Package 'TUvalues'

September 10, 2024

Title Tools for Calculating Allocations in Game Theory using Exact and

Type Package

Version 0.1.0

Approximated Methods

Description The main objective of cooperative games is to allocate a good among the agents involved. This package includes the most well-known allocation rules, i.e., the Shapley value, the Banzhaf value, the egalitarian rule, and the equal surplus division value. In addition, it considers the point of view of a priori unions (situations in which agents can form coalitions). For this purpose, the package includes the Owen value, the Banzhaf-Owen value, and the corresponding extensions of the egalitarian rules. All these values can be calculated exactly or estimated by sampling.
License AGPL (>= 3)
Encoding UTF-8
RoxygenNote 7.2.3
<pre>URL https://github.com/mariaguilleng/TUvalues</pre>
<pre>BugReports https://github.com/mariaguilleng/TUvalues/issues</pre>
Imports utils, gtools
NeedsCompilation no
Author Maria D. Guillen [cre, aut] (https://orcid.org/0000-0002-2445-5654), Juan Carlos Gonçalves [aut] (https://orcid.org/0000-0002-0867-0004)
Maintainer Maria D. Guillen <maria.guilleng@umh.es></maria.guilleng@umh.es>
Repository CRAN
Date/Publication 2024-09-10 09:30:02 UTC
Contents
banzhaf
1

2 banzhaf

banznai_appro_vector	4
banzhaf_exact	5
banzhaf_owen	5
banzhaf_owen_appro	6
banzhaf_owen_exact	7
coalitions	7
egalitarian	8
equal_surplus_division	8
owen	9
owen_appro	10
owen_exact	11
predecessor	11
shapley	12
shapley_appro	12
shapley_exact	13

Index 14

banzhaf

Banzhaf value

Description

Calculate the Banzhaf value

Usage

```
banzhaf(
  characteristic_func,
  method = "exact",
  n_rep = 10000,
  n_players = 0,
  replace = FALSE
)
```

Arguments

characteristic_func

The valued function defined on the subsets of the number of players.

method Method used to calculate the Banzhaf value. Valid methods are: exact for the exact calculation or appro for approximated polynomial calculation based on

sampling.

n_rep Only used if method is appro. The number of iterations to perform in the ap-

proximated calculation

n_players Only used if characteristic_func is a function. The number of players in

the game.

replace should sampling be with replacement?

banzhaf_appro 3

Value

The Banzhaf value for each player

Examples

```
n <- 10
v <- function(coalition) {
   if (length(coalition) > n/2) {
      return(1)
   } else {
      return(0)
   }
}
banzhaf(v, method = "exact", n_players = n)
banzhaf(v, method = "appro", n_rep = 4000, n_players = n, replace = TRUE)

v<-c(0,0,0,1,2,1,3)
banzhaf(v, method = "exact")
banzhaf(v, method = "appro", n_rep = 4000, replace = TRUE)</pre>
```

banzhaf_appro

Banzhaf Index (approximated)

Description

Calculate the approximated Banzhaf Index based on sampling

Usage

```
banzhaf_appro(characteristic_func, n_players, n_rep, replace = TRUE)
```

Arguments

characteristic_func

The valued function defined on the subsets of the number of players

n_players Only used if value_func is a function. The number of players in the game

n_rep The number of iterations to perform in the approximated calculation

replace should sampling be with replacement?

Value

The Banzhaf Index for each player

banzhaf_appro_func Banzhaf Index (approximation)

Description

Calculate the approximated Banzhaf Index based on sampling

Usage

```
banzhaf_appro_func(value_func, n_rep, n_players, replace = TRUE)
```

Arguments

value_func The valued function defined on the subsets of the number of players n_rep The number of iterations to perform in the approximated calculation

n_players Only used if value_func is a function. The number of players in the game.

replace should sampling be with replacement?

Value

The Banzhaf Index for each player

banzhaf_appro_vector Banzhaf Index (approximated)

Description

Calculate the approximated Banzhaf Index based on sampling

Usage

```
banzhaf_appro_vector(value_func, n_rep)
```

Arguments

value_func The valued function defined on the subsets of the number of players n_rep The number of iterations to perform in the approximated calculation

Value

The Banzhaf Index for each player

banzhaf_exact 5

banzhaf_exact

Banzhaf Index (exact)

Description

Calculate the approximated Banzhaf Index

Usage

```
banzhaf_exact(characteristic_func, n_players)
```

Arguments

```
characteristic\_func
```

The valued function defined on the subsets of the number of players

n_players

The number of players in the game.

Value

The Banzhaf Index for each player

banzhaf_owen

Banzhaf-Owen value

Description

Calculate the Banzhaf-Owen value

Usage

```
banzhaf_owen(
  characteristic_func,
  union,
  method = "exact",
  n_rep = 10000,
  n_players = 0,
  replace = TRUE
)
```

Arguments

characteristic_func

The valued function defined on the subsets of the number of players

union List of vectors indicating the a priori unions between the players

method Method used to calculate the Owen value. Valid methods are: exact for the

exact calculation or appro for approximated polynomial calculation based on

sampling.

n_rep Only used if method is appro. The number of iterations to perform in the ap-

proximated calculation

n_players Only used if characteristic_func is a function. The number of players in

the game.

replace should sampling be with replacement?

Value

The Banzhaf-Owen value for each player

Examples

```
characteristic_func <- c(0,0,0,0,30,30,40,40,50,50,60,70,80,90,100)
union <- list(c(1,3),c(2),c(4))
banzhaf_owen(characteristic_func, union)
banzhaf_owen(characteristic_func, union, method = "appro", n_rep = 4000)
```

banzhaf_owen_appro

Banzhaf-Owen Value

Description

Calculate the approximated Banzhaf-Owen value

Usage

```
banzhaf_owen_appro(characteristic_func, union, n_players, n_rep, replace)
```

Arguments

characteristic_func

The valued function defined on the subsets of the number of players

union List of vectors indicating the a priori unions between the players

n_players The number of players

n_rep Only used if method is appro. The number of iterations to perform in the ap-

proximated calculation.

replace should sampling be with replacement?

banzhaf_owen_exact 7

Value

The Banzhaf-Owen Index for each player

banzhaf_owen_exact

Banzhaf-Owen Value

Description

Calculate the approximated Banzhaf-Owen value

Usage

```
banzhaf_owen_exact(characteristic_func, union, n_players)
```

Arguments

characteristic_func

The valued function defined on the subsets of the number of players

union List of vectors indicating the a priori unions between the players

n_players The number of players in the game.

Value

The Banzhaf Index for each player

coalitions

coalitions

Description

Create all the possible coalitions given the number of players

Usage

```
coalitions(n_players)
```

Arguments

n_players

Number of players

Value

A list containing a data.frame of the binary representation of the coalitions and a vector of the classical representation (as sets) of the coalitions

egalitarian

Egalitarian value

Description

Calculate the egalitarian value

Usage

```
egalitarian(characteristic_func, n_players = 0)
```

Arguments

characteristic_func

The valued function defined on the subsets of the number of players

n_players

Only used if $characteristic_func$ is a function. The number of players in the game.

Value

The egalitarian value for each player

Examples

```
n <- 10
v <- function(coalition) {
  if (length(coalition) > n/2) {
    return(1)
  } else {
    return(0)
  }
}
egalitarian(v,n)
```

equal_surplus_division

Equal Surplus Division value

Description

Calculate the equal surplus division value

Usage

```
equal_surplus_division(characteristic_func, n_players = 0)
```

owen 9

Arguments

characteristic_func

The valued function defined on the subsets of the number of players

n_players Only used if characteristic_func is a function. The number of players in

the game.

Value

The equal surplus division value for each player

Examples

```
n <- 10
v <- function(coalition) {
  if (length(coalition) > n/2) {
    return(1)
  } else {
    return(0)
  }
}
equal_surplus_division(v,n)
```

owen

Owen value

Description

Calculate the Owen value

Usage

```
owen(
  characteristic_func,
  union,
  method = "exact",
  n_rep = 10000,
  n_players = 0
)
```

Arguments

characteristic_func

The valued function defined on the subsets of the number of players.

union List of vectors indicating the a priori unions between the players.

method Method used to calculate the Owen value. Valid methods are: exact for the

exact calculation or appro for approximated polynomial calculation based on

sampling.

10 owen_appro

n_rep Only used if method is appro. The number of iterations to perform in the ap-

proximated calculation.

n_players The number of players in the game.

Value

The Owen value for each player.

Examples

```
n <- 10
v <- function(coalition) {
   if (length(coalition) > n/2) {
      return(1)
   } else {
      return(0)
   }
}
u <- lapply(1:(n/2), function(i) c(2*i - 1, 2*i))
owen(v, union = u, method = "appro", n_rep = 4000, n_players = n)

characteristic_func <- c(1,1,2,1,2,2,2)
union <- list(c(1,2),c(3))
owen(characteristic_func, union)
owen(characteristic_func, union, method = "appro", n_rep = 4000)</pre>
```

owen_appro

Owen value (approximation)

Description

Calculate the approximated Owen value based on sampling

Usage

```
owen_appro(characteristic_func, union, n_players, n_rep)
```

Arguments

characteristic_func

The valued function defined on the subsets of the number of players

union List of vectors indicating the a priori unions between the players

n_players The number of players

n_rep The number of iterations to perform in the approximated calculation

Value

The Owen value for each player

owen_exact 11

Description

Calculate the exact Owen

Usage

```
owen_exact(characteristic_func, union, n_players = NULL)
```

Arguments

characteristic_func

The valued function defined on the subsets of the number of players

union List of vectors indicating the a priori unions between the players

n_players The number of players

Value

The Owen value for each player

predecessor Predecessor

Description

Given a permutation 0 of players and a player i, calculate the set of predecessors of the player i in the order 0

Usage

```
predecessor(permutation, player, include_player = FALSE)
```

Arguments

permutation A permutation of the players
player Number of the player i

include_player Whether the player i is included as predecessor of itself or not

Value

The set of predecessors of the player i in the order 0

12 shapley_appro

shap	lev

Shapley value

Description

Calculate the Shapley value

Usage

```
shapley(characteristic_func, method = "exact", n_rep = 10000, n_players = 0)
```

Arguments

characteristic_func

The valued function defined on the subsets of the number of players.

method Method used to calculate the Shapley value. Valid methods are: exact for the

exact calculation or appro for approximated polynomial calculation based on

sampling.

n_rep Only used if method is appro. The number of iterations to perform in the ap-

proximated calculation.

n_players Only used if characteristic_func is a function. The number of players in

the game.

Value

The Shapley value for each player.

Examples

```
n <- 3

v <- c(1,1,2,1,2,2,2)

shapley(v, method = "exact")

shapley(v, method = "appro", n_rep = 4000)
```

shapley_appro

Shapley value (approximation)

Description

Calculate the approximated Shapley value based on sampling

Usage

```
shapley_appro(characteristic_func, n_players, n_rep)
```

shapley_exact 13

Arguments

characteristic_func

The valued function defined on the subsets of the number of players

n_players The number of players

n_rep The number of iterations to perform in the approximated calculation

Value

The Shapley value for each player

shapley_exact

Shapley value (exact)

Description

Calculate the exact Shapley value

Usage

```
shapley_exact(characteristic_func, n_players)
```

Arguments

characteristic_func

The valued function defined on the subsets of the number of players

n_players The number of players

Value

The Shapley value for each player

Index

```
banzhaf, \\ \\ 2
banzhaf_appro, 3
banzhaf_appro_func, 4
banzhaf_appro_vector, 4
banzhaf_exact, 5
banzhaf_owen, 5
banzhaf_owen_appro, 6
banzhaf_owen_exact, 7
coalitions, 7
egalitarian,8
{\it equal\_surplus\_division}, 8
owen, 9
owen_appro, 10
owen_exact, 11
predecessor, 11
shapley, 12
shapley_appro, 12
shapley_exact, 13
```