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classificationReport Prediction evaluation report of a classification model

Description

This function builds a report showing the main classification metrics. It provides an overview of
key evaluation metrics like precision, recall, F1-score, accuracy, Matthew’s correlation coefficient
(mcc) and support (testing size) for each class in the dataset and averages (macro or weighted) for
all classes.

Usage

classificationReport(yobs, yhat, CM = NULL, verbose = FALSE, ...)

Arguments

yobs A vector with the true target variable values.

yhat A matrix with the predicted target variables values.

CM An optional (external) confusion matrix CxC.

verbose A logical value (default = FALSE). If TRUE, the confusion matrix is printed on
the screen, and if C=2, the density plots of the predicted probability for each
group are also printed.

... Currently ignored.

Details

Given one vector with the true target variable labels, and the a matrix with the predicted target
variable values for each class, a series of classification metrics is computed. For example, suppose
a 2x2 table with notation

Predicted
Observed Yes Event No Event
Yes Event A C
No Event B D

The formulas used here for the label = "Yes Event" are:
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pre = A/(A+B)

rec = A/(A+ C)

F1 = (2 ∗ pre ∗ rec)/(pre+ rec)

acc = (A+D)/(A+B + C +D)

mcc = (A ∗D −B ∗ C)/sqrt((A+B) ∗ (C +D) ∗ (A+ C) ∗ (B +D))

Metrics analogous to those described above are calculated for the label "No Event", and the weighted
average (averaging the support-weighted mean per label) and macro average (averaging the un-
weighted mean per label) are also provided.

Value

A list of 3 objects:

1. "CM", the confusion matrix between observed and predicted counts.

2. "stats", a data.frame with the classification evaluation statistics.

3. "cls", a data.frame with the predicted probabilities, predicted labels and true labels of the
categorical target variable.

Author(s)

Barbara Tarantino <barbara.tarantino@unipv.it>

References

Sammut, C. & Webb, G. I. (eds.) (2017). Encyclopedia of Machine Learning and Data Mining.
New York: Springer. ISBN: 978-1-4899-7685-7

Examples

# Load Sachs data (pkc)
ig<- sachs$graph
data<- sachs$pkc
data<- transformData(data)$data
group<- sachs$group

#...with train-test (0.5-0.5) samples
set.seed(123)
train<- sample(1:nrow(data), 0.5*nrow(data))

#...with a categorical (as.factor) variable (C=2)
outcome<- factor(ifelse(group == 0, "control", "case"))
res<- SEMml(ig, data[train, ], outcome[train], algo="rf")
pred<- predict(res, data[-train, ], outcome[-train], verbose=TRUE)

yobs<- outcome[-train]
yhat<- pred$Yhat[ ,levels(outcome)]
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cls<- classificationReport(yobs, yhat)
cls$CM
cls$stats
head(cls$cls)

#...with predicted probabiliy density plots, if C=2
cls<- classificationReport(yobs, yhat, verbose=TRUE)

#...with a categorical (as.factor) variable (C=3)
group[1:400]<- 2; table(group)
outcome<- factor(ifelse(group == 0, "control",
ifelse(group == 1, "case1", "case2")))
res<- SEMml(ig, data[train, ], outcome[train], algo="rf")
pred<- predict(res, data[-train, ], outcome[-train], verbose=TRUE)

yobs<- outcome[-train]
yhat<- pred$Yhat[ ,levels(outcome)]
cls<- classificationReport(yobs, yhat)
cls$CM
cls$stats
head(cls$cls)

crossValidation Cross-validation of linear SEM, ML or DNN training models

Description

The function does a R-repeated K-fold cross-validation of SEMrun(), SEMml() or SEMdnn() models.

Usage

crossValidation(
models,
outcome = NULL,
K = 5,
R = 1,
metric = NULL,
ncores = 2,
verbose = FALSE,
...

)

Arguments

models A named list of model fitting objects from SEMrun(), SEMml() or SEMdnn()
function, with default group=NULL (for SEMrun() or outcome=NULL (for SEMml()
or SEMdnn()).
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outcome A character vector (as.factor) of labels for a categorical output (target). If NULL
(default), the categorical output (target) will not be considered.

K A numerical value indicating the number of k-fold to create.

R A numerical value indicating the number of repetitions for the k-fold cross-
validation.

metric A character value indicating the metric for boxplots display, i.e.: "amse", "r2",
or "srmr", for continuous outcomes, and "f1", "accuracy" or "mcc", for a cate-
gorical outcome (default = NULL).

ncores Number of cpu cores (default = 2).

verbose Output to console boxplots and summarized results (default = FALSE).

... Currently ignored.

Details

Easy-to-use model comparison and selection of SEM, ML or DNN models, in which several models
are defined and compared in a R-repeated K-fold cross-validation procedure. The winner model is
selected by reporting the mean predicted performances across all runs, as outline in de Rooij &
Weeda (2020).

Value

A list of 2 objects: (1) "stats", a list with performance evaluation metrics. If outcome=FALSE, mean
and (0.025;0.0975)-quantiles of amse, r2, and srmr across folds and repetitions are reported; if
outcome=TRUE, mean and (0.025;0.0975)-quantiles of f1, accuracy and mcc from confusion matrix
averaged across all repetitions are reported; and (2) "PE", a data.frame of repeated cross-validation
results.

Author(s)

Mario Grassi <mario.grassi@unipv.it>

References

de Rooij M, Weeda W. Cross-Validation: A Method Every Psychologist Should Know. Advances in
Methods and Practices in Psychological Science. 2020;3(2):248-263. doi:10.1177/2515245919898466

Examples

# Load Amyotrophic Lateral Sclerosis (ALS)
ig<- alsData$graph
data<- alsData$exprs
data<- transformData(data)$data
group<- alsData$group

# ... with continuous outcomes

res1 <- SEMml(ig, data, algo="tree")
res2 <- SEMml(ig, data, algo="rf")
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res3 <- SEMml(ig, data, algo="xgb")
res4 <- SEMml(ig, data, algo="nn")

models <- list(res1,res2,res3,res4)
names(models) <- c("tree","rf","xgb","nn")

res.cv1 <- crossValidation(models, outcome=NULL, K=5, R=10)
print(res.cv1$stats)

#... with a categorical (as.factor) outcome

outcome <- factor(ifelse(group == 0, "control", "case"))
res.cv2 <- crossValidation(models, outcome=outcome, K=5, R=10)
print(res.cv2$stats)

getConnectionWeight Connection Weight method for neural network variable importance

Description

The function computes the matrix multiplications of hidden weight matrices (Wx,...,Wy), i.e., the
product of the raw input-hidden and hidden-output connection weights between each input and
output neuron and sums the products across all hidden neurons, as proposed by Olden (2004).

Usage

getConnectionWeight(object, thr = NULL, verbose = FALSE, ...)

Arguments

object A neural network object from SEMdnn() function.

thr A numeric value [0-1] indicating the threshold to apply to the Olden’s connec-
tion weights to color the graph. If thr = NULL (default), the threshold is set to
thr = 0.5*max(abs(connection weights)).

verbose A logical value. If FALSE (default), the processed graph will not be plotted to
screen.

... Currently ignored.

Details

In a neural network, the connections between inputs and outputs are represented by the connec-
tion weights between the neurons. The importance values assigned to each input variable using the
Olden method are in units that are based directly on the summed product of the connection weights.
The amount and direction of the link weights largely determine the proportional contributions of
the input variables to the neural network’s prediction output. Input variables with larger connec-
tion weights indicate higher intensities of signal transfer and are therefore more important in the
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prediction process. Positive connection weights represent excitatory effects on neurons (raising the
intensity of the incoming signal) and increase the value of the predicted response, while negative
connection weights represent inhibitory effects on neurons (reducing the intensity of the incom-
ing signal). The weights that change sign (e.g., positive to negative) between the input-hidden to
hidden-output layers would have a cancelling effect, and vice versa weights with the same sign
would have a synergistic effect. Note that in order to map the connection weights to the DAG
edges, the element-wise product, W*A is performed between the Olden’s weights entered in a ma-
trix, W(pxp) and the binary (1,0) adjacency matrix, A(pxp) of the input DAG.

Value

A list of three object: (i) est: a data.frame including the connections together with their connection
weights(W), (ii) gest: if the outcome vector is given, a data.frame of connection weights for out-
come lavels, and (iii) dag: DAG with colored edges/nodes. If abs(W) > thr and W < 0, the edge
W > 0, the edge is activated and it is highlighted in red. If the outcome vector is given, nodes with
absolute connection weights summed over the outcome levels, i.e. sum(abs(W[outcome levels])) >
thr, will be highlighted in pink.

Author(s)

Mario Grassi <mario.grassi@unipv.it>

References

Olden, Julian & Jackson, Donald. (2002). Illuminating the "black box": A randomization approach
for understanding variable contributions in artificial neural networks. Ecological Modelling. 154.
135-150. 10.1016/S0304-3800(02)00064-9.

Olden, Julian. (2004). An accurate comparison of methods for quantifying variable importance
in artificial neural networks using simulated data. Ecological Modelling. 178. 10.1016/S0304-
3800(04)00156-5.

Examples

if (torch::torch_is_installed()){

# load ALS data
ig<- alsData$graph
data<- alsData$exprs
data<- transformData(data)$data

#ncores<- parallel::detectCores(logical = FALSE)
dnn0<- SEMdnn(ig, data, outcome = NULL, thr = NULL,
#hidden = 5*K, link = "selu", bias = TRUE,
hidden = c(10,10,10), link = "selu", bias = TRUE,
validation = 0, epochs = 32, ncores = 2)

cw05<- getConnectionWeight(dnn0, thr = 0.5, verbose = TRUE)
table(E(cw05$dag)$color)
}
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getGradientWeight Gradient Weight method for neural network variable importance

Description

The function computes the gradient matrix, i.e., the average conditional effects of the input variables
w.r.t the neural network model, as discussed by Amesöder et al (2024).

Usage

getGradientWeight(object, thr = NULL, verbose = FALSE, ...)

Arguments

object A neural network object from SEMdnn() function.
thr A numeric value [0-1] indicating the threshold to apply to the gradient weights to

color the graph. If thr = NULL (default), the threshold is set to thr = 0.5*max(abs(gradient
weights)).

verbose A logical value. If FALSE (default), the processed graph will not be plotted to
screen.

... Currently ignored.

Details

The partial derivatives method calculates the derivative (the gradient) of each output variable (y)
with respect to each input variable (x) evaluated at each observation (i=1,...,n) of the training data.
The contribution of each input is evaluated in terms of both magnitude taking into account not only
the connection weights and activation functions, but also the values of each observation of the input
variables. Once the gradients for each variable and observation, a summary gradient is calculated
by averaging over the observation units. Finally, the average weights are entered into a matrix,
W(pxp) and the element-wise product with the binary (1,0) adjacency matrix, A(pxp) of the input
DAG, W*A maps the weights on the DAG edges. Note that the operations required to compute
partial derivatives are time consuming compared to other methods such as Olden’s (connection
weight). The computational time increases with the size of the neural network or the size of the
data. Therefore, the function uses a progress bar to check the progress of the gradient evaluation
per observation.

Value

A list of three object: (i) est: a data.frame including the connections together with their gradient
weights, (ii) gest: if the outcome vector is given, a data.frame of gradient weights for outcome
lavels, and (iii) dag: DAG with colored edges/nodes. If abs(grad) > thr and grad < 0, the edge is
inhibited and it is highlighted in blue; otherwise, if abs(grad) > thr and grad > 0, the edge is activated
and it is highlighted in red. If the outcome vector is given, nodes with absolute connection weights
summed over the outcome levels, i.e. sum(abs(grad[outcome levels])) > thr, will be highlighted in
pink.
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Author(s)

Mario Grassi <mario.grassi@unipv.it>

References

Amesöder, C., Hartig, F. and Pichler, M. (2024), ‘cito’: an R package for training neural networks
using ‘torch’. Ecography, 2024: e07143. https://doi.org/10.1111/ecog.07143

Examples

if (torch::torch_is_installed()){

# load ALS data
ig<- alsData$graph
data<- alsData$exprs
data<- transformData(data)$data

#ncores<- parallel::detectCores(logical = FALSE)
dnn0<- SEMdnn(ig, data, outcome = NULL, thr = NULL,
#hidden = 5*K, link = "selu", bias = TRUE,
hidden = c(10,10,10), link = "selu", bias = TRUE,
validation = 0, epochs = 32, ncores = 2)

gw05<- getGradientWeight(dnn0, thr = 0.5, verbose = TRUE)
table(E(gw05$dag)$color)
}

getShapleyR2 Compute variable importance using Shapley (R2) values

Description

This function computes variable contributions for individual predictions using the Shapley values, a
method from cooperative game theory where the variable values of an observation work together to
achieve the prediction. In addition, to make variable contributions easily explainable, the function
decomposes the entire model R-Squared (R2 or the coefficient of determination) into variable-level
attributions of the variance (Redell, 2019).

Usage

getShapleyR2(
object,
newdata,
newoutcome = NULL,
thr = NULL,
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ncores = 2,
verbose = FALSE,
...

)

Arguments

object A model fitting object from SEMml(), SEMdnn() or SEMrun() functions.

newdata A matrix containing new data with rows corresponding to subjects, and columns
to variables.

newoutcome A new character vector (as.factor) of labels for a categorical output (target)(default
= NULL).

thr A numeric value [0-1] indicating the threshold to apply to the signed Shapley
R2 to color the graph. If thr = NULL (default), the threshold is set to thr =
0.5*max(abs(signed Shapley R2 values)).

ncores number of cpu cores (default = 2)

verbose A logical value. If FALSE (default), the processed graph will not be plotted to
screen.

... Currently ignored.

Details

Lundberg & Lee (2017) proposed a unified approach to both local explainability (the variable con-
tribution of a single variable within a single sample) and global explainability (the variable contri-
bution of the entire model) by applying the fair distribution of payoffs principles from game theory
put forth by Shapley (1953). Now called SHAP (SHapley Additive exPlanations), this suggested
framework explains predictions of ML models, where input variables take the place of players, and
their contribution to a particular prediction is measured using Shapley values. Successively, Redell
(2019) presented a metric that combines the additive property of Shapley values with the robustness
of the R-squared (R2) of Gelman (2018) to produce a variance decomposition that accurately cap-
tures the contribution of each variable to the explanatory power of the model. We also use the signed
R2, in order to denote the regulation of connections in line with a linear SEM, since the edges in
the DAG indicate node regulation (activation, if positive; inhibition, if negative). This has been re-
covered for each edge using sign(beta), i.e., the sign of the coefficient estimates from a linear model
(lm) fitting of the output node on the input nodes, as suggested by Joseph (2019). Additionally,
in order to ascertain the local significance of node regulation with respect to the DAG, the Shap-
ley decomposition of the R-squared values for each outcome node (r=1,...,R) can be computed by
summing the ShapleyR2 indices of their input nodes. Finally, It should be noted that the operations
required to compute kernel SHAP values are inherently time-consuming, with the computational
time increasing in proportion to the number of predictor variables and the number of observations.
Therefore, the function uses a progress bar to check the progress of the kernel SHAP evaluation per
observation.

Value

A list od four object: (i) shapx: the list of individual Shapley values of predictors variables per each
response variable; (ii) est: a data.frame including the connections together with their signed Shapley
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R-squred values; (iii) gest: if the outcome vector is given, a data.frame of signed Shapley R-squred
values per outcome levels; and (iv) dag: DAG with colored edges/nodes. If abs(sign_r2) > thr and
sign_r2 < 0, the edge is inhibited and it is highlighted in blue; otherwise, if abs(sign_r2) > thr and
sign_r2 > 0, the edge is activated and it is highlighted in red. If the outcome vector is given, nodes
with absolute connection weights summed over the outcome levels, i.e. sum(abs(sign_r2[outcome
levels])) > thr, will be highlighted in pink.

Author(s)

Mario Grassi <mario.grassi@unipv.it>

References

Shapley, L. (1953) A Value for n-Person Games. In: Kuhn, H. and Tucker, A., Eds., Contributions
to the Theory of Games II, Princeton University Press, Princeton, 307-317.

Scott M. Lundberg, Su-In Lee. (2017). A unified approach to interpreting model predictions.
In Proceedings of the 31st International Conference on Neural Information Processing Systems
(NIPS’17). Curran Associates Inc., Red Hook, NY, USA, 4768–4777.

Redell, N. (2019). Shapley Decomposition of R-Squared in Machine Learning Models. arXiv:
Methodology.

Gelman, A., Goodrich, B., Gabry, J., & Vehtari, A. (2019). R-squared for Bayesian Regression
Models. The American Statistician, 73(3), 307–309.

Joseph, A. Parametric inference with universal function approximators (2019). Bank of England
working papers 784, Bank of England, revised 22 Jul 2020.

Examples

# load ALS data
ig<- alsData$graph
data<- alsData$exprs
data<- transformData(data)$data

#...with train-test (0.5-0.5) samples
set.seed(123)
train<- sample(1:nrow(data), 0.5*nrow(data))

rf0<- SEMml(ig, data[train, ], algo="rf")

res<- getShapleyR2(rf0, data[-train, ], thr=NULL, verbose=TRUE)
table(E(res$dag)$color)

# shapley R2 per response variables
R2<- abs(res$est[,4])
Y<- res$est[,1]
R2Y<- aggregate(R2~Y,data=data.frame(R2,Y),FUN="sum");R2Y
r2<- mean(R2Y$R2);r2
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getSignificanceTest Test for the significance of neural network inputs

Description

The function computes a formal test for the significance of neural network input nodes, based on a
linear relationship between the observed output and the predicted values of an input variable, when
all other input variables are maintained at their mean values, as proposed by Mohammadi (2018).

Usage

getSignificanceTest(object, thr = NULL, verbose = FALSE, ...)

Arguments

object A neural network object from SEMdnn() function.

thr A numeric value [0-1] indicating the threshold to apply to the t-test values to
color the graph. If thr = NULL (default), the threshold is set to thr = 0.5*max(abs(t-
test values)).

verbose A logical value. If FALSE (default), the processed graph will not be plotted to
screen.

... Currently ignored.

Details

A neural network with an arbitrary architecture is trained, taking into account factors like the num-
ber of neurons, hidden layers, and activation function. Then, network’s output is simulated to get the
predicted values of the output variable, fixing all the inputs (with the exception of one nonconstant
input variable) at their mean values. Subsequently, the network’s predictions are stored after this
process is completed for each input variable. As last step, multiple regression analysis is applied
node-wise (mapping the input DAG) on the observed output nodes with the predicted values of the
input nodes as explanatory variables. The statistical significance of the coefficients is evaluated with
the standard t-student critical values, which represent the importance of the input variables.

Value

A list of three object: (i) est: a data.frame including the connections together with their t_test
weights, (ii) gest: if the outcome vector is given, a data.frame of t_test weights for outcome lavels,
and (iii) dag: DAG with colored edges/nodes. If abs(t_test) > thr and t_test < 0, the edge is inhibited
and it is highlighted in blue; otherwise, if abs(t_test) > thr and t_test > 0, the edge is activated and
it is highlighted in red. If the outcome vector is given, nodes with absolute connection weights
summed over the outcome levels, i.e. sum(abs(t_test[outcome levels])) > thr, will be highlighted in
pink.

Author(s)

Mario Grassi <mario.grassi@unipv.it>
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References

S. Mohammadi. A new test for the significance of neural network inputs. Neurocomputing 2018;
273: 304-322.

Examples

if (torch::torch_is_installed()){

# load ALS data
ig<- alsData$graph
data<- alsData$exprs
data<- transformData(data)$data

#ncores<- parallel::detectCores(logical = FALSE)
dnn0 <- SEMdnn(ig, data, outcome = NULL, thr = NULL,
#hidden = 5*K, link = "selu", bias = TRUE,
hidden = c(10,10,10), link = "selu", bias = TRUE,
validation = 0, epochs = 32, ncores = 2)

st05<- getSignificanceTest(dnn0, thr = 2, verbose = TRUE)
table(E(st05$dag)$color)
}

getVariableImportance Variable importance for Machine Learning models

Description

Extraction of ML variable importance measures.

Usage

getVariableImportance(object, thr = NULL, verbose = FALSE, ...)

Arguments

object A model fitting object from SEMml() function.

thr A numeric value [0-1] indicating the threshold to apply to the variable impor-
tance values to color the graph. If thr = NULL (default), the threshold is set to
thr = 0.5*max(abs(variable importance values)).

verbose A logical value. If FALSE (default), the processed graph will not be plotted to
screen.

... Currently ignored.
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Details

The variable (predictor) importance will be computed considering: (i) the absolute value of the z-
statistic of the model parameters for "sem"; (ii) the variable importance measures from the rpart,
importance or xgb.importance functions for "tree", "rf" or "xgb"; and (iii) the Olden’s connection
weights for "nn" or "dnn" methods.

Value

A list of three object: (i) est: a data.frame including the connections together with their variable
importances (VarImp)), (ii) gest: if the outcome vector is given, a data.frame of VarImp for outcome
lavels, and (iii) dag: DAG with colored edges/nodes. If abs(VarImp) > thr will be highlighted in red
(VarImp > 0) or blue (VarImp < 0). If the outcome vector is given, nodes with variable importances
summed over the outcome levels, i.e. sum(VarImp[outcome levels])) > thr, will be highlighted in
pink.

Author(s)

Mario Grassi <mario.grassi@unipv.it>

References

add references

Examples

# load ALS data
ig<- alsData$graph
data<- alsData$exprs
data<- transformData(data)$data

#ncores<- parallel::detectCores(logical = FALSE)
ml0<- SEMml(ig, data, outcome=NULL, algo="rf", ncores=2)

vi05<- getVariableImportance(ml0, thr=0.5, verbose=TRUE)
table(E(vi05$dag)$color)

mapGraph Map additional variables (nodes) to a graph object

Description

The function insert additional nodes to a graph object. Among the node types, additional source
or sink nodes can be added. Regarding the former, source nodes can represent: (i) data variables;
(ii) a group variable; (iii) Latent Variables (LV). For the latter, sink nodes represent the levels of a
categorical outcome variable and are linked with all graph nodes.’ Moreover, mapGraph() can also
create a new graph object starting from a compact symbolic formula.
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Usage

mapGraph(graph, type, C = NULL, LV = NULL, f = NULL, verbose = FALSE, ...)

Arguments

graph An igraph object.

type A character value specifying the type of mapping. Five types can be specified.

1. "source", source nodes are linked to sink nodes of the graph.
2. "group", an additional group source node is added to the graph.
3. "outcome", additional c=1,2,...,C sink nodes are added to the graph.
4. "LV", additional latent variable (LV) source nodes are added to the graph.
5. "clusterLV", a series of clusters for the data are computed and a different

LV source node is added separately for each cluster.

C the number of labels of the categorical sink node (default = NULL).

LV The number of LV source nodes to add to the graph. This argument needs to
be specified when type = "LV". When type = "clusterLV" the LV number is
defined internally equal to the number of clusters. (default = NULL).

f A formula object (default = NULL). A new graph object is created according to
the specified formula object.

verbose If TRUE disply the mapped graph (default = FALSE)

... Currently ignored.

Value

mapGraph returns invisibly the graphical object with the mapped node variables.

Author(s)

Mario Grassi <mario.grassi@unipv.it>

Examples

# Load Amyotrophic Lateral Sclerosis (ALS)
ig<- alsData$graph; gplot(ig)

# ... map source nodes to sink nodes of ALS graph
ig1 <- mapGraph(ig, type = "source"); gplot(ig1, l="dot")

# ... map group source node to ALS graph
ig2 <- mapGraph(ig, type = "group"); gplot(ig2, l="fdp")

# ... map outcome sink (C=2) to ALS graph
ig3 <- mapGraph(ig, type = "outcome", C=2); gplot(ig3, l="fdp")

# ... map LV source nodes to ALS graph
ig4 <- mapGraph(ig, type = "LV", LV = 3); gplot(ig4, l="fdp")
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# ... map LV source nodes to the cluster nodes of ALS graph
ig5 <- mapGraph(ig, type = "clusterLV"); gplot(ig5, l="dot")

# ... create a new graph with the formula variables
formula <- as.formula("z4747 ~ z1432 + z5603 + z5630")
ig6 <- mapGraph(f=formula); gplot(ig6)

nplot Create a plot for a neural network model

Description

The function draws a neural network plot as a neural interpretation diagram using with the plotnet
function of the NeuralNetTools R package.

Usage

nplot(dnn.fit, bias = FALSE, ...)

Arguments

dnn.fit A neural network model from cito R package.

bias A logical value, indicating whether to draw biases in the layers (default = FALSE).

... Currently ignored.

Details

The induced subgraph of the input graph mapped on data variables. Based on the estimated con-
nection weights, if the connection weight W > 0, the connection is activated and it is highlighted in
red; if W < 0, the connection is inhibited and it is highlighted in blue.

Value

The function invisibly returns the graphical object representing the neural network architecture
designed by NeuralNetTools.

Author(s)

Mario Grassi <mario.grassi@unipv.it>

References

Beck, M.W. 2018. NeuralNetTools: Visualization and Analysis Tools for Neural Networks. Journal
of Statistical Software. 85(11):1-20.
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Examples

if (torch::torch_is_installed()){

# load ALS data
ig<- alsData$graph
data<- alsData$exprs
data<- transformData(data)$data

#ncores<- parallel::detectCores(logical = FALSE)
dnn0 <- SEMdnn(ig, data, train=1:nrow(data), grad = FALSE,
#hidden = 5*K, link = "selu", bias = TRUE,
hidden = c(10, 10, 10), link = "selu", bias =TRUE,
validation = 0, epochs = 32, ncores = 2)

for (j in 1:length(dnn0$model)) {
nnj <- dnn0$model[[j]][[1]]
nplot(nnj)
Sys.sleep(5)

}
}

predict.DNN SEM-based out-of-sample prediction using layer-wise DNN

Description

Predict method for DNN objects.

Usage

## S3 method for class 'DNN'
predict(object, newdata, newoutcome = NULL, verbose = FALSE, ...)

Arguments

object A model fitting object from SEMdnn() function.

newdata A matrix containing new data with rows corresponding to subjects, and columns
to variables.

newoutcome A new character vector (as.factor) of labels for a categorical output (target) (de-
fault = NULL).

verbose Print predicted out-of-sample MSE values (default = FALSE).

... Currently ignored.
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Value

A list of three objects:

1. "PE", vector of the amse = average MSE over all (sink and mediators) graph nodes; r2 = 1 -
amse; and srmr= Standardized Root Means Square Residual between the out-of-bag correla-
tion matrix and the model correlation matrix.

2. "mse", vector of the Mean Squared Error (MSE) for each out-of-bag prediction of the sink and
mediators graph nodes.

3. "Yhat", the matrix of continuous predicted values of graph nodes (excluding source nodes)
based on out-of-bag samples.

Author(s)

Mario Grassi <mario.grassi@unipv.it>

Examples

if (torch::torch_is_installed()){

# Load Amyotrophic Lateral Sclerosis (ALS)
ig<- alsData$graph
data<- alsData$exprs
data<- transformData(data)$data
group<- alsData$group

#...with train-test (0.5-0.5) samples
set.seed(123)
train<- sample(1:nrow(data), 0.5*nrow(data))
#ncores<- parallel::detectCores(logical = FALSE)

start<- Sys.time()
dnn0 <- SEMdnn(ig, data[train, ],
# hidden = 5*K, link = "selu", bias = TRUE,
hidden = c(10,10,10), link = "selu", bias = TRUE,
validation = 0, epochs = 32, ncores = 2)
end<- Sys.time()
print(end-start)
pred.dnn <- predict(dnn0, data[-train, ], verbose=TRUE)

# SEMrun vs. SEMdnn MSE comparison
sem0 <- SEMrun(ig, data[train, ], algo="ricf", n_rep=0)
pred.sem <- predict(sem0, data[-train,], verbose=TRUE)

#...with a categorical (as.factor) outcome
outcome <- factor(ifelse(group == 0, "control", "case")); table(outcome)

start<- Sys.time()
dnn1 <- SEMdnn(ig, data[train, ], outcome[train],
#hidden = 5*K, link = "selu", bias = TRUE,
hidden = c(10,10,10), link = "selu", bias = TRUE,



predict.ML 19

validation = 0, epochs = 32, ncores = 2)
end<- Sys.time()
print(end-start)

pred <- predict(dnn1, data[-train, ], outcome[-train], verbose=TRUE)
yhat <- pred$Yhat[ ,levels(outcome)]; head(yhat)
yobs <- outcome[-train]; head(yobs)
classificationReport(yobs, yhat, verbose=TRUE)$stats
}

predict.ML SEM-based out-of-sample prediction using node-wise ML

Description

Predict method for ML objects.

Usage

## S3 method for class 'ML'
predict(object, newdata, newoutcome = NULL, ncores = 2, verbose = FALSE, ...)

Arguments

object A model fitting object from SEMml() function.

newdata A matrix containing new data with rows corresponding to subjects, and columns
to variables.

newoutcome A new character vector (as.factor) of labels for a categorical output (target)(default
= NULL).

ncores number of cpu cores (default = 2)

verbose Print predicted out-of-sample MSE values (default = FALSE).

... Currently ignored.

Value

A list of 3 objects:

1. "PE", vector of the amse = average MSE over all (sink and mediators) graph nodes; r2 = 1 -
amse; and srmr= Standardized Root Means Squared Residual between the out-of-bag correla-
tion matrix and the model correlation matrix.

2. "mse", vector of the Mean Squared Error (MSE) for each out-of-bag prediction of the sink and
mediators graph nodes.

3. "Yhat", the matrix of continuous predicted values of graph nodes (excluding source nodes)
based on out-of-bag samples.
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Author(s)

Mario Grassi <mario.grassi@unipv.it>

Examples

# Load Amyotrophic Lateral Sclerosis (ALS)
ig<- alsData$graph
data<- alsData$exprs
data<- transformData(data)$data
group<- alsData$group

#...with train-test (0.5-0.5) samples
set.seed(123)
train<- sample(1:nrow(data), 0.5*nrow(data))

start<- Sys.time()
# ... tree
res1<- SEMml(ig, data[train, ], algo="tree")
mse1<- predict(res1, data[-train, ], verbose=TRUE)

# ... rf
res2<- SEMml(ig, data[train, ], algo="rf")
mse2<- predict(res2, data[-train, ], verbose=TRUE)

# ... xgb
res3<- SEMml(ig, data[train, ], algo="xgb")
mse3<- predict(res3, data[-train, ], verbose=TRUE)

# ... nn
res4<- SEMml(ig, data[train, ], algo="nn")
mse4<- predict(res4, data[-train, ], verbose=TRUE)
end<- Sys.time()
print(end-start)

#...with a categorical (as.factor) outcome
outcome <- factor(ifelse(group == 0, "control", "case")); table(outcome)

res5 <- SEMml(ig, data[train, ], outcome[train], algo="tree")
pred <- predict(res5, data[-train, ], outcome[-train], verbose=TRUE)
yhat <- pred$Yhat[ ,levels(outcome)]; head(yhat)
yobs <- outcome[-train]; head(yobs)
classificationReport(yobs, yhat, verbose=TRUE)$stats

predict.SEM SEM-based out-of-sample prediction using layer-wise ordering
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Description

Given the values of (observed) x-variables in a SEM, this function may be used to predict the values
of (observed) y-variables. The predictive procedure consists of two steps: (1) construction of the
topological layer (TL) ordering of the input graph; (2) prediction of the node y values in a layer,
where the nodes included in the previous layers act as predictors x.

Usage

## S3 method for class 'SEM'
predict(object, newdata, newoutcome = NULL, verbose = FALSE, ...)

Arguments

object An object, as that created by the function SEMrun() with the argument group
set to the default group = NULL.

newdata A matrix with new data, with rows corresponding to subjects, and columns to
variables.

newoutcome A new character vector (as.factor) of labels for a categorical output (target)(default
= NULL).

verbose A logical value. If FALSE (default), the processed graph will not be plotted to
screen.

... Currently ignored.

Details

The function first creates a layer-based structure of the input graph. Then, a SEM-based predictive
approach (Rooij et al., 2022) is used to produce predictions while accounting for the graph structure
based on the topological layer (j=1,. . . ,L) of the input graph. In each iteration, the response (output)
variables, y are the nodes in the j=1,...,(L-1) layer and the predictor (input) variables, x are the nodes
belonging to the successive, (j+1),...,L layers. Predictions (for y given x) are based on the (joint y
and x) model-implied variance-covariance (Sigma) matrix and mean vector (Mu) of the fitted SEM,
and the standard expression for the conditional mean of a multivariate normal distribution. Thus,
the layer structure described in the SEM is taken into consideration, which differs from ordinary
least squares (OLS) regression.

Value

A list of 3 objects:

1. "PE", vector of the amse = average MSE over all (sink and mediators) graph nodes; r2 = 1 -
amse; and srmr= Standardized Root Means Square Residual between the out-of-bag correla-
tion matrix and the model correlation matrix.

2. "mse", vector of the Mean Squared Error (MSE) for each out-of-bag prediction of the sink and
mediators graph nodes.

3. "Yhat", the matrix of continuous predicted values of graph nodes (excluding source nodes)
based on out-of-bag samples.
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Author(s)

Mario Grassi <mario.grassi@unipv.it>

References

de Rooij M, Karch JD, Fokkema M, Bakk Z, Pratiwi BC, and Kelderman H (2023). SEM-Based
Out-of-Sample Predictions, Structural Equation Modeling: A Multidisciplinary Journal, 30:1, 132-
148 <https://doi.org/10.1080/10705511.2022.2061494>

Grassi M, Palluzzi F, Tarantino B (2022). SEMgraph: An R Package for Causal Network Analysis
of High-Throughput Data with Structural Equation Models. Bioinformatics, 38 (20), 4829–4830
<https://doi.org/10.1093/bioinformatics/btac567>

Examples

# load ALS data
data<- alsData$exprs
data<- transformData(data)$data
group<- alsData$group

#...with train-test (0.5-0.5) samples
set.seed(123)
train<- sample(1:nrow(data), 0.5*nrow(data))

# predictors, source+mediator; outcomes, mediator+sink

ig <- alsData$graph; gplot(ig)
sem0 <- SEMrun(ig, data[train,], algo="ricf", n_rep=0)
pred0 <- predict(sem0, newdata=data[-train,], verbose=TRUE)

# predictors, source+mediator+group; outcomes, source+mediator+sink

ig1 <- mapGraph(ig, type = "group"); gplot(ig1)
data1 <- cbind(group, data); head(data1[,5])
sem1 <- SEMrun(ig1, data1[train,], algo="ricf", n_rep=0)
pred1 <- predict(sem1, newdata= data1[-train,], verbose=TRUE)

# predictors, source nodes; outcomes, sink nodes

ig2 <- mapGraph(ig, type = "source"); gplot(ig2)
sem2 <- SEMrun(ig2, data[train,], algo="ricf", n_rep=0)
pred2 <- predict(sem2, newdata=data[-train,], verbose=TRUE)

SEMdnn Layer-wise SEM train with a Deep Neural Netwok (DNN)
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Description

The function builds the topological layer (TL) ordering of the input graph to fit a series of Deep
Neural Networks (DNN) models, where the nodes in one layer act as response variables (output) y
and the nodes in the sucessive layers act as predictors (input) x. Each fit uses the dnn function of
the cito R package, based on the deep learning framework ’torch’.

The torch package is native to R, so it’s computationally efficient and the installation is very simple,
as there is no need to install Python or any other API, and DNNs can be trained on CPU, GPU and
MacOS GPUs. In order to install torch please follow these steps:

install.packages("torch")

library(torch)

install_torch(reinstall = TRUE)

For setup GPU or if you have problems installing torch package, check out the installation help
from the torch developer.

Usage

SEMdnn(
graph,
data,
outcome = NULL,
thr = NULL,
nboot = 0,
hidden = c(10L, 10L, 10L),
link = "relu",
bias = TRUE,
dropout = 0,
loss = "mse",
validation = 0,
lambda = 0,
alpha = 0.5,
optimizer = "adam",
lr = 0.01,
epochs = 100,
device = "cpu",
ncores = 2,
early_stopping = FALSE,
verbose = FALSE,
...

)

Arguments

graph An igraph object.
data A matrix with rows corresponding to subjects, and columns to graph nodes (vari-

ables).
outcome A character vector (as.factor) of labels for a categorical output (target). If NULL

(default), the categorical output (target) will not be considered.

https://torch.mlverse.org/docs/articles/installation.html/
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thr A numeric value [0-1] indicating the threshold to apply to the Olden’s connec-
tion weights to color the graph. If thr = NULL (default), the threshold is set to
thr = 0.5*max(abs(connection weights)).

nboot number of bootstrap samples that will be used to compute cheap (lower, upper)
CIs for all input variable weights. As a default, nboot = 0.

hidden hidden units in layers; the number of layers corresponds with the length of the
hidden units. As a default, hidden = c(10L, 10L, 10L).

link A character value describing the activation function to use, which might be a
single length or be a vector with many activation functions assigned to each
layer. As a default, link = "selu".

bias A logical vector, indicating whether to employ biases in the layers, which can
be either vectors of logicals for each layer (number of hidden layers + 1 (final
layer)) or of length one. As a default, bias = TRUE.

dropout A numerical value for the dropout rate, which is the probability that a node will
be excluded from training. As a default, dropout = 0.

loss A character value specifying the at which the network should be optimized. For
regression problem used in SEMdnn(), the user can specify: (a) "mse" (mean
squared error), "mae" (mean absolute error), or "gaussian" (normal likelihood).
As a default, loss = "mse".

validation A numerical value indicating the proportion of the data set that should be used
as a validation set (randomly selected, default = 0).

lambda A numerical value indicating the strength of the regularization, λ(L1 + L2) for
lambda penalty (default = 0).

alpha A numerical vector to add L1/L2 regularization into the training. Set the alpha
parameter for each layer to (1-α)L1 + αL2. It must fall between 0 and 1 (default
= 0.5).

optimizer A character value indicating the optimizer to use for training the network. The
user can specify: "adam" (ADAM algorithm), "adagrad" (adaptive gradient al-
gorithm), "rmsprop" (root mean squared propagation), "rprop” (resilient back-
propagation), "sgd" (stochastic gradient descent). As a default, optimizer =
"adam".

lr A numerical value indicating the learning rate given to the optimizer (default =
0.01).

epochs A numerical value indicating the epochs during which the training is conducted
(default = 100).

device A character value describing the CPU/GPU device ("cpu", "cuda", "mps") on
which the neural network should be trained on. As a default, device = "cpu".

ncores number of cpu cores (default = 2)

early_stopping If set to integer, training will terminate if the loss increases over a predetermined
number of consecutive epochs and apply validation loss when available. Default
is FALSE, no early stopping is applied.

verbose The training loss values of the DNN model are displayed as output, comparing
the training, validation and baseline in the last epoch (default = FALSE).

... Currently ignored.
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Details

By mapping data onto the input graph, SEMdnn() creates a set of DNN models based on the topolog-
ical layer (j=1,. . . ,L) structure of the input graph. In each iteration, the response (output) variables,
y are the nodes in the j=1,...,(L-1) layer and the predictor (input) variables, x are the nodes belonging
to the successive, (j+1),...,L layers. Each DNN model is a Multilayer Perceptron (MLP) network,
where every neuron node is connected to every other neuron node in the hidden layer above and
every other hidden layer below. Each neuron’s value is determined by calculating a weighted sum-
mation of its outputs from the hidden layer before it, and then applying an activation function. The
calculated value of every neuron is used as the input for the neurons in the layer below it, until the
output layer is reached.

If boot != 0, the function will implement the cheap bootstrapping proposed by Lam (2002) to gen-
erate uncertainties, i.e. 90 for DNN parameters. Bootstrapping can be enabled by setting a small
number (1 to 10) of bootstrap samples. Note, however, that the computation can be time-consuming
for massive DNNs, even with cheap bootstrapping!

Value

An S3 object of class "DNN" is returned. It is a list of 5 objects:

1. "fit", a list of DNN model objects, including: the estimated covariance matrix (Sigma), the
estimated model errors (Psi), the fitting indices (fitIdx), and the parameterEstimates, i.e., the
data.frame of Olden’s connection weights.

2. "gest", the data.frame of estimated connection weights (parameterEstimates) of outcome lev-
els, if outcome != NULL.

3. "model", a list of all j=1,...,(L-1) fitted MLP network models.

4. "graph", the induced DAG of the input graph mapped on data variables. The DAG is colored
based on the Olden’s connection weights (W), if abs(W) > thr and W < 0, the edge is inhibited
and it is highlighted in blue; otherwise, if abs(W) > thr and W > 0, the edge is activated and it
is highlighted in red. If the outcome vector is given, nodes with absolute connection weights
summed over the outcome levels, i.e. sum(abs(W[outcome levels])) > thr, will be highlighted
in pink.

5. "data", input data subset mapping graph nodes.

Author(s)

Mario Grassi <mario.grassi@unipv.it>

References

Amesöder, C., Hartig, F. and Pichler, M. (2024), ‘cito’: an R package for training neural networks
using ‘torch’. Ecography, 2024: e07143. https://doi.org/10.1111/ecog.07143

Grassi M, Palluzzi F, Tarantino B (2022). SEMgraph: An R Package for Causal Network Analysis
of High-Throughput Data with Structural Equation Models. Bioinformatics, 38 (20), 4829–4830.
<https://doi.org/10.1093/bioinformatics/btac567>

Lam, H. (2022). Cheap bootstrap for input uncertainty quantification. WSC ’22: Proceedings of
the Winter Simulation Conference, 2318 - 2329.
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Examples

if (torch::torch_is_installed()){

# load ALS data
ig<- alsData$graph
data<- alsData$exprs
data<- transformData(data)$data
group<- alsData$group

#...with train-test (0.5-0.5) samples
set.seed(123)
train<- sample(1:nrow(data), 0.5*nrow(data))
#ncores<- parallel::detectCores(logical = FALSE)

start<- Sys.time()
dnn0<- SEMdnn(ig, data[train, ], thr = NULL,
#hidden = 5*K, link = "selu", bias = TRUE,
hidden = c(10,10,10), link = "selu", bias = TRUE,
validation = 0, epochs = 32, ncores = 2)
end<- Sys.time()
print(end-start)

#str(dnn0, max.level=2)
dnn0$fit$fitIdx
parameterEstimates(dnn0$fit)
gplot(dnn0$graph)
table(E(dnn0$graph)$color)

#...with source nodes -> graph layer structure -> sink nodes

#Topological layer (TL) ordering
K<- c(12, 5, 3, 2, 1, 8)
K<- rev(K[-c(1,length(K))]);K

ig1<- mapGraph(ig, type="source"); gplot(ig1)

start<- Sys.time()
dnn1<- SEMdnn(ig1, data[train, ], thr = NULL,
hidden = 5*K, link = "selu", bias = TRUE,
validation = 0, epochs = 32, ncores = 2)
end<- Sys.time()
print(end-start)

#Visualization of the neural network structure
nn1 <- dnn1$model[[1]][[1]]
nplot(nn1, bias=FALSE)

#str(dnn1, max.level=2)
dnn1$fit$fitIdx
mean(dnn1$fit$Psi)
parameterEstimates(dnn1$fit)
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gplot(dnn1$graph)
table(E(dnn1$graph)$color)

#...with a categorical outcome, a train set (0.5) and a validation set (0.2)
outcome<- factor(ifelse(group == 0, "control", "case")); table(outcome)

start<- Sys.time()
dnn2<- SEMdnn(ig, data[train, ], outcome[train], thr = NULL,
#hidden = 5*K, link = "selu", bias = TRUE,
hidden = c(10,10,10), link = "selu", bias = TRUE,
validation = 0.2, epochs = 32, ncores = 2)
end<- Sys.time()
print(end-start)

#str(dnn2, max.level=2)
dnn2$fit$fitIdx
parameterEstimates(dnn2$fit)
gplot(dnn2$graph)
table(E(dnn2$graph)$color)
table(V(dnn2$graph)$color)
}

SEMml Nodewise SEM train using Machine Learning (ML)

Description

The function converts a graph to a collection of nodewise-based models: each mediator or sink
variable can be expressed as a function of its parents. Based on the assumed type of relationship,
i.e. linear or non-linear, SEMml() fits a ML model to each node (variable) with non-zero incoming
connectivity. The model fitting is performed equation-by equation (r=1,...,R) times, where R is the
number of mediators and sink nodes.

Usage

SEMml(
graph,
data,
outcome = NULL,
algo = "sem",
thr = NULL,
nboot = 0,
ncores = 2,
verbose = FALSE,
...

)
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Arguments

graph An igraph object.

data A matrix with rows corresponding to subjects, and columns to graph nodes (vari-
ables).

outcome A character vector (as.fctor) of labels for a categorical output (target). If NULL
(default), the categorical output (target) will not be considered.

algo ML method used for nodewise-network predictions. Six algorithms can be spec-
ified:

• algo="sem" (default) for a linear SEM, see SEMrun.
• algo="tree" for a CART model, see rpart.
• algo="rf" for a random forest model, see ranger.
• algo="xgb" for a XGBoost model, see xgboost.
• algo="nn" for a small neural network model (1 hidden layer and 10 nodes),

see nnet.
• algo="dnn" for a large neural network model (1 hidden layers and 1000

nodes), see dnn.

thr A numeric value [0-1] indicating the threshold to apply to the variable impor-
tance values to color the graph. If thr = NULL (default), the threshold is set to
thr = 0.5*max(abs(variable importance values)).

nboot number of bootstrap samples that will be used to compute cheap (lower, upper)
CIs for all input variable weights. As a default, nboot = 0.

ncores number of cpu cores (default = 2)

verbose A logical value. If FALSE (default), the processed graph will not be plotted to
screen.

... Currently ignored.

Details

By mapping data onto the input graph, SEMml() creates a set of nodewise-based models based on
the directed links, i.e., a set of edges pointing in the same direction, between two nodes in the input
graph that are causally relevant to each other. The mediator or sink variables can be characterized in
detail as functions of their parents. An ML model (sem, tree, rf, xgb, nn, dnn) can then be fitted to
each variable with non-zero inbound connectivity. With R representing the number of mediators and
sink nodes in the network, the model fitting process is performed equation-by-equation (r=1,...,R)
times.

If boot != 0, the function will implement the cheap bootstrapping proposed by Lam (2002) to gen-
erate uncertainties, i.e. 90 for ML parameters. Bootstrapping can be enabled by setting a small
number (1 to 10) of bootstrap samples. Note, however, that the computation can be time-consuming
for massive MLs, even with cheap bootstrapping!

Value

An S3 object of class "ML" is returned. It is a list of 5 objects:
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1. "fit", a list of ML model objects, including: the estimated covariance matrix (Sigma), the
estimated model errors (Psi), the fitting indices (fitIdx), and the parameterEstimates, i.e., the
variable importance measures (VarImp).

2. "gest", the data.frame of variable importances (parameterEstimates) of outcome levels, if out-
come != NULL.

3. "model", a list of all the fitted non-linear nodewise-based models (tree, rf, xgb, nn or dnn).

4. "graph", the induced DAG of the input graph mapped on data variables. The DAG with col-
ored edge/nodes based on the variable importance measures, i.e., if abs(VarImp) > thr will
be highlighted in red (VarImp > 0) or blue (VarImp < 0). If the outcome vector is given,
nodes with variable importances summed over the outcome levels, i.e. sum(VarImp[outcome
levels])) > thr, will be highlighted in pink.

5. "data", input data subset mapping graph nodes.

Using the default algo="sem", the usual output of a linear nodewise-based, SEM, see SEMrun
(algo="cggm"), will be returned.

Author(s)

Mario Grassi <mario.grassi@unipv.it>

References

Grassi M., Palluzzi F., and Tarantino B. (2022). SEMgraph: An R Package for Causal Network
Analysis of High-Throughput Data with Structural Equation Models. Bioinformatics, 38 (20),
4829–4830 <https://doi.org/10.1093/bioinformatics/btac567>

Breiman L., Friedman J.H., Olshen R.A., and Stone, C.J. (1984) Classification and Regression
Trees. Chapman and Hall/CRC.

Breiman L. (2001). Random Forests, Machine Learning 45(1), 5-32.

Chen T., and Guestrin C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

Ripley B.D. (1996). Pattern Recognition and Neural Networks. Cambridge University Press.

Lam, H. (2022). Cheap bootstrap for input uncertainty quantification. WSC ’22: Proceedings of
the Winter Simulation Conference, 2318 - 2329.

Examples

# Load Amyotrophic Lateral Sclerosis (ALS)
ig<- alsData$graph
data<- alsData$exprs
data<- transformData(data)$data
group<- alsData$group

#...with train-test (0.5-0.5) samples
set.seed(123)
train<- sample(1:nrow(data), 0.5*nrow(data))

start<- Sys.time()
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# ... tree
res1<- SEMml(ig, data[train, ], algo="tree")

# ... rf
res2<- SEMml(ig, data[train, ], algo="rf")

# ... xgb
res3<- SEMml(ig, data[train, ], algo="xgb")

# ... nn
res4<- SEMml(ig, data[train, ], algo="nn")

end<- Sys.time()
print(end-start)

#visualizaation of the colored dag for algo="nn"
gplot(res4$graph, l="dot", main="nn")

#Comparison of fitting indices (in train data)
res1$fit$fitIdx #tree
res2$fit$fitIdx #rf
res3$fit$fitIdx #xgb
res4$fit$fitIdx #nn

#Comparison of parameter estimates (in train data)
parameterEstimates(res1$fit) #tree
parameterEstimates(res2$fit) #rf
parameterEstimates(res3$fit) #xgb
parameterEstimates(res4$fit) #nn

#Comparison of VarImp (in train data)
table(E(res1$graph)$color) #tree
table(E(res2$graph)$color) #rf
table(E(res3$graph)$color) #xgb
table(E(res4$graph)$color) #nn

#Comparison of AMSE, R2, SRMR (in test data)
print(predict(res1, data[-train, ])$PE) #tree
print(predict(res2, data[-train, ])$PE) #rf
print(predict(res3, data[-train, ])$PE) #xgb
print(predict(res4, data[-train, ])$PE) #nn

#...with a categorical (as.factor) outcome
outcome <- factor(ifelse(group == 0, "control", "case")); table(outcome)

res5 <- SEMml(ig, data[train, ], outcome[train], algo="tree")
gplot(res5$graph)
table(E(res5$graph)$color)
table(V(res5$graph)$color)

pred <- predict(res5, data[-train, ], outcome[-train], verbose=TRUE)
yhat <- pred$Yhat[ ,levels(outcome)]; head(yhat)
yobs <- outcome[-train]; head(yobs)
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classificationReport(yobs, yhat, verbose=TRUE)$stats
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