Package 'TrialEmulation'

September 9, 2024

Title Causal Analysis of Observational Time-to-Event Data

Version 0.0.3.9

Description Implements target trial emulation methods to apply randomized clinical trial design and analysis in an observational setting. Using marginal structural models, it can estimate intention-to-treat and per-protocol effects in emulated trials using electronic health records. A description and application of the method can be found in Danaei et al (2013) <doi:10.1177/0962280211403603>. **License** Apache License (>= 2) URL https://causal-lda.github.io/TrialEmulation/, https://github.com/Causal-LDA/TrialEmulation BugReports https://github.com/Causal-LDA/TrialEmulation/issues **Depends** R (>= 3.5.0) Imports Rcpp, broom (>= 0.7.10), checkmate, data.table (>= 1.9.8), formula.tools, mvtnorm, parglm, sandwich Suggests knitr, rmarkdown, testthat (>= 3.0.0), withr LinkingTo Rcpp VignetteBuilder knitr Config/testthat/edition 3 **Encoding UTF-8** Language en-GB LazyData true LazyDataCompression xz RoxygenNote 7.3.2.9000 **NeedsCompilation** yes Author Roonak Rezvani [aut] (https://orcid.org/0000-0001-5580-5058, Original package author), Isaac Gravestock [aut, cre] (https://orcid.org/0000-0003-0283-2065), Li Su [aut], Medical Research Council (MRC) [fnd], F. Hoffmann-La Roche AG [cph, fnd]

Maintainer Isaac Gravestock <isaac.gravestock@roche.com>

Repository CRAN

Date/Publication 2024-09-09 12:10:15 UTC

Contents

case_control_sampling_trials	2
data_preparation	3
initiators	7
predict.TE_msm	10
print.TE_weight_summary	12
summary.TE_data_prep	13
te_data_ex	13
te_model_ex	14
trial_example	15
trial_msm	16
vignette_switch_data	18
	•
\sim	20

case_control_sampling_trials

Case-control sampling of expanded data for the sequence of emulated trials

Description

Perform case-control sampling of expanded data to create a data set of reduced size and calculate sampling weights to be used in trial_msm().

Usage

Index

```
case_control_sampling_trials(
  data_prep,
  p_control = NULL,
  subset_condition,
  sort = FALSE
)
```

Arguments

data_prep Result from data_preparation().

p_control Control sampling probability for selecting potential controls at each follow-up

time of each trial.

subset_condition

Expression used to subset() the trial data before case-control sampling.

sort

Sort data before applying case-control sampling to make sure that the resulting data are identical when sampling from the expanded data created with separate_files = TRUE or separate_files = FALSE.

Value

A data.frame or a split() data.frame if length(p_control) > 1. An additional column sample_weight containing the sample weights will be added to the result. These can be included in the models fit with trial_msm().

Examples

```
# If necessary reduce the number of threads for data.table
data.table::setDTthreads(2)

data("te_data_ex")
samples <- case_control_sampling_trials(te_data_ex, p_control = 0.01)</pre>
```

data_preparation

Prepare data for the sequence of emulated target trials

Description

This function expands observational data in the person-time format (i.e., the 'long' format) to emulate a sequence of target trials and also estimates the inverse probability of treatment and censoring weights as required.

Usage

```
data_preparation(
  data,
  id = "id",
 period = "period",
  treatment = "treatment",
  outcome = "outcome",
  eligible = "eligible",
 model_var = NULL,
 outcome_cov = \sim 1,
  estimand_type = c("ITT", "PP", "As-Treated"),
  switch_n_cov = ~1,
  switch_d_cov = ~1,
  first_period = NA,
  last\_period = NA,
  use_censor_weights = FALSE,
  cense = NA,
  pool_cense = c("none", "both", "numerator"),
  cense_d_cov = ~1,
  cense_n_cov = ~1,
```

```
eligible_wts_0 = NA,
eligible_wts_1 = NA,
where_var = NULL,
data_dir,
save_weight_models = FALSE,
glm_function = "glm",
chunk_size = 500,
separate_files = FALSE,
quiet = FALSE,
...
)
```

Arguments

data A data.frame containing all the required variables in the person-time format,

i.e., the 'long' format.

id Name of the variable for identifiers of the individuals. Default is 'id'.

period Name of the variable for the visit/period. Default is 'period'.

treatment Name of the variable for the treatment indicator at that visit/period. Default is

'treatment'.

outcome Name of the variable for the indicator of the outcome event at that visit/period.

Default is 'outcome'.

eligible Name of the variable for the indicator of eligibility for the target trial at that

visit/period. Default is 'eligible'.

model_var Treatment variables to be included in the marginal structural model for the

emulated trials. model_var = "assigned_treatment" will create a variable assigned_treatment that is the assigned treatment at the trial baseline, typically used for ITT and per-protocol analyses. model_var = "dose" will create a variable dose that is the cumulative number of treatments received since the

trial baseline, typically used in as-treated analyses.

outcome_cov A RHS formula with baseline covariates to be adjusted for in the marginal structural model for the emulated trials. Note that if a time-varying covariate is speci-

fied in outcome_cov, only its value at each of the trial baselines will be included

in the expanded data.

estimand_type Specify the estimand for the causal analyses in the sequence of emulated tri-

als. estimand_type = "ITT" will perform intention-to-treat analyses, where treatment switching after trial baselines are ignored. estimand_type = "PP" will perform per-protocol analyses, where individuals' follow-ups are artificially censored and inverse probability of treatment weighting is applied. estimand_type = "As-Treated" will fit a standard marginal structural model for all possible treatment sequences, where individuals' follow-ups are not artificially censored but treatment switching after trial baselines are accounted for by applying in-

verse probability of treatment weighting.

switch_n_cov A RHS formula to specify the logistic models for estimating the numerator

terms of the inverse probability of treatment weights. A derived variable named time_on_regime containing the duration of time that the individual has been on

the current treatment/non-treatment is available for use in these models.

switch_d_cov A RHS formula to specify the logistic models for estimating the denominator

terms of the inverse probability of treatment weights.

first_period First time period to be set as trial baseline to start expanding the data.

last_period Last time period to be set as trial baseline to start expanding the data.

use_censor_weights

Require the inverse probability of censoring weights. If use_censor_weights = TRUE, then the variable name of the censoring indicator needs to be provided in the appropriate page.

in the argument cense.

cense Variable name for the censoring indicator. Required if use_censor_weights =

TRUE.

pool_cense Fit pooled or separate censoring models for those treated and those untreated

at the immediately previous visit. Pooling can be specified for the models for the numerator and denominator terms of the inverse probability of censoring weights. One of "none", "numerator", or "both" (default is "none" except

when estimand_type = "ITT" then default is "numerator").

cense_d_cov A RHS formula to specify the logistic models for estimating the denominator

terms of the inverse probability of censoring weights.

cense_n_cov A RHS formula to specify the logistic models for estimating the numerator terms

of the inverse probability of censoring weights.

eligible_wts_0 See definition for eligible_wts_1

eligible_wts_1 Exclude some observations when fitting the models for the inverse probability

of treatment weights. For example, if it is assumed that an individual will stay on treatment for at least 2 visits, the first 2 visits after treatment initiation by definition have a probability of staying on the treatment of 1.0 and should thus be excluded from the weight models for those who are on treatment at the immediately previous visit. Users can define a variable that indicates that these 2 observations are ineligible for the weight model for those who are on treatment at the immediately previous visit and add the variable name in the argument eligible_wts_1. Similar definitions are applied to eligible_wts_0 for excluding observations when fitting the models for the inverse probability of treatment weights for those who are not on treatment at the immediately previous

visit.

where_var Specify the variable names that will be used to define subgroup conditions when

fitting the marginal structural model for a subgroup of individuals. Need to

specify jointly with the argument where_case.

data_dir

Directory to save model objects when save_weight_models=TRUE and expanded data as separate CSV files names as trial_i.csvs if separate_files = TRUE.

If the specified directory does not exist it will be created. If the directory already

contains trial files, an error will occur, other files may be overwritten.

save_weight_models

Save model objects for estimating the weights in data_dir.

glm_function Specify which glm function to use for the marginal structural model from the

stats or parglm packages. The default function is the glm function in the stats package. Users can also specify glm_function = "parglm" such that the parglm function in the parglm package can be used for fitting generalized linear

models in parallel. The default control setting for parglm is nthreads = 4 and method = "FAST", where four cores and Fisher information are used for faster computation. Users can change the default control setting by passing the arguments nthreads and method in the parglm.control function of the parglm package, or alternatively, by passing a control argument with a list produced by parglm.control(nthreads = , method =).

chunk_size Number of individuals whose data to be processed in one chunk when separate_files

= TRUE

separate_files Save expanded data in separate CSV files for each trial.

quiet Suppress the printing of progress messages and summaries of the fitted models.

Additional arguments passed to glm_function. This may be used to specify initial values of parameters or arguments to control. See stats::glm, par-

glm::parglm and parglm::parglm.control() for more information.

Details

The arguments chunk_size and separate_files allow for processing of large datasets that would not fit in memory once expanded. When separate_files = TRUE, the input data are processed in chunks of individuals and saved into separate files for each emulated trial. These separate files can be sampled by case-control sampling to create a reduced dataset for the modelling.

Value

An object of class TE_data_prep, which can either be sampled from (case_control_sampling_trials) or directly used in a model (trial_msm). It contains the elements

data the expanded dataset for all emulated trials. If separate_files = FALSE, it is a data.table;
 if separate_files = TRUE, it is a character vector with the file path of the expanded data as
 CSV files.

min period index for the first trial in the expanded data

max_period index for the last trial in the expanded data

N the total number of observations in the expanded data

data_template a zero-row data.frame with the columns and attributes of the expanded data

switch_models a list of summaries of the models fitted for inverse probability of treatment weights, if estimand_type is "PP" or "As-Treated"

censor_models a list of summaries of the models fitted for inverse probability of censoring weights, if use_censor_weights=TRUE

args a list contain the parameters used to prepare the data and fit the weight models

initiators 7

initiators

A wrapper function to perform data preparation and model fitting in a sequence of emulated target trials

Description

An all-in-one analysis using a sequence of emulated target trials. This provides a simplified interface to the main functions data_preparation() and trial_msm().

Usage

```
initiators(
 data,
  id = "id",
 period = "period",
  treatment = "treatment",
 outcome = "outcome",
  eligible = "eligible",
 outcome_cov = \sim 1,
  estimand_type = c("ITT", "PP", "As-Treated"),
 model_var = NULL,
  switch_n_cov = ~1,
  switch_d_cov = ~1,
  first_period = NA,
  last_period = NA,
  first_followup = NA,
  last_followup = NA,
  use_censor_weights = FALSE,
  save_weight_models = FALSE,
  analysis_weights = c("asis", "unweighted", "p99", "weight_limits"),
 weight_limits = c(0, Inf),
  cense = NA,
  pool_cense = c("none", "both", "numerator"),
  cense_d_cov = ~1,
  cense_n_cov = ^{1},
  include_followup_time = ~followup_time + I(followup_time^2),
  include_trial_period = ~trial_period + I(trial_period^2),
  eligible_wts_0 = NA,
  eligible_wts_1 = NA,
 where_var = NULL,
 where_case = NA,
  data_dir,
  glm_function = "glm",
 quiet = FALSE,
)
```

8 initiators

Arguments

data A data. frame containing all the required variables in the person-time format,

i.e., the 'long' format.

id Name of the variable for identifiers of the individuals. Default is 'id'.

period Name of the variable for the visit/period. Default is 'period'.

treatment Name of the variable for the treatment indicator at that visit/period. Default is

'treatment'.

outcome Name of the variable for the indicator of the outcome event at that visit/period.

Default is 'outcome'.

eligible Name of the variable for the indicator of eligibility for the target trial at that

visit/period. Default is 'eligible'.

outcome_cov A RHS formula with baseline covariates to be adjusted for in the marginal struc-

tural model for the emulated trials. Note that if a time-varying covariate is specified in outcome_cov, only its value at each of the trial baselines will be included

in the expanded data.

estimand_type Specify the estimand for the causal analyses in the sequence of emulated tri-

als. estimand_type = "ITT" will perform intention-to-treat analyses, where treatment switching after trial baselines are ignored. estimand_type = "PP" will perform per-protocol analyses, where individuals' follow-ups are artificially censored and inverse probability of treatment weighting is applied. estimand_type = "As-Treated" will fit a standard marginal structural model for all possible treatment sequences, where individuals' follow-ups are not artificially censored but treatment switching after trial baselines are accounted for by applying in-

verse probability of treatment weighting.

model_var Treatment variables to be included in the marginal structural model for the

emulated trials. model_var = "assigned_treatment" will create a variable assigned_treatment that is the assigned treatment at the trial baseline, typically used for ITT and per-protocol analyses. model_var = "dose" will create a variable dose that is the cumulative number of treatments received since the

trial baseline, typically used in as-treated analyses.

switch_n_cov A RHS formula to specify the logistic models for estimating the numerator

terms of the inverse probability of treatment weights. A derived variable named time_on_regime containing the duration of time that the individual has been on the current treatment from treatment is available for use in these models.

the current treatment/non-treatment is available for use in these models.

switch_d_cov A RHS formula to specify the logistic models for estimating the denominator

terms of the inverse probability of treatment weights.

first_period First time period to be set as trial baseline to start expanding the data.

last_period Last time period to be set as trial baseline to start expanding the data.

first_followup First follow-up time/visit in the trials to be included in the marginal structural

model for the outcome event.

last_followup Last follow-up time/visit in the trials to be included in the marginal structural

model for the outcome event.

9 initiators

use_censor_weights

Require the inverse probability of censoring weights. If use_censor_weights = TRUE, then the variable name of the censoring indicator needs to be provided in the argument cense.

save_weight_models

Save model objects for estimating the weights in data_dir.

analysis_weights

Choose which type of weights to be used for fitting the marginal structural model for the outcome event.

- "asis": use the weights as calculated.
- "p99": use weights truncated at the 1st and 99th percentiles (based on the distribution of weights in the entire sample).
- "weight_limits": use weights truncated at the values specified in weight_limits.
- "unweighted": set all analysis weights to 1, even if treatment weights or censoring weights were calculated.

Lower and upper limits to truncate weights, given as c(lower, upper) weight_limits

cense Variable name for the censoring indicator. Required if use_censor_weights = TRUE.

pool_cense Fit pooled or separate censoring models for those treated and those untreated at the immediately previous visit. Pooling can be specified for the models for the numerator and denominator terms of the inverse probability of censoring weights. One of "none", "numerator", or "both" (default is "none" except when estimand_type = "ITT" then default is "numerator").

A RHS formula to specify the logistic models for estimating the denominator cense_d_cov terms of the inverse probability of censoring weights.

A RHS formula to specify the logistic models for estimating the numerator terms cense_n_cov of the inverse probability of censoring weights.

include_followup_time

The model to include the follow up time/visit of the trial (followup_time) in the marginal structural model, specified as a RHS formula.

include_trial_period

The model to include the trial period (trial_period) in the marginal structural model, specified as a RHS formula.

eligible_wts_0 See definition for eligible_wts_1

eligible_wts_1 Exclude some observations when fitting the models for the inverse probability of treatment weights. For example, if it is assumed that an individual will stay on treatment for at least 2 visits, the first 2 visits after treatment initiation by definition have a probability of staying on the treatment of 1.0 and should thus be excluded from the weight models for those who are on treatment at the immediately previous visit. Users can define a variable that indicates that these 2 observations are ineligible for the weight model for those who are on treatment at the immediately previous visit and add the variable name in the argument eligible_wts_1. Similar definitions are applied to eligible_wts_0 for excluding observations when fitting the models for the inverse probability of treatment weights for those who are not on treatment at the immediately previous visit.

10 predict.TE_msm

where_var Specify the variable names that will be used to define subgroup conditions when

fitting the marginal structural model for a subgroup of individuals. Need to

specify jointly with the argument where_case.

where_case Define conditions using variables specified in where_var when fitting a marginal

structural model for a subgroup of the individuals. For example, if where_var= "age", where_case = "age >= 30" will only fit the marginal structural model to

the subgroup of individuals. who are 30 years old or above.

data_dir Directory to save model objects in.

glm_function Specify which glm function to use for the marginal structural model from the

stats or parglm packages. The default function is the glm function in the stats package. Users can also specify glm_function = "parglm" such that the parglm function in the parglm package can be used for fitting generalized linear models in parallel. The default control setting for parglm is nthreads = 4 and method = "FAST", where four cores and Fisher information are used for faster computation. Users can change the default control setting by passing the arguments nthreads and method in the parglm.control function of the parglm package, or alternatively, by passing a control argument with a list produced

by parglm.control(nthreads = , method =).

quiet Suppress the printing of progress messages and summaries of the fitted models.

... Additional arguments passed to glm_function. This may be used to spec-

ify initial values of parameters or arguments to control. See stats::glm, par-

glm::parglm and parglm::parglm.control() for more information.

Value

Returns the result of trial_msm() from the expanded data. An object of class TE_msm containing

model a glm object

robust a list containing a summary table of estimated regression coefficients and the robust covariance matrix

predict.TE_msm Predict marginal cumulative incidences with confidence intervals for a target trial population

Description

This function predicts the marginal cumulative incidences when a target trial population receives either the treatment or non-treatment at baseline (for an intention-to-treat analysis) or either sustained treatment or sustained non-treatment (for a per-protocol analysis). The difference between these cumulative incidences is the estimated causal effect of treatment. Currently, the predict function only provides marginal intention-to-treat and per-protocol effects, therefore it is only valid when estimand_type = "ITT" or estimand_type = "PP".

predict.TE_msm 11

Usage

```
## $3 method for class 'TE_msm'
predict(
  object,
  newdata,
  predict_times,
  conf_int = TRUE,
  samples = 100,
  type = c("cum_inc", "survival"),
  ...
)
```

Arguments

object Object from trial_msm() or initiators().

newdata Baseline trial data that characterise the target trial population that marginal cu-

mulative incidences or survival probabilities are predicted for. newdata must have the same columns and formats of variables as in the fitted marginal structural model specified in trial_msm() or initiators(). If newdata contains

rows with followup_time > 0 these will be removed.

predict_times Specify the follow-up visits/times where the marginal cumulative incidences or

survival probabilities are predicted.

conf_int Construct the point-wise 95-percent confidence intervals of cumulative inci-

dences for the target trial population under treatment and non-treatment and their differences by simulating the parameters in the marginal structural model from a multivariate normal distribution with the mean equal to the marginal structural model parameter estimates and the variance equal to the estimated robust

covariance matrix.

samples Number of samples used to construct the simulation-based confidence intervals.

type Specify cumulative incidences or survival probabilities to be predicted. Either

cumulative incidence ("cum_inc") or survival probability ("survival").

... Further arguments passed to or from other methods.

Value

A list of three data frames containing the cumulative incidences for each of the assigned treatment options (treatment and non-treatment) and the difference between them.

Examples

```
# If necessary set the number of `data.table` threads
data.table::setDTthreads(2)

data("te_model_ex")
predicted_ci <- predict(te_model_ex, predict_times = 0:30, samples = 10)
# Plot the cumulative incidence curves under treatment and non-treatment</pre>
```

```
plot(predicted_ci[[1]]$followup_time, predicted_ci[[1]]$cum_inc,
  type = "1",
  xlab = "Follow-up Time", ylab = "Cumulative Incidence",
  ylim = c(0, 0.7)
lines(predicted_ci[[1]]$followup_time, predicted_ci[[1]]$`2.5%`, lty = 2)
lines(predicted_ci[[1]]$followup_time, predicted_ci[[1]]$^97.5%`, lty = 2)
lines(predicted_ci[[2]]$followup_time, predicted_ci[[2]]$cum_inc, type = "1", col = 2)
lines(predicted_ci[[2]]$followup_time, predicted_ci[[2]]$^2.5%`, lty = 2, col = 2)
lines(predicted_ci[[2]]$followup_time, predicted_ci[[2]]$^97.5%, lty = 2, col = 2)
legend("topleft", title = "Assigned Treatment", legend = c("0", "1"), col = 1:2, lty = 1)
# Plot the difference in cumulative incidence over follow up
plot(predicted_ci[[3]]$followup_time, predicted_ci[[3]]$cum_inc_diff,
  type = "1",
  xlab = "Follow-up Time", ylab = "Difference in Cumulative Incidence",
  ylim = c(0.0, 0.5)
)
lines(predicted_ci[[3]]$followup_time, predicted_ci[[3]]$^2.5%^, lty = 2)
lines(predicted_ci[[3]]$followup_time, predicted_ci[[3]]$`97.5%`, lty = 2)
```

```
print.TE_weight_summary
```

Print a weight summary object

Description

Print a weight summary object

Usage

```
## S3 method for class 'TE_weight_summary'
print(x, full = TRUE, ...)
```

Arguments

```
x print TE_weight_summary object.full Print full or short summary.... Arguments passed to print.data.frame.
```

Value

No return value, only for printing.

summary.TE_data_prep

```
summary.TE_data_prep Summary methods
```

Description

Print summaries of data and model objects produced by TrialEmulation.

Usage

```
## S3 method for class 'TE_data_prep'
summary(object, ...)

## S3 method for class 'TE_data_prep_sep'
summary(object, ...)

## S3 method for class 'TE_data_prep_dt'
summary(object, ...)

## S3 method for class 'TE_msm'
summary(object, ...)

## S3 method for class 'TE_robust'
summary(object, ...)
```

Arguments

objectObject to print summaryAdditional arguments passed to print methods.

Value

No value, displays summaries of object.

te_data_ex

Example of a prepared data object

Description

A small example object from data_preparation used in examples. It is created with the following code:

Usage

```
te_data_ex
```

te_model_ex

Format

An object of class TE_data_prep_dt (inherits from TE_data_prep) of length 6.

Details

```
dat <- trial_example[trial_example$id < 200, ]

te_data_ex <- data_preparation(
data = dat,
  outcome_cov = c("nvarA", "catvarA"),
  first_period = 260,
  last_period = 280
)</pre>
```

See Also

```
te_model_ex
```

te_model_ex

Example of a fitted marginal structural model object

Description

A small example object from trial_msm used in examples. It is created with the following code:

Usage

```
te_model_ex
```

Format

An object of class TE_msm of length 3.

Details

```
te_model_ex <- trial_msm(
  data = data_subset,
  outcome_cov = c("catvarA", "nvarA"),
  last_followup = 40,
  model_var = "assigned_treatment",
  include_followup_time = ~followup_time,
  include_trial_period = ~trial_period,
  use_sample_weights = FALSE,
  quiet = TRUE,
  glm_function = "glm"
)</pre>
```

trial_example 15

See Also

te_data_ex

trial_example

Example of longitudinal data for sequential trial emulation

Description

A dataset containing the treatment, outcomes and other attributes of 503 patients for sequential trial emulation. See vignette("Getting-Started").

Usage

trial_example

Format

A data frame with 48400 rows and 11 variables:

id patient identifier

eligible eligible for trial start in this period, 1=yes, 0=no

period time period

outcome indicator for outcome in this period, 1=event occurred, 0=no event

treatment indicator for receiving treatment in this period, 1=treatment, 0=no treatment

catvarA A categorical variable relating to treatment and the outcome

catvarB A categorical variable relating to treatment and the outcome

catvarC A categorical variable relating to treatment and the outcome

nvarA A numerical variable relating to treatment and the outcome

nvarB A numerical variable relating to treatment and the outcome

nvarC A numerical variable relating to treatment and the outcome

16 trial_msm

trial_msm

Fit the marginal structural model for the sequence of emulated trials

Description

Apply a weighted pooled logistic regression to fit the marginal structural model for the sequence of emulated trials and calculates the robust covariance matrix of parameter using the sandwich estimator.

Usage

```
trial_msm(
  data,
  outcome\_cov = ~1,
  estimand_type = c("ITT", "PP", "As-Treated"),
 model_var = NULL,
  first_followup = NA,
  last_followup = NA,
  analysis_weights = c("asis", "unweighted", "p99", "weight_limits"),
 weight_limits = c(0, Inf),
  include_followup_time = ~followup_time + I(followup_time^2),
  include_trial_period = ~trial_period + I(trial_period^2),
  where_case = NA,
  glm_function = c("glm", "parglm"),
  use_sample_weights = TRUE,
  quiet = FALSE,
)
```

Arguments

data

A data.frame containing all the required variables in the person-time format, i.e., the 'long' format.

outcome_cov

A RHS formula with baseline covariates to be adjusted for in the marginal structural model for the emulated trials. Note that if a time-varying covariate is specified in outcome_cov, only its value at each of the trial baselines will be included in the expanded data.

estimand_type

Specify the estimand for the causal analyses in the sequence of emulated trials. estimand_type = "ITT" will perform intention-to-treat analyses, where treatment switching after trial baselines are ignored. estimand_type = "PP" will perform per-protocol analyses, where individuals' follow-ups are artificially censored and inverse probability of treatment weighting is applied. estimand_type = "As-Treated" will fit a standard marginal structural model for all possible treatment sequences, where individuals' follow-ups are not artificially censored but treatment switching after trial baselines are accounted for by applying inverse probability of treatment weighting.

trial_msm 17

model_var

Treatment variables to be included in the marginal structural model for the emulated trials. model_var = "assigned_treatment" will create a variable assigned_treatment that is the assigned treatment at the trial baseline, typically used for ITT and per-protocol analyses. model_var = "dose" will create a variable dose that is the cumulative number of treatments received since the trial baseline, typically used in as-treated analyses.

first_followup

First follow-up time/visit in the trials to be included in the marginal structural model for the outcome event.

last_followup

Last follow-up time/visit in the trials to be included in the marginal structural model for the outcome event.

analysis_weights

Choose which type of weights to be used for fitting the marginal structural model for the outcome event.

- "asis": use the weights as calculated.
- "p99": use weights truncated at the 1st and 99th percentiles (based on the distribution of weights in the entire sample).
- "weight_limits": use weights truncated at the values specified in weight_limits.
- "unweighted": set all analysis weights to 1, even if treatment weights or censoring weights were calculated.

weight_limits Lower and upper limits to truncate weights, given as c(lower, upper)
include_followup_time

The model to include the follow up time/visit of the trial (followup_time) in the marginal structural model, specified as a RHS formula.

include_trial_period

The model to include the trial period (trial_period) in the marginal structural model, specified as a RHS formula.

where_case

Define conditions using variables specified in where_var when fitting a marginal structural model for a subgroup of the individuals. For example, if where_var= "age", where_case = "age >= 30" will only fit the marginal structural model to the subgroup of individuals. who are 30 years old or above.

glm_function

Specify which glm function to use for the marginal structural model from the stats or parglm packages. The default function is the glm function in the stats package. Users can also specify glm_function = "parglm" such that the parglm function in the parglm package can be used for fitting generalized linear models in parallel. The default control setting for parglm is nthreads = 4 and method = "FAST", where four cores and Fisher information are used for faster computation. Users can change the default control setting by passing the arguments nthreads and method in the parglm.control function of the parglm package, or alternatively, by passing a control argument with a list produced by parglm.control(nthreads = , method =).

use_sample_weights

Use case-control sampling weights in addition to inverse probability weights for treatment and censoring. data must contain a column sample_weight. The final weights used in the pooled logistic regression are calculated as weight = weight * sample_weight.

18 vignette_switch_data

quiet Suppress the printing of progress messages and summaries of the fitted models.

Additional arguments passed to glm_function. This may be used to specify initial values of parameters or arguments to control. See stats::glm, parglm::parglm and parglm::parglm.control() for more information.

Details

The model formula is constructed by combining the arguments outcome_cov, model_var, include_followup_time, and include_trial_period.

Value

Object of class TE_msm containing

model a glm object

robust a list containing a summary table of estimated regression coefficients and the robust covariance matrix

args a list contain the parameters used to prepare and fit the model

Description

This is the expanded dataset created in the vignette ("Getting-Started") known as switch_data.

Usage

```
vignette_switch_data
```

Format

A data frame with 1939053 rows and 7 variables:

id patient identifier

trial_period trial start time period

followup_time follow up time within trial

outcome indicator for outcome in this period, 1=event occurred, 0=no event

treatment indicator for receiving treatment in this period, 1=treatment, 0=non-treatment

assigned_treatment indicator for assigned treatment at baseline of the trial, 1=treatment, 0=non-treatment

weight weights for use with model fitting

catvarA A categorical variable relating to treatment and the outcome

catvarB A categorical variable relating to treatment and the outcome

catvarC A categorical variable relating to treatment and the outcome

vignette_switch_data 19

nvarA A numerical variable relating to treatment and the outcome

nvarB A numerical variable relating to treatment and the outcome

nvarC A numerical variable relating to treatment and the outcome

Index

```
* datasets
    te_data_ex, 13
    te_model_ex, 14
    trial_example, 15
    vignette_switch_data, 18
case_control_sampling_trials, 2, 6
data_preparation, 3, 13
data_preparation(), 2, 7
initiators, 7
initiators(), 11
parglm::parglm, 6, 10, 18
parglm::parglm.control(), 6, 10, 18
predict.TE_msm, 10
print.data.frame, 12
print.TE_weight_summary, 12
split(), 3
stats::glm, 6, 10, 18
subset(), 2
summary.TE_data_prep, 13
summary.TE_data_prep_dt
        (summary.TE_data_prep), 13
summary.TE_data_prep_sep
        (summary.TE_data_prep), 13
summary.TE_msm (summary.TE_data_prep),
        13
summary.TE_robust
        (summary.TE_data_prep), 13
te_data_ex, 13, 15
te_model_ex, 14, 14
trial_example, 15
trial_msm, 6, 14, 16
trial_msm(), 3, 7, 10, 11
vignette_switch_data, 18
```