as (Aomoto and Kita 2011, Section 1.3.1)

2F1(a, b, c; x) =
Γ(c)

Γ(a)Γ(c − a)

∫ 1

0
sa−1(1 − s)c−a−1(1 − sx)−bds, (82)

when ♣x♣ < 1, a > 0, and c − a > 0 (when a, c ∈ R).

Using the above result, we have
∫ yj,t

−∞
t1(u; µm,t,j♣j−1, Ωm,t,j♣j−1, νm + dp + j − 1)du

=
1

2
+

Γ
(

νm+dp+j
2

)

√

π(νm + dp + j − 3)Γ
(

νm+dp+j−1
2

)Ω
−1/2
m,t,j♣j−1ỹm,t,j × 2F1

(

1

2
, bm,j ,

3

2
; −

ỹ2
m,t,j

am,t,j

 (83)

whenever

∣

∣

∣

∣

−
ỹ2

m,t,j

am,t,j

∣

∣

∣

∣

< 1. That is, the closed form expression (83) exists when

♣yj,t − µm,t,j♣j−1♣ <
√

(vm + dp + j − 3)Ωm,t,j,♣j−1. (84)

If this condition does not hold, the quantile residual are obtained by numerically integrating the
conditional density function t1(u; µm,t,j♣j−1, Ωm,t,j♣j−1, νm + dp + j − 1). For the hypergeometric
function, gmvarkit uses the package gsl (Hankin, Clausen, and Murdoch 2006).

C. Monte Carlo algorithm for estimating the GIRF

We present a Monte Carlo algorithm that produces point estimates and with random initial
value yt−1 = (yt−1, ..., yt−p) conĄdence intervals for the generalized impulse response function
deĄned in (41). Our algorithm is adapted from Koop et al. (1996, pp. 135-136) and Kilian and
Lütkepohl (2017, pp. 601-602). We assume that the history yt−1 follows a known distribution
G, which may be such that it produces a single outcome with probability one (corresponding
to a Ąxed yt−1), or it can be the stationary distribution of the process or of a speciĄc regime.

In the following, y
(i)
t+h(δj ,yt−1) denotes a realization of the process at time t + h conditional on

the structural shock of magnitude δj in the jth element of et hitting the system at time t and

on the p observations yt−1 = (yt−1, ..., yt−p) preceding the time t, whereas y
(i)
t+h(yt−1) denotes

an alternative realization conditional on the history yt−1 only.

The algorithm proceeds with the following steps.

0. Decide the horizon H, the numbers of repetitions R1 and R2, and the magnitude δj for
the jth structural shock that is of interest.

1. Draw an initial value yt−1 from G.

2. Draw H + 1 independent realizations of a shock εt from N(0, Id). If the models contains
StudentŠs t regime, the Gaussian shocks are used obtain shocks from the appropriate
StudentŠs t distributions (in this case, H + 1 independent realizations of shocks from
χ2

νm+dp-distributions are also drawn for the t-regimes). Also, draw an initial regime m ∈
¶1, ..., M♢ according to the probabilities given by the mixing weights α1,t, ..., αM,t and
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compute the reduced form shock ut. If identiĄcation by heteroskedasticity is used, ut =

WΛ
1/2
m εt, where Λ1 = Id. If the shocks are, instead, identiĄed recursively, ut = Ltεt, where

Lt is the lower triangular matrix obtained from the Cholesky decomposition Ωt = LtL
′
t

and Ωt is the conditional covariance matrix of the process. Then, compute the structural
shock et = B−1

t ut and impose the size δj on its jth element to obtain e∗
t . Finally, calculate

the modiĄed reduced form shock u∗
t = Bte

∗
t .

3. Use the modiĄed reduced form shock u∗
t and the rest H standard normal shocks εt obtained

from Step 2 to compute realizations y
(i)
t+h(δj ,yt−1) for h = 0, 1, ..., H, iterating forward so

that in each iteration the regime m that generates the observation is Ąrst drawn according
to the probabilities given by the mixing weights. At h = 0, the initial regime and the
modiĄed reduced form shock u∗

t calculated from the structural shock in Step 2 is used.
From h = 1 onwards, the h+1th standard normal shock εt is used to calculate the reduced

form shock ut+h = WΛ
1/2
m et+h, where Λ1 = Id and m is the selected regime (note that

only the reduced form shocks are of interest with h > 0, so the same formula can be used
for recursively identiĄed shocks here).

4. Use the reduced form shock ut and the rest H the standard normal shocks εt obtained
from Step 2 to compute realizations y

(i)
t+h(yt−1) for h = 0, 1, ..., H, so that the reduced form

shock ut (calculated in Step 2) is used to compute the time h = 0 realization. Otherwise
proceed similarly to the previous step.

5. Calculate y
(i)
t+h(δj ,yt−1) − y

(i)
t+h(yt−1).

6. Repeat Steps 2-5 R1 times and calculate the sample mean of y
(i)
t+h(δj ,yt−1) − y

(i)
t+n(yt−1)

for h = 0, 1, ..., H to obtain an estimate of the GIRF(h, δj ,yt−1).

7. Repeat Steps 1-6 R2 times to obtain estimates of GIRF(h, δj ,yt−1) with different starting
values yt−1 generated from the distribution G. Then, take the sample mean and sample
quantiles over the estimates to obtain point estimate and conĄdence intervals for the GIRF
with random initial value.

Notice that if a Ąxed initial value yt−1 is used, Step 7 is redundant.
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