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analyze_representatives

Analyze the data point memberships of multiple representative
(co)cycles.

Description

Multiple distance matrices with corresponding data points can contain the same topological fea-
tures. Therefore we may wish to compare many representative (co)cycles across distance matrices
to decide if their topological features are the same. The ‘analyze_representatives‘ function returns
a matrix of binary datapoint memberships in an input list of representatives across distance matri-
ces. Optionally this matrix can be plotted as a heatmap with columns as data points and rows (i.e.
representatives) reordered by similarity, and the contributions (i.e. percentage membership) of each
point in the representatives can also be returned. The heatmap has dark red squares representing
membership - location [i,j] is dark red if data point j is in representative i.



analyze_representatives 3

Usage

analyze_representatives(
diagrams,
dim,
num_points,
plot_heatmap = TRUE,
return_contributions = FALSE,
boxed_reps = NULL,
d = NULL,
lwd = NULL,
title = NULL,
return_clust = FALSE

)

Arguments

diagrams a list of persistence diagrams, either the output of persistent homology calcula-
tions like ripsDiag/calculate_homology/PyH, diagram_to_df or bootstrap_persistence_thresholds.

dim the integer homological dimension of representatives to consider.

num_points the integer number of data points in all the original datasets (from which the
diagrams were calculated).

plot_heatmap a boolean representing if a heatmap of data point membership similarity of the
representatives should be plotted, default ‘TRUE‘. A dendrogram of hierarchi-
cal clustering is plotted, and rows (representatives) are sorted according to this
clustering.

return_contributions

a boolean indicating whether or not to return the membership contributions (i.e.
percentages) of the data points (1:‘num_points‘) across all the representatives,
default ‘FALSE‘.

boxed_reps a data frame specifying specific rows of the output heatmap which should have a
box drawn around them (for highlighting), default NULL. See the details section
for more information.

d either NULL (default) or a "dist" object representing a distance matrix for the
representatives, which must have the same number of rows and columns as cy-
cles in the dimension ‘dim‘.

lwd a positive number width for the lines of drawn boxes, if boxed_reps is not null.

title a character string title for the plotted heatmap, default NULL.

return_clust a boolean determining whether or not to return the result of the ‘stats::hclust()‘
call when a heatmap is plotted, default ‘FALSE‘.

Details

The clustering dendrogram can be used to determine if there are any similar groups of representa-
tives (i.e. shared topological features across datasets) and if so how many. The row labels of the
heatmap are of the form ’DX[Y]’, meaning the Yth representative of diagram X, and the column la-
bels are the data point numbers. If diagrams are the output of the bootstrap_persistence_thresholds
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function, then the subsetted_representatives (if present) will be analyzed. Therefore, a column la-
bel like ’DX[Y]’ in the plotted heatmap would mean the Yth representative of diagram X. If certain
representatives should be highlighted (by drawing a box around its row) in the heatmap, a dataframe
‘boxed_reps‘ can be supplied with two integer columns - ’diagram’ and ’rep’. For example, if we
wish to draw a box for DX[Y] then we add the row (diagram = X,rep = Y) to ‘boxed_reps‘. If ‘d‘ is
supplied then it will be used to cluster the representatives, based on the distances in ‘d‘.

Value

either a matrix of data point contributions to the representatives, or a list with elements "mem-
berships" (the matrix) and some combination of elements "contributions" (a vector of membership
percentages for each data point across representatives) and "clust" (the results of ‘stats::hclust()‘ on
the membership matrix).

Author(s)

Shael Brown - <shaelebrown@gmail.com>

bootstrap_persistence_thresholds

Estimate persistence threshold(s) for topological features in a data set
using bootstrapping.

Description

Bootstrapping is used to find a conservative estimate of a 1-‘alpha‘ percent "confidence interval"
around each point in the persistence diagram of the data set, and points whose intervals do not
touch the diagonal (birth == death) would be considered "significant" or "real". One threshold is
computed for each dimension in the diagram.

Usage

bootstrap_persistence_thresholds(
X,
FUN_diag = "calculate_homology",
FUN_boot = "calculate_homology",
maxdim = 0,
thresh,
distance_mat = FALSE,
ripser = NULL,
ignore_infinite_cluster = TRUE,
calculate_representatives = FALSE,
num_samples = 30,
alpha = 0.05,
return_subsetted = FALSE,
return_pvals = FALSE,
return_diag = TRUE,
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num_workers = parallelly::availableCores(omit = 1),
p_less_than_alpha = FALSE,
...

)

Arguments

X the input dataset, must either be a matrix or data frame.

FUN_diag a string representing the persistent homology function to use for calculating the
full persistence diagram, either ’calculate_homology’ (the default), ’PyH’ or
’ripsDiag’.

FUN_boot a string representing the persistent homology function to use for calculating the
bootstrapped persistence diagrams, either ’calculate_homology’ (the default),
’PyH’ or ’ripsDiag’.

maxdim the integer maximum homological dimension for persistent homology, default
0.

thresh the positive numeric maximum radius of the Vietoris-Rips filtration.

distance_mat a boolean representing if ‘X‘ is a distance matrix (TRUE) or not (FALSE, de-
fault). dimensions together (TRUE, the default) or if one threshold should be
calculated for each dimension separately (FALSE).

ripser the imported ripser module when ‘FUN_diag‘ or ‘FUN_boot‘ is ‘PyH‘.
ignore_infinite_cluster

a boolean indicating whether or not to ignore the infinitely lived cluster when
‘FUN_diag‘ or ‘FUN_boot‘ is ‘PyH‘.

calculate_representatives

a boolean representing whether to calculate representative (co)cycles, default
FALSE. Note that representatives cant be calculated when using the ’calcu-
late_homology’ function.

num_samples the positive integer number of bootstrap samples, default 30.

alpha the type-1 error threshold, default 0.05.
return_subsetted

a boolean representing whether or not to return the subsetted persistence dia-
gram (with or without representatives), default FALSE.

return_pvals a boolean representing whether or not to return p-values for features in the sub-
setted diagram, default FALSE.

return_diag a boolean representing whether or not to return the calculated persistence dia-
gram, default TRUE.

num_workers the integer number of cores used for parallelizing (over bootstrap samples), de-
fault one less the maximum amount of cores on the machine.

p_less_than_alpha

a boolean representing whether or not subset further and return only feature
whose p-values are strictly less than ‘alpha‘, default ‘FALSE‘. Note that this is
not part of the original bootstrap procedure.

... additional parameters for internal methods.
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Details

The thresholds are then determined by calculating the 1-‘alpha’‘ percentile of the bottleneck dis-
tance values between the real persistence diagram and other diagrams obtained by bootstrap re-
sampling the data. Since ‘ripsDiag‘ is the slowest homology engine but is the only engine which
calculates representative cycles (as opposed to co-cycles with ‘PyH‘), two homology engines are
input to this function - one to calculate the actual persistence diagram, ‘FUN_diag‘ (possibly with
representative (co)cycles) and one to calculate the bootstrap diagrams, ‘FUN_boot‘ (this should be
a faster engine, like ‘calculate_homology‘ or ‘PyH‘). p-values can be calculated for any feature
which survives the thresholding if both ‘return_subsetted‘ and ‘return_pvals‘ are ‘TRUE‘, how-
ever these values may be larger than the original ‘alpha‘ value in some cases. Note that this is not
part of the original bootstrap procedure. If stricter thresholding is desired, or the p-values must
be less than ‘alpha‘, set ‘p_less_than_alpha‘ to ‘TRUE‘. The minimum possible p-value is always
1/(‘num_samples‘ + 1). Note that since calculate_homology can ignore the longest-lived cluster,
fewer "real" clusters may be found. To avoid this possibility try setting ‘FUN_diag‘ equal to ’rips-
Diag’. Please note that due to the TDA package no longer being available on CRAN, if ‘FUN_diag‘
or ‘FUN_boot‘ are ’ripsDiag’ then ‘bootstrap_persistence_thresholds‘ will look for the ripsDiag
function in the global environment, so the TDA package should be attached with ‘library("TDA")‘
prior to use.

Value

either a numeric vector of threshold values, with one for each dimension 0..‘maxdim‘ (in that order),
or a list containing those thresholds and elements (if desired)

Author(s)

Shael Brown - <shaelebrown@gmail.com>

References

Chazal F et al (2017). "Robust Topological Inference: Distance to a Measure and Kernel Distance."
https://www.jmlr.org/papers/volume18/15-484/15-484.pdf.

Examples

if(require("TDAstats"))
{

# create a persistence diagram from a sample of the unit circle
df <- TDAstats::circle2d[sample(1:100,size = 50),]

# calculate persistence thresholds for alpha = 0.05
# and return the calculated diagram as well as the subsetted diagram
bootstrapped_diagram <- bootstrap_persistence_thresholds(X = df,
maxdim = 1,thresh = 2,num_workers = 2)

}

https://www.jmlr.org/papers/volume18/15-484/15-484.pdf
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check_PyH_setup Make sure that python has been configured correctly for persistent ho-
mology calculations.

Description

Ensures that the reticulate package has been installed, that python is available to be used by reticu-
late functions, and that the python module "ripser" has been installed.

Usage

check_PyH_setup()

Details

An error message will be thrown if any of the above conditions are not met.

Author(s)

Shael Brown - <shaelebrown@gmail.com>

check_ripser Verify an imported ripser module.

Description

Verify an imported ripser module.

Usage

check_ripser(ripser)

Arguments

ripser the ripser module object.

Author(s)

Shael Brown - <shaelebrown@gmail.com>
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diagram_distance Calculate distance between a pair of persistence diagrams.

Description

Calculates the distance between a pair of persistence diagrams, either the output from a diagram_to_df
function call or from a persistent homology calculation like ripsDiag/calculate_homology/PyH, in
a particular homological dimension.

Usage

diagram_distance(
D1,
D2,
dim = 0,
p = 2,
distance = "wasserstein",
sigma = NULL,
rho = NULL

)

Arguments

D1 the first persistence diagram.

D2 the second persistence diagram.

dim the non-negative integer homological dimension in which the distance is to be
computed, default 0.

p a number representing the wasserstein power parameter, at least 1 and default 2.

distance a string which determines which type of distance calculation to carry out, either
"wasserstein" (default) or "fisher".

sigma either NULL (default) or a positive number representing the bandwidth for the
Fisher information metric.

rho either NULL (default) or a positive number. If NULL then the exact calculation
of the Fisher information metric is returned and otherwise a fast approximation,
see details.

Details

The most common distance calculations between persistence diagrams are the wasserstein and bot-
tleneck distances, both of which "match" points between their two input diagrams and compute
the "loss" of the optimal matching (see https://dl.acm.org/doi/10.1145/3064175 for details).
Another method for computing distances, the Fisher information metric, converts the two diagrams
into distributions defined on the plane, and calculates a distance between the resulting two distribu-
tions (https://proceedings.neurips.cc/paper/2018/file/959ab9a0695c467e7caf75431a872e5c-Paper.
pdf). If the ‘distance‘ parameter is "fisher" then ‘sigma‘ must not be NULL. As noted in the Per-
sistence Fisher paper, there is a fast speed-up approximation which has been implemented from

https://dl.acm.org/doi/10.1145/3064175
https://proceedings.neurips.cc/paper/2018/file/959ab9a0695c467e7caf75431a872e5c-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/959ab9a0695c467e7caf75431a872e5c-Paper.pdf
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https://github.com/vmorariu/figtree and can be accessed by setting the ‘rho‘ parameter.
Smaller values of ‘rho‘ will result in tighter approximations at the expense of longer runtime, and
vice versa.

Value

the numeric value of the distance calculation.

Author(s)

Shael Brown - <shaelebrown@gmail.com>

References

Kerber M, Morozov D and Nigmetov A (2017). "Geometry Helps to Compare Persistence Dia-
grams." https://dl.acm.org/doi/10.1145/3064175.

Le T, Yamada M (2018). "Persistence fisher kernel: a riemannian manifold kernel for persistence di-
agrams." https://proceedings.neurips.cc/paper/2018/file/959ab9a0695c467e7caf75431a872e5c-Paper.
pdf.

Vlad I. Morariu, Balaji Vasan Srinivasan, Vikas C. Raykar, Ramani Duraiswami, and Larry S. Davis.
Automatic online tuning for fast Gaussian summation. Advances in Neural Information Processing
Systems (NIPS), 2008.

See Also

distance_matrix for distance matrix calculations.

Examples

if(require("TDAstats"))
{

# create two diagrams
D1 <- TDAstats::calculate_homology(TDAstats::circle2d[sample(1:100,size = 20),],

dim = 1,threshold = 2)
D2 <- TDAstats::calculate_homology(TDAstats::circle2d[sample(1:100,size = 20),],

dim = 1,threshold = 2)

# calculate 2-wasserstein distance between D1 and D2 in dimension 1
diagram_distance(D1,D2,dim = 1,p = 2,distance = "wasserstein")

# calculate bottleneck distance between D1 and D2 in dimension 0
diagram_distance(D1,D2,dim = 0,p = Inf,distance = "wasserstein")

# Fisher information metric calculation between D1 and D2 for sigma = 1 in dimension 1
diagram_distance(D1,D2,dim = 1,distance = "fisher",sigma = 1)

# repeat but with fast approximation
## Not run:
diagram_distance(D1,D2,dim = 1,distance = "fisher",sigma = 1,rho = 0.001)

## End(Not run)

https://github.com/vmorariu/figtree
https://dl.acm.org/doi/10.1145/3064175
https://proceedings.neurips.cc/paper/2018/file/959ab9a0695c467e7caf75431a872e5c-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/959ab9a0695c467e7caf75431a872e5c-Paper.pdf
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}

diagram_kernel Calculate persistence Fisher kernel value between a pair of persis-
tence diagrams.

Description

Returns the persistence Fisher kernel value between a pair of persistence diagrams in a particular
homological dimension, each of which is either the output from a diagram_to_df function call or
from a persistent homology calculation like ripsDiag/calculate_homology/PyH.

Usage

diagram_kernel(D1, D2, dim = 0, sigma = 1, t = 1, rho = NULL)

Arguments

D1 the first persistence diagram.

D2 the second persistence diagram.

dim the non-negative integer homological dimension in which the distance is to be
computed, default 0.

sigma a positive number representing the bandwidth for the Fisher information metric,
default 1.

t a positive number representing the scale for the persistence Fisher kernel, default
1.

rho an optional positive number representing the heuristic for Fisher information
metric approximation, see diagram_distance. Default NULL.

Details

The persistence Fisher kernel is calculated from the Fisher information metric according to the
formula kPF (D1, D2) = exp(−t ∗ dFIM (D1, D2)), resembling a radial basis kernel for standard
Euclidean spaces.

Value

the numeric kernel value.

Author(s)

Shael Brown - <shaelebrown@gmail.com>
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References

Le T, Yamada M (2018). "Persistence fisher kernel: a riemannian manifold kernel for persistence di-
agrams." https://proceedings.neurips.cc/paper/2018/file/959ab9a0695c467e7caf75431a872e5c-Paper.
pdf.

Murphy, K. "Machine learning: a probabilistic perspective", MIT press (2012).

See Also

gram_matrix for Gram (i.e. kernel) matrix calculations.

Examples

if(require("TDAstats"))
{

# create two diagrams
D1 <- TDAstats::calculate_homology(TDAstats::circle2d[sample(1:100,20),],

dim = 1,threshold = 2)
D2 <- TDAstats::calculate_homology(TDAstats::circle2d[sample(1:100,20),],

dim = 1,threshold = 2)

# calculate the kernel value between D1 and D2 with sigma = 2, t = 2 in dimension 1
diagram_kernel(D1,D2,dim = 1,sigma = 2,t = 2)
# calculate the kernel value between D1 and D2 with sigma = 2, t = 2 in dimension 0
diagram_kernel(D1,D2,dim = 0,sigma = 2,t = 2)

}

diagram_kkmeans Cluster a group of persistence diagrams using kernel k-means.

Description

Finds latent cluster labels for a group of persistence diagrams, using a kernelized version of the
popular k-means algorithm. An optimal number of clusters may be determined by analyzing the
withinss field of the clustering object over several values of k.

Usage

diagram_kkmeans(
diagrams,
K = NULL,
centers,
dim = 0,
t = 1,
sigma = 1,
rho = NULL,
num_workers = parallelly::availableCores(omit = 1),
...

)

https://proceedings.neurips.cc/paper/2018/file/959ab9a0695c467e7caf75431a872e5c-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/959ab9a0695c467e7caf75431a872e5c-Paper.pdf
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Arguments

diagrams a list of n>=2 persistence diagrams which are either the output of a persistent ho-
mology calculation like ripsDiag/calculate_homology/PyH, or the diagram_to_df
function.

K an optional precomputed Gram matrix of persistence diagrams, default NULL.
centers number of clusters to initialize, no more than the number of diagrams although

smaller values are recommended.
dim the non-negative integer homological dimension in which the distance is to be

computed, default 0.
t a positive number representing the scale for the persistence Fisher kernel, default

1.
sigma a positive number representing the bandwidth for the Fisher information metric,

default 1.
rho an optional positive number representing the heuristic for Fisher information

metric approximation, see diagram_distance. Default NULL. If supplied,
Gram matrix calculation is sequential.

num_workers the number of cores used for parallel computation, default is one less than the
number of cores on the machine.

... additional parameters for the kkmeans kernlab function.

Details

Returns the output of kkmeans on the desired Gram matrix of a group of persistence diagrams in a
particular dimension. The additional list elements stored in the output are needed to estimate cluster
labels for new persistence diagrams in the ‘predict_diagram_kkmeans‘ function.

Value

a list of class ’diagram_kkmeans’ containing the output of kkmeans on the Gram matrix, i.e. a list
containing the elements

clustering an S4 object of class specc, the output of a kkmeans function call. The ‘.Data‘ slot of
this object contains cluster memberships, ‘withinss‘ contains the within-cluster sum of squares
for each cluster, etc.

diagrams the input ‘diagrams‘ argument.
dim the input ‘dim‘ argument.
t the input ‘t‘ argument.
sigma the input ‘sigma‘ argument.

Author(s)

Shael Brown - <shaelebrown@gmail.com>

References

Dhillon, I and Guan, Y and Kulis, B (2004). "A Unified View of Kernel k-means , Spectral Clus-
tering and Graph Cuts." https://people.bu.edu/bkulis/pubs/spectral_techreport.pdf.

https://people.bu.edu/bkulis/pubs/spectral_techreport.pdf
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See Also

predict_diagram_kkmeans for predicting cluster labels of new diagrams.

Examples

if(require("TDAstats"))
{

# create two diagrams
D1 <- TDAstats::calculate_homology(TDAstats::circle2d[sample(1:100,20),],

dim = 1,threshold = 2)
D2 <- TDAstats::calculate_homology(TDAstats::circle2d[sample(1:100,20),],

dim = 1,threshold = 2)
g <- list(D1,D1,D2,D2)

# calculate kmeans clusters with centers = 2, and sigma = t = 2 in dimension 0
clust <- diagram_kkmeans(diagrams = g,centers = 2,dim = 0,t = 2,sigma = 2,num_workers = 2)

# repeat with precomputed Gram matrix, gives the same result just much faster
K <- gram_matrix(diagrams = g,num_workers = 2,t = 2,sigma = 2)
cluster <- diagram_kkmeans(diagrams = g,K = K,centers = 2,dim = 0,sigma = 2,t = 2)

}

diagram_kpca Calculate the kernel PCA embedding of a group of persistence dia-
grams.

Description

Project a group of persistence diagrams into a low-dimensional embedding space using a kernelized
version of the popular PCA algorithm.

Usage

diagram_kpca(
diagrams,
K = NULL,
dim = 0,
t = 1,
sigma = 1,
rho = NULL,
features = 1,
num_workers = parallelly::availableCores(omit = 1),
th = 1e-04

)
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Arguments

diagrams a list of persistence diagrams which are either the output of a persistent homol-
ogy calculation like ripsDiag/calculate_homology/PyH, or diagram_to_df.

K an optional precomputed Gram matrix of the persistence diagrams in ‘diagrams‘,
default NULL.

dim the non-negative integer homological dimension in which the distance is to be
computed, default 0.

t a positive number representing the scale for the persistence Fisher kernel, default
1.

sigma a positive number representing the bandwidth for the Fisher information metric,
default 1.

rho an optional positive number representing the heuristic for Fisher information
metric approximation, see diagram_distance. Default NULL. If supplied,
Gram matrix calculation is sequential.

features number of features (principal components) to return, default 1.

num_workers the number of cores used for parallel computation, default is one less than the
number of cores on the machine.

th the threshold value under which principal components are ignored (default 0.0001).

Details

Returns the output of kernlab’s kpca function on the desired Gram matrix of a group of persistence
diagrams in a particular dimension. The prediction function predict_diagram_kpca can be used to
project new persistence diagrams using an old embedding, and this could be one practical advantage
of using diagram_kpca over diagram_mds. The embedding coordinates can also be used for further
analysis, or simply as a data visualization tool for persistence diagrams.

Value

a list of class ’diagram_kpca’ containing the elements

pca the output of kernlab’s kpca function on the Gram matrix: an S4 object containing the slots
‘pcv‘ (a matrix containing the principal component vectors (column wise)), ‘eig‘ (the corre-
sponding eigenvalues), ‘rotated‘ (the original data projected (rotated) on the principal compo-
nents) and ‘xmatrix‘ (the original data matrix).

diagrams the input ‘diagrams‘ argument.

t the input ‘t‘ argument.

sigma the input ‘sigma‘ argument.

dim the input ‘dim‘ argument.

Author(s)

Shael Brown - <shaelebrown@gmail.com>
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References

Scholkopf, B and Smola, A and Muller, K (1998). "Nonlinear Component Analysis as a Kernel
Eigenvalue Problem." https://www.mlpack.org/papers/kpca.pdf.

See Also

predict_diagram_kpca for predicting embedding coordinates of new diagrams.

Examples

if(require("TDAstats"))
{

# create six diagrams
D1 <- TDAstats::calculate_homology(TDAstats::circle2d[sample(1:100,20),],

dim = 1,threshold = 2)
D2 <- TDAstats::calculate_homology(TDAstats::circle2d[sample(1:100,20),],

dim = 1,threshold = 2)
D3 <- TDAstats::calculate_homology(TDAstats::sphere3d[sample(1:100,20),],

dim = 1,threshold = 2)
D4 <- TDAstats::calculate_homology(TDAstats::sphere3d[sample(1:100,20),],

dim = 1,threshold = 2)
D5 <- TDAstats::calculate_homology(TDAstats::sphere3d[sample(1:100,20),],

dim = 1,threshold = 2)
D6 <- TDAstats::calculate_homology(TDAstats::sphere3d[sample(1:100,20),],

dim = 1,threshold = 2)
g <- list(D1,D2,D3,D4,D5,D6)

# calculate their 2D PCA embedding with sigma = t = 2 in dimension 1
pca <- diagram_kpca(diagrams = g,dim = 1,t = 2,sigma = 2,features = 2,num_workers = 2,th = 1e-6)

# repeat with precomputed Gram matrix, gives same result but much faster
K <- gram_matrix(diagrams = g,dim = 1,t = 2,sigma = 2,num_workers = 2)
pca <- diagram_kpca(diagrams = g,K = K,dim = 1,t = 2,sigma = 2,features = 2,th = 1e-6)

}

diagram_ksvm Fit a support vector machine model where each training set instance
is a persistence diagram.

Description

Returns the output of kernlab’s ksvm function on the Gram matrix of the list of persistence diagrams
in a particular dimension.

https://www.mlpack.org/papers/kpca.pdf
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Usage

diagram_ksvm(
diagrams,
cv = 1,
dim,
t = 1,
sigma = 1,
rho = NULL,
y,
type = NULL,
distance_matrices = NULL,
C = 1,
nu = 0.2,
epsilon = 0.1,
prob.model = FALSE,
class.weights = NULL,
fit = TRUE,
cache = 40,
tol = 0.001,
shrinking = TRUE,
num_workers = parallelly::availableCores(omit = 1)

)

Arguments

diagrams a list of persistence diagrams which are either the output of a persistent homol-
ogy calculation like ripsDiag/calculate_homology/PyH, or diagram_to_df.

cv a positive number at most the length of ‘diagrams‘ which determines the number
of cross validation splits to be performed (default 1, aka no cross-validation). If
‘prob.model‘ is TRUE then cv is set to 1 since kernlab performs 3-fold CV
internally in this case. When performing classification, classes are balanced
within each cv fold.

dim a non-negative integer vector of homological dimensions in which the model is
to be fit.

t either a vector of positive numbers representing the grid of values for the scale
of the persistence Fisher kernel or NULL, default 1. If NULL then t is selected
automatically, see details.

sigma a vector of positive numbers representing the grid of values for the bandwidth
of the Fisher information metric, default 1.

rho an optional positive number representing the heuristic for Fisher information
metric approximation, see diagram_distance. Default NULL. If supplied, dis-
tance matrix calculations are sequential.

y a response vector with one label for each persistence diagram. Must be either
numeric or factor, but doesn’t need to be supplied when ‘type‘ is "one-svc".

type a string representing the type of task to be performed. Can be any one of "C-
svc","nu-svc","one-svc","eps-svr","nu-svr" - default for regression is "eps-svr"
and for classification is "C-svc". See ksvm for details.
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distance_matrices

an optional list of precomputed Fisher distance matrices, corresponding to the
rows in ‘expand.grid(dim = dim,sigma = sigma)‘, default NULL.

C a number representing the cost of constraints violation (default 1) this is the
’C’-constant of the regularization term in the Lagrange formulation.

nu numeric parameter needed for nu-svc, one-svc and nu-svr. The ‘nu‘ parameter
sets the upper bound on the training error and the lower bound on the fraction of
data points to become Support Vector (default 0.2).

epsilon epsilon in the insensitive-loss function used for eps-svr, nu-svr and eps-bsvm
(default 0.1).

prob.model if set to TRUE builds a model for calculating class probabilities or in case of
regression, calculates the scaling parameter of the Laplacian distribution fitted
on the residuals. Fitting is done on output data created by performing a 3-fold
cross-validation on the training data. For details see references (default FALSE).

class.weights a named vector of weights for the different classes, used for asymmetric class
sizes. Not all factor levels have to be supplied (default weight: 1). All compo-
nents have to be named.

fit indicates whether the fitted values should be computed and included in the
model or not (default TRUE).

cache cache memory in MB (default 40).

tol tolerance of termination criteria (default 0.001).

shrinking option whether to use the shrinking-heuristics (default TRUE).

num_workers the number of cores used for parallel computation, default is one less the number
of cores on the machine.

Details

Cross validation is carried out in parallel, using a trick noted in doi: 10.1007/s4146801700087 -
since the persistence Fisher kernel can be written as dPF (D1, D2) = exp(t ∗ dFIM (D1, D2)) =
exp(dFIM (D1, D2))

t, we can store the Fisher information metric distance matrix for each sigma
value in the parameter grid to avoid recomputing distances, and cross validation is therefore per-
formed in parallel. Note that the response parameter ‘y‘ must be a factor for classification - a charac-
ter vector for instance will throw an error. If ‘t‘ is NULL then 1/‘t‘ is selected as the 1,2,5,10,20,50
percentiles of the upper triangle of the distance matrix of its training sample (per fold in the case
of cross-validation). This is the process suggested in the persistence Fisher kernel paper. If any of
these values would divide by 0 (i.e. if the training set is small) then the minimum non-zero element
is taken as the denominator (and hence the returned parameters may have duplicate rows except
for differing error values). If cross-validation is performed then the mean error across folds is still
recorded, but the best ‘t‘ parameter across all folds is recorded in the cv results table.

Value

a list of class ’diagram_ksvm’ containing the elements

cv_results the cross-validation results - a matrix storing the parameters for each model in the tuning
grid and its mean cross-validation error over all splits.

https://doi.org/10.1007/s41468-017-0008-7
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best_model a list containing the output of ksvm run on the whole dataset with the optimal model
parameters found during cross-validation, as well as the optimal kernel parameters for the
model.

diagrams the diagrams which were supplied in the function call.

Author(s)

Shael Brown - <shaelebrown@gmail.com>

References

Murphy, K. "Machine learning: a probabilistic perspective." MIT press (2012).

See Also

predict_diagram_ksvm for predicting labels of new diagrams.

Examples

if(require("TDAstats"))
{

# create four diagrams
D1 <- TDAstats::calculate_homology(TDAstats::circle2d[sample(1:100,20),],

dim = 1,threshold = 2)
D2 <- TDAstats::calculate_homology(TDAstats::circle2d[sample(1:100,20),],

dim = 1,threshold = 2)
D3 <- TDAstats::calculate_homology(TDAstats::sphere3d[sample(1:100,20),],

dim = 1,threshold = 2)
D4 <- TDAstats::calculate_homology(TDAstats::sphere3d[sample(1:100,20),],

dim = 1,threshold = 2)
g <- list(D1,D2,D3,D4)

# create response vector
y <- as.factor(c("circle","circle","sphere","sphere"))

# fit model without cross validation
model_svm <- diagram_ksvm(diagrams = g,cv = 1,dim = c(0),

y = y,sigma = c(1),t = c(1),
num_workers = 2)

}

diagram_mds Dimension reduction of a group of persistence diagrams via metric
multidimensional scaling.

Description

Projects a group of persistence diagrams (or a precomputed distance matrix of diagrams) into a
low-dimensional embedding space via metric multidimensional scaling. Such a projection can be
used for visualization of data, or a static analysis of the embedding dimensions.
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Usage

diagram_mds(
diagrams,
D = NULL,
k = 2,
distance = "wasserstein",
dim = 0,
p = 2,
sigma = NULL,
rho = NULL,
eig = FALSE,
add = FALSE,
x.ret = FALSE,
list. = eig || add || x.ret,
num_workers = parallelly::availableCores(omit = 1)

)

Arguments

diagrams a list of n>=2 persistence diagrams which are either the output of a persistent ho-
mology calculation like ripsDiag/calculate_homology/PyH, or diagram_to_df.
Only one of ‘diagrams‘ and ‘D‘ need to be supplied.

D an optional precomputed distance matrix of persistence diagrams, default NULL.
If not NULL then ‘diagrams‘ parameter does not need to be supplied.

k the dimension of the space which the data are to be represented in; must be in
{1,2,...,n-1}.

distance a string representing the desired distance metric to be used, either ’wasserstein’
(default) or ’fisher’.

dim the non-negative integer homological dimension in which the distance is to be
computed, default 0.

p a positive number representing the wasserstein power, a number at least 1 (in-
finity for the bottleneck distance), default 2.

sigma a positive number representing the bandwidth for the Fisher information metric,
default NULL.

rho an optional positive number representing the heuristic for Fisher information
metric approximation, see diagram_distance. Default NULL. If supplied, dis-
tance matrix calculation is sequential.

eig a boolean indicating whether the eigenvalues should be returned.
add a boolean indicating if an additive constant c* should be computed, and added

to the non-diagonal dissimilarities such that the modified dissimilarities are Eu-
clidean.

x.ret a boolean indicating whether the doubly centered symmetric distance matrix
should be returned.

list. a boolean indicating if a list should be returned or just the n*k matrix.
num_workers the number of cores used for parallel computation, default is one less than the

number of cores on the machine.
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Details

Returns the output of cmdscale on the desired distance matrix of a group of persistence diagrams
in a particular dimension. If ‘distance‘ is "fisher" then ‘sigma‘ must not be NULL.

Value

the output of cmdscale on the diagram distance matrix. If ‘list.‘ is false (as per default), a matrix
with ‘k‘ columns whose rows give the coordinates of the points chosen to represent the dissimilari-
ties.

Otherwise, a list containing the following components.

points a matrix with ‘k‘ columns whose rows give the coordinates of the points chosen to represent
the dissimilarities.

eig the n eigenvalues computed during the scaling process if ‘eig‘ is true.

x the doubly centered distance matrix if ‘x.ret‘ is true.

ac the additive constant c∗, 0 if ‘add‘ = FALSE.

GOF the numeric vector of length 2, representing the sum of all the eigenvalues divided by the
sum of their absolute values (first vector element) or by the sum of the max of each eigenvalue
and 0 (second vector element).

Author(s)

Shael Brown - <shaelebrown@gmail.com>

References

Cox M and Cox F (2008). "Multidimensional Scaling." doi: 10.1007/9783540330370_14.

Examples

if(require("TDAstats"))
{

# create two diagrams
D1 <- TDAstats::calculate_homology(TDAstats::circle2d[sample(1:100,10),],

dim = 1,threshold = 2)
D2 <- TDAstats::calculate_homology(TDAstats::circle2d[sample(1:100,10),],

dim = 1,threshold = 2)
g <- list(D1,D2)

# calculate their 1D MDS embedding in dimension 0 with the bottleneck distance
mds <- diagram_mds(diagrams = g,k = 1,dim = 0,p = Inf,num_workers = 2)

# repeat but with a precomputed distance matrix, gives same result just much faster
Dmat <- distance_matrix(diagrams = list(D1,D2),dim = 0,p = Inf,num_workers = 2)
mds <- diagram_mds(D = Dmat,k = 1)

}

https://doi.org/10.1007/978-3-540-33037-0_14
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diagram_to_df Convert a TDA/TDAstats persistence diagram to a data frame.

Description

The output of homology calculations from the R packages TDA and TDAstats are not dataframes.
This function converts these outputs into a data frame either for further usage in this package or for
personalized analyses.

Usage

diagram_to_df(d)

Arguments

d the output of a TDA/TDAstats homology calculation, like ripsDiag or calculate_homology.

Details

If a diagram is constructed using a TDA function like ripsDiag with the ‘location‘ parameter set to
true then the return value will ignore the location information.

Value

a 3-column data frame, with each row representing a topological feature. The first column is the
feature dimension (a non-negative integer), the second column is the birth radius of the feature and
the third column is the death radius.

Author(s)

Shael Brown - <shaelebrown@gmail.com>

Examples

if(require("TDAstats"))
{

# create a persistence diagram from a 2D Gaussian
df = data.frame(x = rnorm(n = 20,mean = 0,sd = 1),y = rnorm(n = 20,mean = 0,sd = 1))

# compute persistence diagram with calculate_homology from package TDAstats
phom_TDAstats = TDAstats::calculate_homology(mat = df,dim = 0,threshold = 1)

# convert to data frame
phom_TDAstats_df = diagram_to_df(d = phom_TDAstats)

}
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distance_matrix Compute a distance matrix from a list of persistence diagrams.

Description

Calculate the distance matrix d for either a single list of persistence diagrams (D1, D2, . . . , Dn),
i.e. d[i, j] = d(Di, Dj), or between two lists, (D1, D2, . . . , Dn) and (D′

1, D
′
2, . . . , D

′
n), d[i, j] =

d(Di, D
′
j), in parallel.

Usage

distance_matrix(
diagrams,
other_diagrams = NULL,
dim = 0,
distance = "wasserstein",
p = 2,
sigma = NULL,
rho = NULL,
num_workers = parallelly::availableCores(omit = 1)

)

Arguments

diagrams a list of persistence diagrams, either the output of persistent homology calcula-
tions like ripsDiag/calculate_homology/PyH, or diagram_to_df.

other_diagrams either NULL (default) or another list of persistence diagrams to compute a cross-
distance matrix.

dim the non-negative integer homological dimension in which the distance is to be
computed, default 0.

distance a character determining which metric to use, either "wasserstein" (default) or
"fisher".

p a number representing the wasserstein power parameter, at least 1 and default 2.

sigma a positive number representing the bandwidth of the Fisher information metric,
default NULL.

rho an optional positive number representing the heuristic for Fisher information
metric approximation, see diagram_distance. Default NULL. If not NULL
then matrix is calculated sequentially, but functions in the "exec" directory of
the package can be loaded to calculate distance matrices in parallel with ap-
proximation.

num_workers the number of cores used for parallel computation, default is one less than the
number of cores on the machine.
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Details

Distance matrices of persistence diagrams are used in downstream analyses, like in the diagram_mds,
permutation_test and diagram_ksvm functions. If ‘distance‘ is "fisher" then ‘sigma‘ must not be
NULL. Since the matrix is computed sequentially when approximating the Fisher information met-
ric this is only recommended when the persistence diagrams contain many points and when the
number of available cores is small.

Value

the numeric distance matrix.

Author(s)

Shael Brown - <shaelebrown@gmail.com>

See Also

diagram_distance for individual distance calculations.

Examples

if(require("TDAstats"))
{

# create two diagrams
D1 <- TDAstats::calculate_homology(TDAstats::circle2d[sample(1:100,10),],

dim = 0,threshold = 2)
D2 <- TDAstats::calculate_homology(TDAstats::circle2d[sample(1:100,10),],

dim = 0,threshold = 2)
g <- list(D1,D2)

# calculate their distance matrix in dimension 0 with the persistence Fisher metric
# using 2 cores
D <- distance_matrix(diagrams = g,dim = 0,distance = "fisher",sigma = 1,num_workers = 2)

# calculate their distance matrix in dimension 0 with the 2-wasserstein metric
# using 2 cores
D <- distance_matrix(diagrams = g,dim = 0,distance = "wasserstein",p = 2,num_workers = 2)

# now do the cross distance matrix, which is the same as the previous
D_cross <- distance_matrix(diagrams = g,other_diagrams = g,

dim = 0,distance = "wasserstein",
p = 2,num_workers = 2)

}
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enclosing_radius Compute the enclosing radius for a dataset.

Description

The enclosing radius is the minimum (Euclidean distance) radius beyond which no topological
changes will occur.

Usage

enclosing_radius(X, distance_mat = FALSE)

Arguments

X the input dataset, must either be a matrix or data frame.

distance_mat whether or not ‘X‘ is a distance matrix, default FALSE.

Value

the numeric enclosing radius.

Author(s)

Shael Brown - <shaelebrown@gmail.com>

Examples

# create a persistence diagram from a 2D Gaussian
df = data.frame(x = rnorm(n = 20,mean = 0,sd = 1),y = rnorm(n = 20,mean = 0,sd = 1))

# compute the enclosing radius from the point cloud
enc_rad <- enclosing_radius(df, distance_mat = FALSE)

# compute the distance matrix manually, stored as a matrix
dist_df <- as.matrix(dist(df))

# compute the enclosing radius from the distance matrix
enc_rad <- enclosing_radius(dist_df, distance_mat = TRUE)
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gram_matrix Compute the gram matrix for a group of persistence diagrams.

Description

Calculate the Gram matrix K for either a single list of persistence diagrams (D1, D2, . . . , Dn),
i.e. K[i, j] = kPF (Di, Dj), or between two lists of persistence diagrams, (D1, D2, . . . , Dn) and
(D′

1, D
′
2, . . . , D

′
n), K[i, j] = kPF (Di, D

′
j), in parallel.

Usage

gram_matrix(
diagrams,
other_diagrams = NULL,
dim = 0,
sigma = 1,
t = 1,
rho = NULL,
num_workers = parallelly::availableCores(omit = 1)

)

Arguments

diagrams a list of persistence diagrams, where each diagram is either the output of a persis-
tent homology calculation like ripsDiag/calculate_homology/PyH, or diagram_to_df.

other_diagrams either NULL (default) or another list of persistence diagrams to compute a cross-
Gram matrix.

dim the non-negative integer homological dimension in which the distance is to be
computed, default 0.

sigma a positive number representing the bandwidth for the Fisher information metric,
default 1.

t a positive number representing the scale for the kernel, default 1.

rho an optional positive number representing the heuristic for Fisher information
metric approximation, see diagram_distance. Default NULL. If supplied,
code execution is sequential, but functions in the "exec" directory of the package
can be loaded to calculate distance matrices in parallel with approximation.

num_workers the number of cores used for parallel computation, default is one less than the
number of cores on the machine.

Details

Gram matrices are used in downstream analyses, like in the ‘diagram_kkmeans‘, ‘diagram_nearest_cluster‘,‘diagram_kpca‘,
‘predict_diagram_kpca‘, ‘predict_diagram_ksvm‘ and ‘independence_test‘ functions.
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Value

the numeric (cross) Gram matrix of class ’kernelMatrix’.

Author(s)

Shael Brown - <shaelebrown@gmail.com>

See Also

diagram_kernel for individual persistence Fisher kernel calculations.

Examples

if(require("TDAstats"))
{

# create two diagrams
D1 <- TDAstats::calculate_homology(TDAstats::circle2d[sample(1:100,20),],

dim = 1,threshold = 2)
D2 <- TDAstats::calculate_homology(TDAstats::circle2d[sample(1:100,20),],

dim = 1,threshold = 2)
g <- list(D1,D2)

# calculate the Gram matrix in dimension 0 with sigma = 2, t = 2
G <- gram_matrix(diagrams = g,dim = 0,sigma = 2,t = 2,num_workers = 2)

# calculate cross-Gram matrix, which is the same as G
G_cross <- gram_matrix(diagrams = g,other_diagrams = g,dim = 0,sigma = 2,

t = 2,num_workers = 2)
}

import_ripser Import the python module ripser.

Description

The ripser module is needed for fast persistent cohomology calculations with the PyH function.

Usage

import_ripser()

Details

Same as "reticulate::import("ripser")", just with additional checks.

Value

the python ripser module.
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Author(s)

Shael Brown - <shaelebrown@gmail.com>

Examples

## Not run:
# import ripser
ripser <- import_ripser()

## End(Not run)

independence_test Independence test for two groups of persistence diagrams.

Description

Carries out inference to determine if two groups of persistence diagrams are independent or not
based on kernel calculations (see (https://proceedings.neurips.cc/paper/2007/file/d5cfead94f5350c12c322b5b664544c1-Paper.
pdf) for details). A small p-value in a certain dimension suggests that the groups are not indepen-
dent in that dimension.

Usage

independence_test(
g1,
g2,
dims = c(0, 1),
sigma = 1,
rho = NULL,
t = 1,
num_workers = parallelly::availableCores(omit = 1),
verbose = FALSE,
Ks = NULL,
Ls = NULL

)

Arguments

g1 the first group of persistence diagrams, where each diagram was either the output
from a persistent homology calculation like ripsDiag/calculate_homology/PyH,
or diagram_to_df.

g2 the second group of persistence diagrams, where each diagram was either the
output from a persistent homology calculation like ripsDiag/calculate_homology/PyH,
or diagram_to_df.

dims a non-negative integer vector of the homological dimensions in which the test is
to be carried out, default c(0,1).

https://proceedings.neurips.cc/paper/2007/file/d5cfead94f5350c12c322b5b664544c1-Paper.pdf
https://proceedings.neurips.cc/paper/2007/file/d5cfead94f5350c12c322b5b664544c1-Paper.pdf
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sigma a positive number representing the bandwidth for the Fisher information metric,
default 1.

rho an optional positive number representing the heuristic for Fisher information
metric approximation, see diagram_distance. Default NULL. If supplied, cal-
culation of Gram matrices is sequential.

t a positive number representing the scale for the persistence Fisher kernel, default
1.

num_workers the number of cores used for parallel computation, default is one less than the
number of cores on the machine.

verbose a boolean flag for if the time duration of the function call should be printed,
default FALSE

Ks an optional list of precomputed Gram matrices for the first group of diagrams,
with one element for each dimension. If not NULL and ‘Ls‘ is not NULL then
‘g1‘ and ‘g2‘ do not need to be supplied.

Ls an optional list of precomputed Gram matrices for the second group of diagrams,
with one element for each dimension. If not NULL and ‘Ks‘ is not NULL then
‘g1‘ and ‘g2‘ do not need to be supplied.

Details

The test is carried out with a parametric null distribution, making it much faster than non-parametric
approaches. If all of the diagrams in either g1 or g2 are the same in some dimension, then some
p-values may be NaN.

Value

a list with the following elements:

dimensions the input ‘dims‘ argument.

test_statisics a numeric vector of the test statistic value in each dimension.

p_values a numeric vector of the p-values in each dimension.

run_time the run time of the function call, containing time units.

Author(s)

Shael Brown - <shaelebrown@gmail.com>

References

Gretton A et al. (2007). "A Kernel Statistical Test of Independence." https://proceedings.
neurips.cc/paper/2007/file/d5cfead94f5350c12c322b5b664544c1-Paper.pdf.

See Also

permutation_test for an inferential group difference test for groups of persistence diagrams.

https://proceedings.neurips.cc/paper/2007/file/d5cfead94f5350c12c322b5b664544c1-Paper.pdf
https://proceedings.neurips.cc/paper/2007/file/d5cfead94f5350c12c322b5b664544c1-Paper.pdf
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Examples

if(require("TDAstats"))
{

# create two independent groups of diagrams of length 6, which
# is the minimum length
D1 <- TDAstats::calculate_homology(TDAstats::circle2d[sample(1:100,10),],

dim = 0,threshold = 2)
D2 <- TDAstats::calculate_homology(TDAstats::circle2d[sample(1:100,10),],

dim = 0,threshold = 2)
g1 <- list(D1,D2,D2,D2,D2,D2)
g2 <- list(D2,D1,D1,D1,D1,D1)

# do independence test with sigma = t = 1 in dimension 0, using
# precomputed Gram matrices
K = gram_matrix(diagrams = g1,dim = 0,t = 1,sigma = 1,num_workers = 2)
L = gram_matrix(diagrams = g2,dim = 0,t = 1,sigma = 1,num_workers = 2)
indep_test <- independence_test(Ks = list(K),Ls = list(L),dims = c(0))

}

permutation_model_inference

Model inference with permutation test.

Description

An inference procedure to determine if two datasets were unlikely to be generated by the same
process (i.e. if the persistence diagram of one dataset is a good model of the persistence diagram of
the other dataset).

Usage

permutation_model_inference(
D1,
D2,
iterations,
num_samples,
dims = c(0, 1),
samp = NULL,
paired = F,
num_workers = parallelly::availableCores(omit = 1),
verbose = F,
FUN_boot = "calculate_homology",
thresh,
distance_mat = FALSE,
ripser = NULL,
return_diagrams = FALSE

)
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Arguments

D1 the first dataset (a data frame).

D2 the second dataset (a data frame).

iterations the number of iterations for permuting group labels, default 20.

num_samples the number of bootstrap iterations, default 30.

dims a non-negative integer vector of the homological dimensions in which the test is
to be carried out, default c(0,1).

samp an optional list of row-number samples of ‘D1‘, default NULL. See details and
examples for more information. Ignored when ‘paired‘ is FALSE.

paired a boolean flag for if there is a second-order pairing between diagrams at the
same index in different groups, default FALSE.

num_workers the number of cores used for parallel computation, default is one less than the
number of cores on the machine.

verbose a boolean flag for if the time duration of the function call should be printed,
default FALSE

FUN_boot a string representing the persistent homology function to use for calculating the
bootstrapped persistence diagrams, either ’calculate_homology’ (the default),
’PyH’ or ’ripsDiag’.

thresh the positive numeric maximum radius of the Vietoris-Rips filtration.

distance_mat a boolean representing if ‘X‘ is a distance matrix (TRUE) or not (FALSE, de-
fault). dimensions together (TRUE, the default) or if one threshold should be
calculated for each dimension separately (FALSE).

ripser the imported ripser module when ‘FUN_boot‘ is ‘PyH‘.
return_diagrams

whether or not to return the two lists of bootstrapped persistence diagrams, de-
fault FALSE.

Details

Inference is carried out by generating bootstrap resampled persistence diagrams from the two
datasets and carrying out a permutation test on the resulting two groups. A small p-value in a
certain dimension suggests that the datasets are not good models of each other. ‘samp‘ should only
be provided when ‘paired‘is TRUE in order to generate the same row samplings of ‘D1‘ and ‘D2‘
for the bootstrapped persistence diagrams. This makes a paired permutation test more appropriate,
which has higher statistical power for detecting topological differences. See the examples for how
to properly supply ‘samp‘.

Value

a list which contains the output of the call to permutation_test and the two groups of bootstrapped
persistence diagrams if desired, in entries called ‘diagrams1‘ and ‘diagrams2‘.

Author(s)

Shael Brown - <shaelebrown@gmail.com>
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References

Robinson T, Turner K (2017). "Hypothesis testing for topological data analysis." https://link.
springer.com/article/10.1007/s41468-017-0008-7.

Chazal F et al (2017). "Robust Topological Inference: Distance to a Measure and Kernel Distance."
https://www.jmlr.org/papers/volume18/15-484/15-484.pdf.

Abdallah H et al. (2021). "Statistical Inference for Persistent Homology applied to fMRI." https:
//github.com/hassan-abdallah/Statistical_Inference_PH_fMRI/blob/main/Abdallah_et_
al_Statistical_Inference_PH_fMRI.pdf.

See Also

permutation_test for an inferential group difference test for groups of persistence diagrams and
bootstrap_persistence_thresholds for computing confidence sets for persistence diagrams.

Examples

if(require("TDAstats"))
{

# create two datasets
D1 <- TDAstats::calculate_homology(TDAstats::circle2d[sample(1:100,10),],

dim = 0,threshold = 2)
D2 <- TDAstats::calculate_homology(TDAstats::circle2d[sample(1:100,10),],

dim = 0,threshold = 2)

# do model inference test with 1 iteration (for speed, more
# iterations should be used in practice)
model_test <- permutation_model_inference(D1, D2, iterations = 1,

thresh = 1.75,num_samples = 3,
num_workers = 2L)

# with more iterations, p-values show a difference in the
# clustering of points but not in the arrangement of loops
model_test$p_values

# to supply samp, when we believe there is a correspondence between
# the rows in D1 and the rows in D2
# note that the number of entries of samp (3 in this case) must
# match the num_samples parameter to the function call
samp <- lapply(X = 1:3,FUN = function(X){

return(unique(sample(1:nrow(D1),size = nrow(D1),replace = TRUE)))

})

# model inference will theoretically have higher power now for a
# paired test
model_test2 <- permutation_model_inference(D1, D2, iterations = 1,

thresh = 1.75,num_samples = 3,
paired = TRUE,samp = samp,
num_workers = 2L)

model_test2$p_values

https://link.springer.com/article/10.1007/s41468-017-0008-7
https://link.springer.com/article/10.1007/s41468-017-0008-7
https://www.jmlr.org/papers/volume18/15-484/15-484.pdf
https://github.com/hassan-abdallah/Statistical_Inference_PH_fMRI/blob/main/Abdallah_et_al_Statistical_Inference_PH_fMRI.pdf
https://github.com/hassan-abdallah/Statistical_Inference_PH_fMRI/blob/main/Abdallah_et_al_Statistical_Inference_PH_fMRI.pdf
https://github.com/hassan-abdallah/Statistical_Inference_PH_fMRI/blob/main/Abdallah_et_al_Statistical_Inference_PH_fMRI.pdf
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}

permutation_test Permutation test for finding group differences between persistence di-
agrams.

Description

A non-parametric ANOVA-like test for persistence diagrams (see https://link.springer.com/
article/10.1007/s41468-017-0008-7 for details). In each desired dimension a test statistic
(loss) is calculated, then the group labels are shuffled for some number of iterations and the loss is
recomputed each time thereby generating a null distribution for the test statistic. This test generates
a p-value in each desired dimension.

Usage

permutation_test(
...,
iterations = 20,
p = 2,
q = 2,
dims = c(0, 1),
dist_mats = NULL,
group_sizes = NULL,
paired = FALSE,
distance = "wasserstein",
sigma = NULL,
rho = NULL,
num_workers = parallelly::availableCores(omit = 1),
verbose = FALSE

)

Arguments

... lists of persistence diagrams which are either the output of persistent homology
calculations like ripsDiag/calculate_homology/PyH, or diagram_to_df. Each
list must contain at least 2 diagrams.

iterations the number of iterations for permuting group labels, default 20.

p a positive number representing the wasserstein power parameter, a number at
least 1 (and Inf if using the bottleneck distance) and default 2.

q a finite number at least 1 for exponentiation in the Turner loss function, default
2.

dims a non-negative integer vector of the homological dimensions in which the test is
to be carried out, default c(0,1).

https://link.springer.com/article/10.1007/s41468-017-0008-7
https://link.springer.com/article/10.1007/s41468-017-0008-7
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dist_mats an optional list of precomputed distances matrices, one for each dimension,
where the rows and columns would correspond to the unlisted groups of dia-
grams (in order), default NULL. If not NULL then no lists of diagrams need to
be supplied.

group_sizes a vector of group sizes, one for each group, when ‘dist_mats‘ is not NULL.

paired a boolean flag for if there is a second-order pairing between diagrams at the
same index in different groups, default FALSE

distance a string which determines which type of distance calculation to carry out, either
"wasserstein" (default) or "fisher".

sigma the positive bandwidth for the Fisher information metric, default NULL.

rho an optional positive number representing the heuristic for Fisher information
metric approximation, see diagram_distance. Default NULL. If supplied,
code execution is sequential.

num_workers the number of cores used for parallel computation, default is one less than the
number of cores on the machine.

verbose a boolean flag for if the time duration of the function call should be printed,
default FALSE

Details

The test is carried out in parallel and optimized in order to not recompute already-calculated dis-
tances. As such, memory issues may occur when the number of persistence diagrams is very large.
Like in (https://github.com/hassan-abdallah/Statistical_Inference_PH_fMRI/blob/main/
Abdallah_et_al_Statistical_Inference_PH_fMRI.pdf) an option is provided for pairing dia-
grams between groups to reduce variance (in order to boost statistical power), and like it was sug-
gested in the original paper functionality is provided for an arbitrary number of groups (not just 2).
A small p-value in a dimension suggests that the groups are different (separated) in that dimension.
If ‘distance‘ is "fisher" then ‘sigma‘ must not be NULL. TDAstats also has a ‘permutation_test‘
function so care should be taken to use the desired function when using TDApplied with TDAstats.
If ‘dist_mats‘ is supplied then the sum of the elements of ‘group_sizes‘ must equal the number of
rows and columns of each of its elements.

Value

a list with the following elements:

dimensions the input ‘dims‘ argument.

permvals a numeric vector of length ‘iterations‘ with the permuted loss value for each iteration
(permutation)

test_statisics a numeric vector of the test statistic value in each dimension.

p_values a numeric vector of the p-values in each dimension.

run_time the run time of the function call, containing time units.

Author(s)

Shael Brown - <shaelebrown@gmail.com>

https://github.com/hassan-abdallah/Statistical_Inference_PH_fMRI/blob/main/Abdallah_et_al_Statistical_Inference_PH_fMRI.pdf
https://github.com/hassan-abdallah/Statistical_Inference_PH_fMRI/blob/main/Abdallah_et_al_Statistical_Inference_PH_fMRI.pdf
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References

Robinson T, Turner K (2017). "Hypothesis testing for topological data analysis." https://link.
springer.com/article/10.1007/s41468-017-0008-7.

Abdallah H et al. (2021). "Statistical Inference for Persistent Homology applied to fMRI." https:
//github.com/hassan-abdallah/Statistical_Inference_PH_fMRI/blob/main/Abdallah_et_
al_Statistical_Inference_PH_fMRI.pdf.

See Also

independence_test for an inferential test of independence for two groups of persistence diagrams.

Examples

if(require("TDAstats"))
{

# create two groups of diagrams
D1 <- TDAstats::calculate_homology(TDAstats::circle2d[sample(1:100,10),],

dim = 0,threshold = 2)
D2 <- TDAstats::calculate_homology(TDAstats::circle2d[sample(1:100,10),],

dim = 0,threshold = 2)
g1 <- list(D1,D2)
g2 <- list(D1,D2)

# run test in dimension 0 with 1 iteration, note that the TDA package function
# "permutation_test" can mask TDApplied's function, so we will specify explicitly
# which function we are using
perm_test <- TDApplied::permutation_test(g1,g2,iterations = 1,

num_workers = 2,
dims = c(0))

# repeat with precomputed distance matrix, gives similar results
# (same but the randomness of the permutations can give small differences)
# just much faster
D <- distance_matrix(diagrams = list(D1,D2,D1,D2),dim = 0,

num_workers = 2)
perm_test <- TDApplied::permutation_test(dist_mats = list(D),group_sizes = c(2,2),

dims = c(0))
}

plot_diagram Plot persistence diagrams

Description

Plots a persistence diagram outputted from either a persistent homology calculation or from dia-
gram_to_df, with maximum homological dimension no more than 12 (otherwise the legend doesn’t
fit in the plot). Each homological dimension has its own color (the rcartocolor color-blind safe color
palette) and point type, and the main plot title can be altered via the ‘title‘ parameter. Each feature
is plotted with a black point at its center in order to distinguish between overlapping features and
easily compare features to their persistence thresholds.

https://link.springer.com/article/10.1007/s41468-017-0008-7
https://link.springer.com/article/10.1007/s41468-017-0008-7
https://github.com/hassan-abdallah/Statistical_Inference_PH_fMRI/blob/main/Abdallah_et_al_Statistical_Inference_PH_fMRI.pdf
https://github.com/hassan-abdallah/Statistical_Inference_PH_fMRI/blob/main/Abdallah_et_al_Statistical_Inference_PH_fMRI.pdf
https://github.com/hassan-abdallah/Statistical_Inference_PH_fMRI/blob/main/Abdallah_et_al_Statistical_Inference_PH_fMRI.pdf
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Usage

plot_diagram(
D,
title = NULL,
max_radius = NULL,
legend = TRUE,
thresholds = NULL

)

Arguments

D a persistence diagram, either outputted from either a persistent homology ho-
mology calculation like ripsDiag/calculate_homology/PyH or from diagram_to_df,
with maximum dimension at most 12.

title the character string plot title, default NULL.

max_radius the x and y limits of the plot are defined as ‘c(0,max_radius)‘, and the default
value of ‘max_radius‘ is the maximum death value in ‘D‘.

legend a logical indicating whether to include a legend of feature dimensions, default
TRUE.

thresholds either a numeric vector with one persistence threshold for each dimension in ‘D‘
or the output of a bootstrap_persistence_thresholds function call, default
NULL.

Details

The ‘thresholds‘ parameter, if not NULL, can either be a user-defined numeric vector, with one entry
(persistence threshold) for each dimension in ‘D‘, or the output of bootstrap_persistence_thresholds.
Points whose persistence are greater than or equal to their dimension’s threshold will be plotted in
their dimension’s color, and in gray otherwise.

Author(s)

Shael Brown - <shaelebrown@gmail.com>

Examples

if(require("TDAstats"))
{

# create a sample diagram from the unit circle
df <- TDAstats::circle2d[sample(1:100,50),]
diag <- TDAstats::calculate_homology(df,threshold = 2)

# plot without title
plot_diagram(diag)

# plot with title
plot_diagram(diag,title = "Example diagram")

# determine persistence thresholds
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thresholds <- bootstrap_persistence_thresholds(X = df,maxdim = 1,
thresh = 2,num_samples = 3,
num_workers = 2)

# plot with bootstrap persistence thresholds
plot_diagram(diag,title = "Example diagram with thresholds",thresholds = thresholds)

#' # plot with personalized persistence thresholds
plot_diagram(diag,title = "Example diagram with personalized thresholds",thresholds = c(0.5,1))

}

plot_vr_graph Plot a VR graph using the igraph package.

Description

This function will throw an error if the igraph package is not installed.

Usage

plot_vr_graph(
graphs,
eps,
cols = NULL,
layout = NULL,
title = NULL,
component_of = NULL,
plot_isolated_vertices = FALSE,
return_layout = FALSE,
vertex_labels = TRUE

)

Arguments

graphs the output of a ‘vr_graphs‘ function call.
eps the numeric radius of the graph in ‘graphs‘ to plot.
cols an optional character vector of vertex colors, default ‘NULL‘.
layout an optional 2D matrix of vertex coordinates, default ‘NULL‘. If row names are

supplied they can be used to subset a graph by those vertex names.
title an optional str title for the plot, default ‘NULL‘.
component_of a vertex name (integer or character), only the component of the graph containing

that vertex will be plotted (useful for identifying representative (co)cycles in
graphs). Default ‘NULL‘ (plot the whole graph).

plot_isolated_vertices

a boolean representing whether or not to plot isolated vertices, default ‘FALSE‘.
return_layout a boolean representing whether or not to return the plotting layout (x-y coordi-

nates of each vertex) and the vertex labels, default ‘FALSE‘.
vertex_labels a boolean representing whether or not to plot vertex labels, default ‘TRUE‘.
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Value

if ‘return_layout‘ is ‘TRUE‘ then a list with elements "layout" (the numeric matrix of vertex x-y co-
ordinates) and "vertices" (character vertex labels), otherwise the function does not return anything.

Author(s)

Shael Brown - <shaelebrown@gmail.com>

See Also

vr_graphs for computing VR graphs.

Examples

if(require("TDAstats") & require("igraph"))
{

# simulate data from the unit circle and calculate
# its diagram
df <- TDAstats::circle2d[sample(1:100,25),]
diag <- TDAstats::calculate_homology(df,

dim = 1,
threshold = 2)

# get minimum death radius of any data cluster
min_death_H0 <-
min(diag[which(diag[,1] == 0),3L])

# get birth and death radius of the loop
loop_birth <- as.numeric(diag[nrow(diag),2L])
loop_death <- as.numeric(diag[nrow(diag),3L])

# compute VR graphs at radii half of
# min_death_H0 and the mean of loop_birth and
# loop_death, returning clusters
graphs <- vr_graphs(X = df,eps =
c(0.5*min_death_H0,(loop_birth + loop_death)/2))

# plot graph of smaller (first) radius
plot_vr_graph(graphs = graphs,eps = 0.5*min_death_H0,

plot_isolated_vertices = TRUE)

# plot graph of larger (second) radius
plot_vr_graph(graphs = graphs,eps = (loop_birth + loop_death)/2)

# repeat but with rownames for df, each vertex
# will be plotted with its rownames
rownames(df) <- paste0("V",1:25)
graphs <- vr_graphs(X = df,eps =
c(0.5*min_death_H0,(loop_birth + loop_death)/2))
plot_vr_graph(graphs = graphs,eps = 0.5*min_death_H0,

plot_isolated_vertices = TRUE)
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# plot without vertex labels
plot_vr_graph(graphs = graphs,eps = (loop_birth + loop_death)/2,

vertex_labels = FALSE)

# plot only the graph component containing vertex "1"
plot_vr_graph(graphs = graphs,eps = 0.5*min_death_H0,

component_of = "V1",plot_isolated_vertices = TRUE)

# save the layout of the graph for adding features to
# the same graph layout, like color
layout <- plot_vr_graph(graphs = graphs,eps = (loop_birth + loop_death)/2,

return_layout = TRUE,vertex_labels = TRUE)
cols <- rep("blue",25)
cols[1:5] <- "red"
plot_vr_graph(graphs = graphs,eps = (loop_birth + loop_death)/2,cols = cols,

layout = layout)

}

predict_diagram_kkmeans

Predict the cluster labels for new persistence diagrams using a pre-
computed clustering.

Description

Returns the nearest (highest kernel value) kkmeans cluster center label for new persistence dia-
grams. This allows for reusing old cluster models for new tasks, or to perform cross validation.

Usage

predict_diagram_kkmeans(
new_diagrams,
K = NULL,
clustering,
num_workers = parallelly::availableCores(omit = 1)

)

Arguments

new_diagrams a list of persistence diagrams which are either the output of a persistent homol-
ogy calculation like ripsDiag/calculate_homology/PyH, or diagram_to_df.
Only one of ‘new_diagrams‘ and ‘K‘ need to be supplied.

K an optional precomputed cross Gram matrix of the new diagrams and the dia-
grams used in ‘clustering‘, default NULL. If not NULL then ‘new_diagrams‘
does not need to be supplied.

clustering the output of a diagram_kkmeans function call, of class ’diagram_kkmeans’.
num_workers the number of cores used for parallel computation, default is one less than the

number of cores on the machine.
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Value

a vector of the predicted cluster labels for the new diagrams.

Author(s)

Shael Brown - <shaelebrown@gmail.com>

See Also

diagram_kkmeans for clustering persistence diagrams.

Examples

if(require("TDAstats"))
{

# create two diagrams
D1 <- TDAstats::calculate_homology(TDAstats::circle2d[sample(1:100,20),],

dim = 1,threshold = 2)
D2 <- TDAstats::calculate_homology(TDAstats::circle2d[sample(1:100,20),],

dim = 1,threshold = 2)
g <- list(D1,D1,D2,D2)

# calculate kmeans clusters with centers = 2, and sigma = t = 2 in dimension 0
clust <- diagram_kkmeans(diagrams = g,centers = 2,dim = 0,t = 2,sigma = 2,num_workers = 2)

# create two new diagrams
D3 <- TDAstats::calculate_homology(TDAstats::circle2d[sample(1:100,20),],

dim = 1,threshold = 2)
D4 <- TDAstats::calculate_homology(TDAstats::circle2d[sample(1:100,20),],

dim = 1,threshold = 2)
g_new <- list(D3,D4)

# predict cluster labels
predict_diagram_kkmeans(new_diagrams = g_new,clustering = clust,num_workers = 2)

# predict cluster labels with precomputed Gram matrix, gives same result but
# much faster
K <- gram_matrix(diagrams = g_new,other_diagrams = clust$diagrams,

dim = clust$dim,t = clust$t,sigma = clust$sigma,
num_workers = 2)

predict_diagram_kkmeans(K = K,clustering = clust)

}

predict_diagram_kpca Project persistence diagrams into a low-dimensional space via a pre-
computed kernel PCA embedding.
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Description

Compute the location in low-dimensional space of each element of a list of new persistence dia-
grams using a previously-computed kernel PCA embedding (from the diagram_kpca function).

Usage

predict_diagram_kpca(
new_diagrams,
K = NULL,
embedding,
num_workers = parallelly::availableCores(omit = 1)

)

Arguments

new_diagrams a list of persistence diagrams which are either the output of a persistent homol-
ogy calculation like ripsDiag/calculate_homology/PyH, or diagram_to_df.
Only one of ‘new_diagrams‘ and ‘K‘ need to be supplied.

K an optional precomputed cross-Gram matrix of the new diagrams and the ones
used in ‘embedding‘, default NULL. If not NULL then ‘new_diagrams‘ does
not need to be supplied.

embedding the output of a diagram_kpca function call, of class ’diagram_kpca’.

num_workers the number of cores used for parallel computation, default is one less than the
number of cores on the machine.

Value

the data projection (rotation), stored as a numeric matrix. Each row corresponds to the same-index
diagram in ‘new_diagrams‘.

Author(s)

Shael Brown - <shaelebrown@gmail.com>

See Also

diagram_kpca for embedding persistence diagrams into a low-dimensional space.

Examples

if(require("TDAstats"))
{

# create six diagrams
D1 <- TDAstats::calculate_homology(TDAstats::circle2d[sample(1:100,20),],

dim = 1,threshold = 2)
D2 <- TDAstats::calculate_homology(TDAstats::circle2d[sample(1:100,20),],

dim = 1,threshold = 2)
D3 <- TDAstats::calculate_homology(TDAstats::sphere3d[sample(1:100,20),],

dim = 1,threshold = 2)
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D4 <- TDAstats::calculate_homology(TDAstats::sphere3d[sample(1:100,20),],
dim = 1,threshold = 2)

D5 <- TDAstats::calculate_homology(TDAstats::sphere3d[sample(1:100,20),],
dim = 1,threshold = 2)

D6 <- TDAstats::calculate_homology(TDAstats::sphere3d[sample(1:100,20),],
dim = 1,threshold = 2)

g <- list(D1,D2,D3,D4,D5,D6)

# calculate their 2D PCA embedding with sigma = t = 2 in dimension 0
pca <- diagram_kpca(diagrams = g,dim = 1,t = 2,sigma = 2,

features = 2,num_workers = 2,th = 1e-6)

# project two new diagrams onto old model
D7 <- TDAstats::calculate_homology(TDAstats::circle2d[sample(1:100,50),],

dim = 0,threshold = 2)
D8 <- TDAstats::calculate_homology(TDAstats::circle2d[sample(1:100,50),],

dim = 0,threshold = 2)
g_new <- list(D7,D8)

# calculate new embedding coordinates
new_pca <- predict_diagram_kpca(new_diagrams = g_new,embedding = pca,num_workers = 2)

# repeat with precomputed Gram matrix, gives same result but much faster
K <- gram_matrix(diagrams = g_new,other_diagrams = pca$diagrams,dim = pca$dim,

t = pca$t,sigma = pca$sigma,num_workers = 2)
new_pca <- predict_diagram_kpca(K = K,embedding = pca,num_workers = 2)

}

predict_diagram_ksvm Predict the outcome labels for a list of persistence diagrams using a
pre-trained diagram ksvm model.

Description

Returns the predicted response vector of the model on the new diagrams.

Usage

predict_diagram_ksvm(
new_diagrams,
model,
K = NULL,
num_workers = parallelly::availableCores(omit = 1)

)

Arguments

new_diagrams a list of persistence diagrams which are either the output of a persistent homol-
ogy calculation like ripsDiag/calculate_homology/PyH, or diagram_to_df.
Only one of ‘new_diagrams‘ and ‘K‘ need to be supplied.
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model the output of a diagram_ksvm function call, of class ’diagram_ksvm’.

K an optional cross-Gram matrix of the new diagrams and the diagrams in ‘model‘,
default NULL. If not NULL then ‘new_diagrams‘ does not need to be supplied.

num_workers the number of cores used for parallel computation, default is one less than the
number of cores on the machine.

Details

This function is a wrapper of the kernlab predict function.

Value

a vector containing the output of predict.ksvm on the cross Gram matrix of the new diagrams and
the support vector diagrams stored in the model.

Author(s)

Shael Brown - <shaelebrown@gmail.com>

See Also

diagram_ksvm for training a SVM model on a training set of persistence diagrams and labels.

Examples

if(require("TDAstats"))
{

# create four diagrams
D1 <- TDAstats::calculate_homology(TDAstats::circle2d[sample(1:100,20),],

dim = 1,threshold = 2)
D2 <- TDAstats::calculate_homology(TDAstats::circle2d[sample(1:100,20),],

dim = 1,threshold = 2)
D3 <- TDAstats::calculate_homology(TDAstats::sphere3d[sample(1:100,20),],

dim = 1,threshold = 2)
D4 <- TDAstats::calculate_homology(TDAstats::sphere3d[sample(1:100,20),],

dim = 1,threshold = 2)
g <- list(D1,D2,D3,D4)

# create response vector
y <- as.factor(c("circle","circle","sphere","sphere"))

# fit model without cross validation
model_svm <- diagram_ksvm(diagrams = g,cv = 1,dim = c(0),

y = y,sigma = c(1),t = c(1),
num_workers = 2)

# create two new diagrams
D5 <- TDAstats::calculate_homology(TDAstats::circle2d[sample(1:100,20),],

dim = 1,threshold = 2)
D6 <- TDAstats::calculate_homology(TDAstats::sphere3d[sample(1:100,20),],

dim = 1,threshold = 2)
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g_new <- list(D5,D6)

# predict with precomputed Gram matrix
K <- gram_matrix(diagrams = g_new,other_diagrams = model_svm$diagrams,

dim = model_svm$best_model$dim,sigma = model_svm$best_model$sigma,
t = model_svm$best_model$t,num_workers = 2)

predict_diagram_ksvm(K = K,model = model_svm,num_workers = 2)
}

PyH Fast persistent homology calculations with python.

Description

This function is a wrapper of the python wrapper of the ripser engine for persistent cohomology, but
is still faster than using the R package TDAstats (see the TDApplied package vignette for details).

Usage

PyH(
X,
maxdim = 1,
thresh,
distance_mat = FALSE,
ripser,
ignore_infinite_cluster = TRUE,
calculate_representatives = FALSE

)

Arguments

X either a matrix or dataframe, representing either point cloud data or a distance
matrix. In either case there must be at least two rows and 1 column.

maxdim the non-negative integer maximum dimension for persistent homology, default
1.

thresh the non-negative numeric radius threshold for the Vietoris-Rips filtration.

distance_mat a boolean representing whether the input X is a distance matrix or not, default
FALSE.

ripser the ripser python module.
ignore_infinite_cluster

a boolean representing whether to remove clusters (0 dimensional cycles) which
die at the threshold value. Default is TRUE as this is the default for TDAstats
homology calculations, but can be set to FALSE which is the default for python
ripser.

calculate_representatives

a boolean representing whether to return a list of representative cocycles for the
topological features found in the persistence diagram, default FALSE.
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Details

If ‘distance_mat‘ is ‘TRUE‘ then ‘X‘ must be a square matrix. The ‘ripser‘ parameter should be
the result of an ‘import_ripser‘ function call, but since that function is slow the ripser object should
be explicitly created before a PyH function call (see examples). Cohomology is computed over Z2,
as is the case for the TDAstats function calculate_homology (this is also the default for ripser
in c++). If representative cocycles are returned, then they are stored in a list with one element
for each point in the persistence diagram, ignoring dimension 0 points. Each representative of a
dimension d cocycle (1 for loops, 2 for voids, etc.) is a kxd dimension matrix/array containing the
row number-labelled edges, triangles etc. in the cocycle.

Value

Either a dataframe containing the persistence diagram if ‘calculate_representatives‘ is ‘FALSE‘ (the
default), otherwise a list with two elements: diagram of class diagram, containing the persistence
diagram, and representatives, a list containing the edges, triangles etc. contained in each represen-
tative cocycle.

Author(s)

Shael Brown - <shaelebrown@gmail.com>

Examples

## Not run:
# create sample data
df <- data.frame(x = 1:10,y = 1:10)

# import the ripser module
ripser <- import_ripser()

# calculate persistence diagram up to dimension 1 with a maximum
# radius of 5
phom <- PyH(X = df,thresh = 5,ripser = ripser)

## End(Not run)

universal_null Filtering topological features with the universal null distribution.

Description

An inference procedure to determine which topological features (if any) of a datasets are likely
signal (i.e. significant) vs noise (not).
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Usage

universal_null(
X,
FUN_diag = "calculate_homology",
maxdim = 1,
thresh,
distance_mat = FALSE,
ripser = NULL,
ignore_infinite_cluster = TRUE,
calculate_representatives = FALSE,
alpha = 0.05,
return_pvals = FALSE,
infinite_cycle_inference = FALSE

)

Arguments

X the input dataset, must either be a matrix or data frame.
FUN_diag a string representing the persistent homology function to use for calculating the

full persistence diagram, either ’calculate_homology’ (the default), ’PyH’ or
’ripsDiag’.

maxdim the integer maximum homological dimension for persistent homology, default
0.

thresh the positive numeric maximum radius of the Vietoris-Rips filtration.
distance_mat a boolean representing if ‘X‘ is a distance matrix (TRUE) or not (FALSE, de-

fault). dimensions together (TRUE, the default) or if one threshold should be
calculated for each dimension separately (FALSE).

ripser the imported ripser module when ‘FUN_diag‘ is ‘PyH‘.
ignore_infinite_cluster

a boolean indicating whether or not to ignore the infinitely lived cluster when
‘FUN_diag‘ is ‘PyH‘. If infinite cycle inference is to be performed, this param-
eter should be set to FALSE.

calculate_representatives

a boolean representing whether to calculate representative (co)cycles, default
FALSE. Note that representatives cant be calculated when using the ’calcu-
late_homology’ function. Note that representatives cannot be computed for (sig-
nificant) infinite cycles.

alpha the type-1 error threshold, default 0.05.
return_pvals a boolean representing whether or not to return p-values for features in the sub-

setted diagram as well as a list of p-value thresholds, default FALSE. Infinite
cycles that are significant (see below) will have p-value NA in this list, as the
true value is unknown but less than its dimension’s p-value threshold.

infinite_cycle_inference

a boolean representing whether or not to perform inference for features with
infinite (i.e. ‘thresh‘) death values, default FALSE. If ‘FUN_diag‘ is ‘calcu-
late_homology‘ (the default) then no infinite cycles will be returned by the per-
sistent homology calculation at all.
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Details

For each feature in a diagram we compute its persistence ratio π = death/birth, and a test statistic
Aloglogπ +B (where A and B are constants). This statistic is compared to a left-skewed Gumbel
distribution to get a p-value. A Bonferroni correction is applied to all the p-values across all features,
so when ‘return_pvals‘ is TRUE a list of p-value thresholds is also returned, one for each dimension,
which is ‘alpha‘ divided by the number of features in that dimension. If desired, infinite cycles (i.e.
cycles whose death value is equal to the maximum distance threshold parameter for the persistent
homology calculation) can be anaylzed for significance by determining their minimum distance
thresholds where they might be significant (using the Gumbel distribution again), calculating the
persistence diagram up to those thresholds and seeing if they are still infinite (i.e. significant) or
not. This function is significantly faster than the bootstrap_persistence_thresholds function.
Note that the ‘calculate_homology‘ function does not seem to store infinite cycles (i.e. cycles that
have death value equal to ‘thresh‘).

Value

a list containing the full persistence diagram, the subsetted diagram, representatives and/or subsetted
representatives if desired, the p-values of subsetted features and the Bonferroni p-value thresholds
in each dimension if desired.

Author(s)

Shael Brown - <shaelebrown@gmail.com>

References

Bobrowski O, Skraba P (2023). "A universal null-distribution for topological data analysis." https:
//www.nature.com/articles/s41598-023-37842-2.

Examples

if(require("TDA"))
{

# create dataset
theta <- runif(n = 100,min = 0,max = 2*pi)
x <- cos(theta)
y <- sin(theta)
circ <- data.frame(x = x,y = y)

# add noise
x_noise <- -0.1 + 0.2*stats::runif(n = 100)
y_noise <- -0.1 + 0.2*stats::runif(n = 100)
circ$x <- circ$x + x_noise
circ$y <- circ$y + y_noise

# determine significant topological features
library(TDA)
res <- universal_null(circ, thresh = 2,alpha = 0.1,return_pvals = TRUE,FUN_diag = "ripsDiag")
res$subsetted_diag
res$pvals

https://www.nature.com/articles/s41598-023-37842-2
https://www.nature.com/articles/s41598-023-37842-2
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res$alpha_thresh

# at a lower threshold we can check for
# infinite cycles
res2 <- universal_null(circ, thresh = 1.1,

infinite_cycle_inference = TRUE,
alpha = 0.1,
FUN_diag = "ripsDiag")

res2$subsetted_diag
}

vr_graphs Compute Vietoris-Rips graphs of a dataset at particular epsilon radius
values.

Description

Persistence diagrams computed from Rips-Vietoris filtrations contain information about distance
radius scales at which topological features of a dataset exist, but the features can be challenging
to visualize, analyze and interpret. In order to help solve this problem the ‘vr_graphs‘ function
computes the 1-skeleton (i.e. graph) of Rips complexes at particular radii, called "Vietoris-Rips
graphs" (VR graphs) in the literature.

Usage

vr_graphs(X, distance_mat = FALSE, eps, return_clusters = TRUE)

Arguments

X either a point cloud data frame/matrix, or a distance matrix.
distance_mat a boolean representing if the input ‘X‘ is a distance matrix, default value is

‘FALSE‘.
eps a numeric vector of the positive scales at which to compute the Rips-Vietoris

complexes, i.e. all edges at most the specified values.
return_clusters

a boolean determining if the connected components (i.e. data clusters) of the
complex should be explicitly returned, default is ‘TRUE‘.

Details

This function may be used in conjunction with the igraph package to visualize the graphs (see
plot_vr_graph).

Value

A list with a ‘vertices‘ field, containing the rownames of ‘X‘, and then a list ‘graphs‘ one (named)
entry for each value in ‘eps‘. Each entry is a list with a ‘graph‘ field, storing the (undirected) edges
in the Rips-Vietoris complex in matrix format, and a ‘clusters‘ field, containing vectors of the data
indices (or row names) in each connected component of the Rips graph.
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Author(s)

Shael Brown - <shaelebrown@gmail.com>

References

A Zomorodian, The tidy set: A minimal simplicial set for computing homology of clique complexes
in Proceedings of the Twenty-Sixth Annual Symposium on Computational Geometry, SoCG ’10.
(Association for Computing Machinery, New York, NY, USA), p. 257–266 (2010).

See Also

plot_vr_graph for plotting VR graphs.

Examples

if(require("TDAstats") & require("igraph"))
{

# simulate data from the unit circle and calculate
# its diagram
df <- TDAstats::circle2d[sample(1:100,25),]
diag <- TDAstats::calculate_homology(df,

dim = 1,
threshold = 2)

# get minimum death radius of any data cluster
min_death_H0 <-
min(diag[which(diag[,1] == 0),3L])

# get birth and death radius of the loop
loop_birth <- as.numeric(diag[nrow(diag),2L])
loop_death <- as.numeric(diag[nrow(diag),3L])

# compute VR graphs at radii half of
# min_death_H0 and the mean of loop_birth and
# loop_death, returning clusters
graphs <- vr_graphs(X = df,eps =
c(0.5*min_death_H0,(loop_birth + loop_death)/2))

# verify that there are 25 clusters for the smaller radius
length(graphs$graphs[[1]]$clusters)

}
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