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2 Align.Matrix

Align.Matrix Factor Alignment

Description

The function is to align a factor solution according to an order matrix. The output matrix is a
(p+m+1) by m matrix, where the first p rows are factor loadings of the best match, the next m rows
are factor correlations of the best match, and the last row contains the sums of squared deviations
for the best match and the second best match. The difference between the best match and the
second best match could be considered as a confidence on the success of the aligning procedure (a
computationally more efficient method exists for some conditions; whenever this occurs we only
report that of the best match).

Usage

Align.Matrix(Order.Matrix, Input.Matrix, Weight.Matrix=NULL)

Arguments

Order.Matrix A p by m matrix: p is the number of manifest variables and m is the number of
latent factors

Input.Matrix A (p+m) by m matrix, the first p rows are factor loadings, the last m rows are
factor correlations

Weight.Matrix A p by m matrix that assigns weight to the order matrix: NULL (default)

Details

Align.Matrix is an R function to reflect and interchange columns of Input.Matrix to match those of
Order.Matrix. Because it considers all possible permutations of columns of Input.Matrix,the best
match in terms of the smallest sum of squared deviations between these two matrices can always be
found. It may be slow if there are too many factors.

Author(s)

Guangjian Zhang

Examples

#Order Matrix
A <- matrix(c(0.8,0.7,0,0,0,0,0.8,0.7),nrow=4,ncol=2)

#Input.Matrix
B <-matrix(c(0,0,-0.8,-0.7,1,-0.2,0.8,0.7,0,0,-0.2,1),nrow=6,ncol=2)

Align.Matrix(Order.Matrix=A, Input.Matrix=B)
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BFI228 Ordinal Data of the Big Five Inventory (BFI)

Description

The BFI228 is part of the study on personality and relationship satisfaction (Luo, 2005). The
participants were 228 undergraduate students at a large public university in the US. The data were
participants’ self ratings on the 44 items of the Big Five Inventory (John, Donahue, & Kentle,
1991). These items are Likert variables: disagree strongly (1), disagree a little (2), neither agree nor
disagree (3), agree a little (4), and agree strongly (5).

Usage

data(BFI228)

Format

The format is a n by p matrix of ordinal variables, where n is the number of participants (228) and
p is the number of manifest variables (44).

Details

The variables were ordered such that indicators of the same factor are grouped together. Note that
reverse-coded items are denoted by ’_R’.

V01 to V08 are variables for the factor extraversion: talkative, reserved_R, fullenergy, enthusiastic,
quiet_R, assertive, shy_R, and outgoing.

V09 to V17 are variables for the factor agreeableness: findfault_R, helpful, quarrels_R, forgiving,
trusting, cold_R, considerate, rude_R, and cooperative.

V18 to V26 are variables for the factor conscientiousness are: thorough, careless_R, reliable, disor-
ganized_R, lazy_R, persevere, efficient, plans, and distracted_R.

V27 to V34 are variables for the factor neuroticism: blue, relaxed_R, tense, worries, emostable_R,
moody, calm_R, and nervous.

V35 to V44 are variables for the factor openness: ideas, curious, ingenious, imagination, inventive,
artistic, routine_R, reflect, nonartistic, and sophisticated.

References

John, O. P., Donahue, E. M., & Kentle, R. L. (1991). The Big Five Inventory versions 4a and 54.
Berkeley, CA: University of California,Berkeley, Institute of Personality and Social Research.

Luo, S. (2005): unpublished study on personality traits and relationship satisfaction.
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CPAI537 Composite Scores of the Chinese Personality Assessment Inventory
(CPAI)

Description

CPAI537 is part of a big survey study on martial satisfaction (Luo et al., 2008). The participants
were 537 urban Chinese couples in the first year of their marriage. Included here are 28 composite
scores of the CPAI (Cheung et al., 1996) for the 537 wives.

Usage

data(CPAI537)

Format

The format is a n by p matrix, where n is the number of participants (537) and p is the number of
manifest variables (28).

Details

The column names stand for the following variable names:
Nov - Novelty
Div - Diversity
Dit - Diverse thinking
LEA - Leadership
L_A - Logical orientation vs affective orientation
AES - Aesthetics
E_I - Extroversion-Introversion
ENT - Enterprise
RES - Responsibility
EMO - Emotionality
I_S - Inferiority vs. self-acceptance
PRA - Practical mindedness
O_P - Optimistic vs. pessimistic
MET - Meticulousness
FAC - Face
I_E - Internal control vs. external control
FAM - Family orientation
DEF - Defensiveness
G_M - Graciousness vs. meanness
INT - Interpersonal tolerance
S_S - Self orientation vs. social orientation
V_S - Veraciousness vs. slickness
T_M - Traditionalism vs. modernity
REN - Relationship orientation
SOC - Social sensitivity
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DIS - Discipline
HAR - Harmony
T_E - Thrift vs. extravagance

References

Cheung, F. M., Leung, K., Fan, R., Song, W., Zhang, J., & Zhang, J. (1996). Development of
the Chinese Personality Assessment Inventory (CPAI). Journal of Cross-Cultural Psychology, 27
,181-199.

Luo, S., Chen, H., Yue, G., Zhang, G., Zhaoyang, R., & Xu, D. (2008). Predicting marital satisfac-
tion from self, partner, and couple characteristics: Is it me, you, or us? Journal of Personality, 76
,1231-1266.

efa Exploratory Factor Analysis

Description

Performs exploratory factor analysis under a variety of conditions. In particular, it provides standard
errors for rotated factor loadings and factor correlations for normal variables, nonnormal continuous
variables, and Likert scale variables with and without model error.

Usage

efa(x=NULL, factors=NULL, covmat=NULL, acm=NULL, n.obs=NULL, dist='normal',
fm='ols', mtest = TRUE, rtype='oblique', rotation='CF-varimax', normalize=FALSE,
maxit=1000, geomin.delta=NULL, MTarget=NULL, MWeight=NULL,PhiWeight = NULL,
PhiTarget = NULL, useorder=FALSE, se='sandwich', LConfid=c(0.95,0.90),
CItype='pse', Ib=2000, mnames=NULL, fnames=NULL, merror='YES', wxt2 = 1e0,
I.cr=NULL, PowerParam = c(0.05,0.3))

Arguments

x The raw data: an n-by-p matrix where n is number of participants and p is the
number of manifest variables.

factors The number of factors m: specified by the researcher; the default one is the
Kaiser rule which is the number of eigenvalues of covmat larger than one.

covmat A p-by-p manifest variable correlation matrix.
acm A p(p-1)/2 by p(p-1)/2 asymptotic covariance matrix of correlations: specified

by the researcher.
n.obs The number of participants used in calculating the correlation matrix. This is

not required when the raw data (x) is provided.
dist Manifest variable distributions: ’normal’(default), ’continuous’, ’ordinal’ and

’ts’. ’normal’ stands for normal distribution. ’continuous’ stands for nonnormal
continuous distributions. ’ordinal’ stands for Likert scale variable. ’ts’ stands
for distributions for time-series data.
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fm Factor extraction methods: ’ols’ (default) and ’ml’

mtest Whether the test statistic is computed: TRUE (default) and FALSE

rtype Factor rotation types: ’oblique’ (default) and ’orthogonal’. Factors are corre-
lated in ’oblique’ rotation, and they are uncorrelated in ’orthogonal’ rotation.

rotation Factor rotation criteria: ’CF-varimax’ (default), ’CF-quartimax’, ’CF-equamax’,
’CF-facparsim’, ’CF-parsimax’,’target’, and ’geomin’. These rotation criteria
can be used in both orthogonal and oblique rotation. In addition, a fifth rotation
criterion ’xtarget’(extended target) rotation is available for oblique rotation. The
extended target rotation allows targets to be specified on both factor loadings and
factor correlations.

normalize Row standardization in factor rotation: FALSE (default) and TRUE (Kaiser stan-
dardization).

maxit Maximum number of iterations in factor rotation: 1000 (default)

geomin.delta The controlling parameter in Geomin rotation, 0.01 as the default value.

MTarget The p-by-m target matrix for the factor loading matrix in target rotation and
xtarget rotation.

MWeight The p-by-m weight matrix for the factor loading matrix in target rotation and
xtarget rotation. Optional

PhiWeight The m-by-m target matrix for the factor correlation matrix in xtarget rotation.
Optional

PhiTarget The m-by-m weight matrix for the factor correlation matrix in xtarget rotation

useorder Whether an order matrix is used for factor alignment: FALSE (default) and
TRUE

se Methods for estimating standard errors for rotated factor loadings and factor
correlations, ’information’, ’sandwich’, ’bootstrap’, and ’jackknife’. For normal
variables and ml estimation, the default method is ’information’. For all other
situations, the default method is ’sandwich’. In addition, the ’bootstrap’ and
’jackknife’ methods require raw data.

LConfid Confidence levels for model parameters (factor loadings and factor correlations)
and RMSEA, respectively: c(.95, .90) as default.

CItype Type of confidence intervals: ’pse’ (default) or ’percentile’. CIs with ’pse’ are
based on point and standard error estimates; CIs with ’percentile’ are based on
bootstrap percentiles.

Ib The number of bootstrap samples when se=’bootstrap’: 2000 (default)

mnames Names of p manifest variables: Null (default)

fnames Names of m factors: Null (default)

merror Model error: ’YES’ (default) or ’NO’. In general, we expect our model is a
parsimonious representation to the complex real world. Thus, some amount of
model error is unavailable. When merror = ’NO’, the efa model is assumed to
fit perfectly in the population.

wxt2 The relative weight for factor correlations in ’xtarget’ (extended target) rotation:
1 (default)
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I.cr a n.cr-by-2 matrix for specifying correlated residuals: each row corresponds to
such a residual, the two columns specify the row and the column of the residual.

PowerParam Power analysis related parameters: (0.05, 0.30) as default. The alpha level of
the tests is 0.05, and a salient loading is at least 0.30.

Details

The function efa conducts exploratory factor analysis (EFA) (Gorsuch, 1983) in a variety of con-
ditions. Data can be normal variables, non-normal continuous variables, and Likert variables. Our
implementation of EFA includes three major steps: factor extraction, factor rotation, and estimating
standard errors for rotated factor loadings and factor correlations.

Factors can be extracted using two methods: maximum likelihood estimation (ml) and ordinary
least squares (ols). These factor loading matrices are referred to as unrotated factor loading matri-
ces. The ml unrotated factor loading matrix is obtained using factanal. The ols unrotated factor
loading matrix is obtained using optim where the residual sum of squares is minimized. The start-
ing values for communalities are squared multiple correlations (SMCs). The test statistic and model
fit measures are provided.

Seven rotation criteria (CF-varimax, CF-quartimax, ’CF-equamax’, ’CF-facparsim’, ’CF-parsimax’,geomin,
and target) are available for both orthogonal rotation and oblique rotation (Browne, 2001). Ad-
ditionally, a new rotation criteria, xtarget, can be specified for oblique rotation. The factor ro-
tation methods are achieved by calling functions in the package GPArotation. CF-varimax, CF-
quartimax, CF-equamax, CF-facparsim, and CF-parsimax are members of the Crawford-Fugersion
family (Crawford, & Ferguson, 1970) whose kappa is 1/p, 0, m/2p, 1, and (m-1)/(p+m-2) respec-
tively where p is the number of manifest variables and m is the number of factors. CF-varimax and
CF-quartimax are equivalent to varimax and quartimax rotation in orthogonal rotation. The equiva-
lence does not carry over to oblique rotation, however. Although varimax and quartimax often fail
to give satisfactory results in oblique rotation, CF-varimax and CF-quartimax do give satisfactory
results in many oblique rotation applications. CF-quartimax rotation is equivalent to direct oblimin
rotation for oblique rotation. The target matrix in target rotation can either be a fully specified
matrix or a partially specified matrix. Target rotation can be considered as a procedure which is
located between EFA and CFA. In CFA, if a factor loading is specified to be zero, its value is fixed
to be zero; if target rotation, if a factor loading is specified to be zero, it is made to zero as close
as possible. In xtarget rotation, target values can be specified on both factor loadings and factor
correlations.

Confidence intervals for rotated factor loadings and correlation matrices are constructed using point
estimates and their standard error estimates. Standard errors for rotated factor loadings and factor
correlations are computed using a sandwich method (Ogasawara, 1998; Yuan, Marshall, & Bentler,
2002), which generalizes the augmented information method (Jennrich, 1974). The sandwich stan-
dard error are consistent estimates even when the data distribution is non-normal and model error
exists in the population. Sandwich standard error estimates require a consistent estimate of the
asymptotic covariance matrix of manifest variable correlations. Such estimates are described in
Browne & Shapiro (1986) for non-normal continuous variables and in Yuan & Schuster (2013) for
Likert variables. Estimation of the asymptotic covariance matrix of polychoric correlations is slow
if the EFA model involves a large number of Likert variables.

When manifest variables are normally distributed (dist = ’normal’) and model error does not ex-
ist (merror = ’NO’), the sandwich standard errors are equivalent to the usual standard error esti-
mates, which come from the inverse of the information matrix. The information standard error
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estimates in EFA is available CEFA (Browne, Cudeck, Tateneni, & Mels, 2010) and SAS Proc Fac-
tor. Mplus (Muthen & Muthen, 2015) also implemented a version of sandwich standard errors for
EFA, which are robust against non-normal distribution but not model error. Sandwich standard er-
rors computed in efa tend to be larger than those computed in Mplus. Sandwich standard errors for
non-normal distributions and with model error are equivalent to the infinitesimal jackknife standard
errors described in Zhang, Preacher, & Jennrich (2012). Two computationally intensive standard
error methods (se=’bootstrap’ and se=’jackknife’) are also implemented. More details on standard
error estimation methods in EFA are documented in Zhang (2014).

Value

An object of class efa, which includes:

details summary information about the analysis such as number of manifest variables,
number of factors, sample size, factor extraction method, factor rotation method,
target values for target rotation and xtarget rotation, and levels for confidence
intervals.

unrotated the unrotated factor loading matrix

fdiscrepancy discrepancy function value used in factor extraction

convergence whether the factor extraction stage converged successfully, successful conver-
gence indicated by 0

heywood the number of heywood cases

i.boundary.cr the number of boundary estimates of residual correlations

nq the number of model parameters

compsi Eigenvalues, SMCs (starting values for communality), communality, and unique
variance

R0 the sample correlation matrix

Phat the model implied correlation matrix

Psi Unique variances (and Residual Correlations)

Residual the residual correlation matrix

rotated the rotated factor loadings

Phi the rotated factor correlations

rotatedse the standard errors for rotated factor loadings

Phise the standard errors for rotated factor correlations

Psise the standard errors for Unique variances (and Residual Correlations)

ModelF the test statistic and measures of model fit

rotatedlow the lower bound of confidence levels for factor loadings

rotatedupper the upper bound of confidence levels for factor loadings

Philow the lower bound of confidence levels for factor correlations

Phiupper the lower bound of confidence levels for factor correlations

Psilow the lower bound of confidence levels for unique variances (and residual correla-
tions)
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Psiupper the upper bound of confidence levels for unique variances (and residual correla-
tions)

N0Lambda The required sample sizes for signficant factor loadings (H0: lambda=0)

N1Lambda The required sample sizes for signficant factor loadings (H0: lambda=Salient)

N0Phi The required sample sizes for signficant factor correlations (H0: rho=0)

N1Phi The required sample sizes for signficant factor correlations (H0: rho=salient)

Author(s)

Guangjian Zhang, Ge Jiang, Minami Hattori, and Lauren Trichtinger

References

Browne, M. W. (2001). An overview of analytic rotation in exploratory factor analysis. Multivariate
Behavioral Research, 36, 111-150.

Browne, M. W., Cudeck, R., Tateneni, K., & Mels, G. (2010). CEFA 3.04: Comprehensive Ex-
ploratory Factor Analysis. Retrieved from http://faculty.psy.ohio-state.edu/browne/.

Browne, M. W., & Shapiro, A. (1986). The asymptotic covariance matrix of sample correlation
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Crawford, C. B., & Ferguson, G. A. (1970). A general rotation criterion and its use in orthogonal
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Examples

#Examples using the data sets included in the packages:

data("CPAI537") # Chinese personality assessment inventory (N = 537)

#1a) normal, ml, oblique, CF-varimax, information, merror='NO'
#res1 <- efa(x=CPAI537,factors=4, fm='ml')
#res1

#1b) confidence intervals: normal, ml, oblique, CF-varimax, information, merror='NO'
#res1$rotatedlow # lower bound for 95 percent confidence intervals for factor loadings
#res1$rotatedupper # upper bound for 95 percent confidence intervals for factor loadings
#res1$Philow # lower bound for 95 percent confidence intervals for factor correlations
#res1$Phiupper # upper bound for 95 percent confidence intervals for factor correlations

#2) continuous, ml, oblique, CF-quartimax, sandwich, merror='YES'
#efa(x=CPAI537, factors=4, dist='continuous',fm='ml',rotation='CF-quartimax', merror='YES')

#3) continuous, ml, oblique, CF-equamax, sandwich, merror='YES'
#efa(x = CPAI537, factors = 4, dist = 'continuous',
#fm = 'ml', rotation = 'CF-equamax', merror ='YES')

#4) continuous, ml, oblique, CF-facparism, sandwich, merror='YES'
#efa(x = CPAI537, factors = 4, fm = 'ml',
#dist = 'continuous', rotation = 'CF-facparsim', merror='YES')

#5)continuous, ml, orthogonal, CF-parsimax, sandwich, merror='YES'
#efa(x = CPAI537, factors = 4, fm = 'ml', rtype = 'orthogonal',
#dist = 'continuous', rotation = 'CF-parsimax', merror = 'YES')

#6) continuous, ols, orthogonal, geomin, sandwich, merror='Yes'
#efa(x=CPAI537, factors=4, dist='continuous',
#rtype= 'orthogonal',rotation='geomin', merror='YES')

#7) ordinal, ols, oblique, CF-varimax, sandwich, merror='Yes'
#data("BFI228") # Big-five inventory (N = 228)
# For ordinal data, estimating SE with the sandwich method
# can take time with a dataset with 44 variables
#reduced2 <- BFI228[,1:17] # extracting 17 variables corresponding to the first 2 factors
#efa(x=reduced2, factors=2, dist='ordinal', merror='YES')

#8) continuous, ml, oblique, Cf-varimax, jackknife
#efa(x=CPAI537,factors=4, dist='continuous',fm='ml', merror='YES', se= 'jackknife')

#9) extracting the test statistic
#res2 <-efa(x=CPAI537,factors=4)
#res2
#res2$ModelF$f.stat

#10) extended target rotation, ml
# # The data come from Engle et al. (1999) on memory and intelligence.
# datcor <- matrix(c(1.00, 0.51, 0.47, 0.35, 0.37, 0.38, 0.28, 0.34,



efa 11

# 0.51, 1.00, 0.32, 0.35, 0.35, 0.31, 0.24, 0.28,
# 0.47, 0.32, 1.00, 0.43, 0.31, 0.31, 0.29, 0.32,
# 0.35, 0.35, 0.43, 1.00, 0.54, 0.44, 0.19, 0.27,
# 0.37, 0.35, 0.31, 0.54, 1.00, 0.59, 0.05, 0.19,
# 0.38, 0.31, 0.31, 0.44, 0.59, 1.00, 0.20, 0.21,
# 0.28, 0.24, 0.29, 0.19, 0.05, 0.20, 1.00, 0.68,
# 0.34, 0.28, 0.32, 0.27, 0.19, 0.21, 0.68, 1.00),
# ncol = 8)
#
# # Prepare target and weight matrices for lambda -------
# MTarget1 <- matrix(c(9, 0, 0,
# 9, 0, 0,
# 9, 0, 0, # 0 corresponds to targets
# 0, 9, 0,
# 0, 9, 0,
# 0, 9, 0,
# 0, 0, 9,
# 0, 0, 9), ncol = 3, byrow = TRUE)
# MWeight1 <- matrix(0, ncol = 3, nrow = 8)
# MWeight1[MTarget1 == 0] <- 1 # 1 corresponds to targets
#
# # Prepare target and weight matrices for phi ---------
# PhiTarget1 <- matrix(c(1, 9, 9,
# 9, 1, 0,
# 9, 0, 1), ncol = 3)
# PhiWeight1 <- matrix(0, ncol = 3, nrow = 3)
# PhiWeight1[PhiTarget1 == 0] <- 1
#
# # Conduct extended target rotation -------------------
# mod.xtarget <- efa(covmat = datcor, factors = 3, n.obs = 133,
# rotation ='xtarget', fm = 'ml', useorder = T,
# MTarget = MTarget1, MWeight = MWeight1,
# PhiTarget = PhiTarget1, PhiWeight = PhiWeight1)
# mod.xtarget
#

#11) EFA with correlated residuals
# The data is a subset of the study reported by Watson Clark & Tellegen, A. (1988).

# xcor <- matrix(c(
# 1.00, 0.37, 0.29, 0.43, -0.07, -0.05, -0.04, -0.01,
# 0.37, 1.00, 0.51, 0.37, -0.03, -0.03, -0.06, -0.03,
# 0.29, 0.51, 1.00, 0.37, -0.03, -0.01, -0.02, -0.04,
# 0.43, 0.37, 0.37, 1.00, -0.03, -0.03, -0.02, -0.01,
# -0.07, -0.03, -0.03, -0.03, 1.00, 0.61, 0.41, 0.32,
# -0.05, -0.03, -0.01, -0.03, 0.61, 1.00, 0.47, 0.38,
# -0.04, -0.06, -0.02, -0.02, 0.41, 0.47, 1.00, 0.47,
# -0.01, -0.03, -0.04, -0.01, 0.32, 0.38, 0.47, 1.00),
# ncol=8)

# n.cr=2
# I.cr = matrix(0,n.cr,2)
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# I.cr[1,1] = 5
# I.cr[1,2] = 6
# I.cr[2,1] = 7
# I.cr[2,2] = 8

# efa (covmat=xcor,factors=2, n.obs=1657, I.cr=I.cr)

efaMR Exploratory Factor Analysis with Multiple Rotations

Description

The function compares EFA solutions from multiple random starts or from multiple rotation criteria.

Usage

efaMR(x=NULL, factors=NULL, covmat=NULL, n.obs=NULL,
dist='normal', fm='ols', rtype='oblique', rotation = 'CF-varimax',
input.A=NULL, additionalRC = NULL,
nstart = 100, compare = 'First', plot = T, cex = .5,
normalize = FALSE, geomin.delta = .01,
MTarget = NULL, MWeight = NULL, PhiTarget = NULL, PhiWeight = NULL,
useorder = FALSE, mnames = NULL, fnames = NULL, wxt2 = 1)

Arguments

x The raw data: an n-by-p matrix where n is number of participants and p is the
number of manifest variables.

factors The number of factors m: specified by a researcher; the default one is the Kaiser
rule which is the number of eigenvalues of covmat larger than one.

covmat A p-by-p manifest variable correlation matrix.

n.obs The number of participants used in calculating the correlation matrix. This is
not required when the raw data (x) is provided.

dist Manifest variable distributions: ’normal’(default), ’continuous’, ’ordinal’ and
’ts’. ’normal’ stands for normal distribution. ’continuous’ stands for nonnormal
continuous distributions. ’ordinal’ stands for Likert scale variable. "ts" stands
for distributions for time-series data.

fm Factor extraction methods: ’ols’ (default) and ’ml’

rtype Factor rotation types: ’oblique’ (default) and ’orthogonal’. Factors are corre-
lated in ’oblique’ rotation, and they are uncorrelated in ’orthogonal’ rotation.

rotation Factor rotation criteria: ’CF-varimax’ (default), ’CF-quartimax’, ’CF-equamax’,
’CF-facparsim’, ’CF-parsimax’,’target’, and ’geomin’. These rotation criteria
can be used in both orthogonal and oblique rotation. In addition, a fifth rotation
criterion ’xtarget’(extended target) rotation is available for oblique rotation. The
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extended target rotation allows targets to be specified on both factor loadings and
factor correlations.

input.A A p-by-m unrotated factor loading matrix. It can replace x or covmat as input
arguments. Only factor rotation will be conducted; factor extraction will not be
conducted.

additionalRC A string of factor extraction methods against which the main rotation is com-
pared. Required only when nstart = 1. See details.

nstart The number random orthogonal starts used, with 100 as the default value. With
nstart = 1, only one random start is used. See details.

compare ’First’ (default) or ’All’: The global solution is compared against all local solu-
tions with ’First’; All solutions are compared with each other with ’All’.

plot Whether a bar graph that shows the number and frequencies of local solutions
or not: TRUE (default) and FALSE.

cex A tuning parameter if the plot is produced: .5 (default)

normalize Row standardization in factor rotation: FALSE (default) and TRUE (Kaiser stan-
dardization).

geomin.delta The controlling parameter in Geomin rotation, 0.01 as the default value.

MTarget The p-by-m target matrix for the factor loading matrix in target rotation or xtar-
get rotation.

MWeight The p-by-m weight matrix for the factor loading matrix in target rotation or
xtarget rotation.

PhiTarget The m-by-m target matrix for the factor correlation matrix in xtarget rotation.

PhiWeight The m-by-m weight matrix for the factor correlation matrix in xtarget rotation.

useorder Whether an order matrix is used for factor alignment: FALSE (default) and
TRUE

mnames Names of p manifest variables: Null (default)

fnames Names of m factors: Null (default)

wxt2 The relative weight for factor correlations in ’xtarget’ (extended target) rotation:
1 (default)

Details

efaMR performs EFA with multiple rotation using random starts.

Geomin rotation, in particular, is known to produce multiple local solutions; the use of random
starts is advised (Hattori, Zhang, & Preacher, 2018).

The p-by-m unrotated factor loading matrix is post-multiplied by an m-by-m random orthogonal
matrices before rotation.

The number of random starts can be specified with the default value of nstart = 100. Bar plot
that represents frequencies of each solution is provided. If multiple solutions are found, they are
compared with each other using congruence coefficient.

If nstart = 1, no random start is used. The solution is compared against solutions using additional
rotation criterion provided by additionalRC.
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For example, with rotation = geomin, additionalRC = c(’CF-varimax’, ’CF-quartimax), the geomin
solution is compared against those with CF-varimax and CF-quartimax.

Estimation of standard errors and construction of confidence intervals are disabled with the function
efaMR(). They are available with a function efa().

Author(s)

Minami Hattori, Guangjian Zhang

References
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Examples

#data("CPAI537") # Chinese personality assessment inventory (N = 537)

# # Example 1: Oblique geomin rotation with 10 random starts
# res1 <- efaMR(CPAI537, factors = 5, fm = 'ml',
# rtype = 'oblique', rotation = 'geomin',
# geomin.delta = .01, nstart = 10)
# res1
# summary(res1)
# res1$MultipleSolutions
# res1$Comparisons

# In practice, we recommend nstart = 100 or more (Hattori, Zhang, & Preacher, 2018).

# Example 2: Oblique geomin rotation (no random starts)
# compared against CF-varimax and CF-quartimax rotation solutions
# res2 <- efaMR(CPAI537, factors = 5, fm = 'ml',
# rtype = 'oblique', rotation = 'geomin',
# additionalRC = c('CF-varimax', 'CF-quartimax'),
# geomin.delta = .01, nstart = 1)
# res2$MultipleSolutions
# res2$Comparisons

# Example 3: Obtaining multiple solutions from the unrotated factor loading matrix as input
# res3 <- efa(CPAI537, factors = 5, fm = 'ml',
# rtype = 'oblique', rotation = 'geomin')
# set.seed(2017)
# res3MR <- efaMR(input.A = res3$unrotated, rtype = 'oblique',
# rotation = 'geomin', geomin.delta = .01)
# res3MR$MultipleSolutions
# res3MR$Comparisons
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ssem Simplifying Factor Strcutral Paths by Factor Rotation: Saturated
Structural Equation Models

Description

This function simplifies factor structural paths by factor rotation. We refer to the method as FSP
or SSEM (saturated structural equation modeling). It re-parameterizes the obliquely rotated factor
correlation matrix such that factors can be either endogenous or exogenous. In comparison, all
factors are exogenous in exploratory factor analysis. Manifest variables can be normal variables,
nonnormal variables, nonnormal continuous variable, Likert scale variables and time series. It
also provides standard errors and confidence intervals for rotated factor loadings and structural
parameters.

Usage

ssem(x=NULL, factors=NULL, exfactors=1, covmat=NULL,
acm=NULL, n.obs=NULL, dist='normal', fm='ml', mtest = TRUE,
rotation='semtarget', normalize=FALSE, maxit=1000, geomin.delta=NULL,
MTarget=NULL, MWeight=NULL, BGWeight = NULL, BGTarget = NULL,
PhiWeight = NULL, PhiTarget = NULL, useorder=TRUE, se='sandwich',
LConfid=c(0.95,0.90), CItype='pse', Ib=2000, mnames=NULL, fnames=NULL,
merror='YES', wxt2 = 1e0)

Arguments

x The raw data: an n-by-p matrix where n is number of participants and p is the
number of manifest variables.

factors The number of factors m: specified by a researcher; the default one is the Kaiser
rule which is the number of eigenvalues of covmat larger than one.

exfactors The number of exogenous factors: 1 (default)

covmat A p-by-p manifest variable correlation matrix.

acm A p(p-1)/2 by p(p-1)/2 asymptotic covariance matrix of correlations: specified
by the researcher.

n.obs The number of participants used in calculating the correlation matrix. This is
not required when the raw data (x) is provided.

dist Manifest variable distributions: ’normal’(default), ’continuous’, ’ordinal’ and
’ts’. ’normal’ stands for normal distribution. ’continuous’ stands for nonnormal
continuous distributions. ’ordinal’ stands for Likert scale variable. ’ts’ stands
for distributions for time-series data.

fm Factor extraction methods: ’ml’ (default) and ’ols’

mtest Whether the test statistic is computed: TRUE (default) and FALSE
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rotation Factor rotation criteria: ’semtarget’ (default),’CF-varimax’, ’CF-quartimax’, ’CF-
equamax’, ’CF-parsimax’, ’CF-facparsim’,’target’, and ’geomin’. These rota-
tion criteria can be used in both orthogonal and oblique rotation. In addition, a
fifth rotation criterion ’xtarget’(extended target) rotation is available for oblique
rotation. The ssem target rotation allows targets to be specified on both factor
loadings and factor structural parameters.

normalize Row standardization in factor rotation: FALSE (default) and TRUE (Kaiser stan-
dardization).

maxit Maximum number of iterations in factor rotation: 1000 (default)

geomin.delta The controlling parameter in Geomin rotation, 0.01 as the default value.

MTarget The p-by-m target matrix for the factor loading matrix in target rotation and
semtarget rotation.

MWeight The p-by-m weight matrix for the factor loading matrix in target rotation and
semtarget rotation. Optional

BGWeight The m1-by-m weight matrix for the [Beta | Gamma] matrix in semtarget rotation
(see details) Optional

BGTarget The m1-by-m target matrix for the [Beta | Gamma] matrix in semtarget rotation
where m1 is the number of endogenous factors (see details)

PhiWeight The m2-by-m2 target matrix for the exogenous factor correlation matrix in sem-
target rotation.Optional

PhiTarget The m2-by-m2 weight matrix for the exogenous factor correlation matrix in
semtarget rotation

useorder Whether an order matrix is used for factor alignment: TRUE (default) and
FALSE

se Methods for estimating standard errors for rotated factor loadings and factor cor-
relations, ’sandwich’ (default),’information’, ’bootstrap’, and ’jackknife’. The
’bootstrap’ and ’jackknife’ methods require raw data.

LConfid Confidence levels for model parameters (rotated factor loadings and structural
parameters) and RMSEA, respectively: c(.95, .90) as default.

CItype Type of confidence intervals: ’pse’ (default) or ’percentile’. CIs with ’pse’ are
based on point and standard error estimates; CIs with ’percentile’ are based on
bootstrap percentiles.

Ib The Number of bootstrap samples when se=’bootstrap’: 2000 (default)

mnames Names of p manifest variables: Null (default)

fnames Names of m factors: Null (default)

merror Model error: ’YES’ (default) or ’NO’. In general, we expect our model is a
parsimonious representation to the complex real world. Thus, some amount of
model error is unavailable. When merror = ’NO’, the ssem model is assumed to
fit perfectly in the population.

wxt2 The relative weight for structural parameters in ’semtarget’ rotation: 1 (default)



ssem 17

Details

The function ssem conducts saturated structural equation modeling (ssem) in a variety of conditions.
Data can be normal variables, non-normal continuous variables, and Likert variables. Our imple-
mentation of SSEM includes three major steps: factor extraction, factor rotation, and estimating
standard errors for rotated factor loadings and factor correlations.

Factors can be extracted using two methods: maximum likelihood estimation (ml) and ordinary
least squares (ols). These factor loading matrices are referred to as unrotated factor loading matri-
ces. The ml unrotated factor loading matrix is obtained using factanal. The ols unrotated factor
loading matrix is obtained using optim where the residual sum of squares is minimized. The start-
ing values for communalities are squared multiple correlations (SMCs). The test statistic and model
fit measures are provided.

Eight rotation criteria (semtarget, CF-varimax, CF-quartimax, CF-equamax, CF-parsimax, CF-
facparsim, target, and geomin) are available for oblique rotation (Browne, 2001). Additionally, a
new rotation criteria, ssemtarget, can be specified for oblique rotation. The factor rotation methods
are achieved by calling functions in the package GPArotation. CF-varimax, CF-quartimax, CF-
equamax, CF-parsimax, and CF-facparsim are members of the Crawford-Fugersion family (Craw-
ford, & Ferguson, 1970) whose kappa = 1/p and kappa = 0, respectively. The target matrix in target
rotation can either be a fully specified matrix or a partially specified matrix. Target rotation can be
considered as a procedure which is located between EFA and CFA. In CFA, if a factor loading is
specified to be zero, its value is fixed to be zero; if target rotation, if a factor loading is specified to
be zero, it is made to zero as close as possible. In xtarget rotation, target values can be specified
on both factor loadings and factor correlations. In ssemtarget, target values can be specified for the
[Beta | Gamma] matrix where Beta is the regression weights of the endogenous factors on itself and
the Gamma is the regression weights of the endogenous factors on the exogenous factors.

Confidence intervals for rotated factor loadings and correlation matrices are constructed using point
estimates and their standard error estimates. Standard errors for rotated factor loadings and factor
correlations are computed using a sandwich method (Ogasawara, 1998; Yuan, Marshall, & Bentler,
2002), which generalizes the augmented information method (Jennrich, 1974). The sandwich stan-
dard error are consistent estimates even when the data distribution is non-normal and model error
exists in the population. Sandwich standard error estimates require a consistent estimate of the
asymptotic covariance matrix of manifest variable correlations. Such estimates are described in
Browne & Shapiro (1986) for non-normal continuous variables and in Yuan & Schuster (2013) for
Likert variables. Estimation of the asymptotic covariance matrix of polychoric correlations is slow
if the EFA model involves a large number of Likert variables.

When manifest variables are normally distributed (dist = ’normal’) and model error does not ex-
ist (merror = ’NO’), the sandwich standard errors are equivalent to the usual standard error esti-
mates, which come from the inverse of the information matrix. The information standard error
estimates in EFA is available CEFA (Browne, Cudeck, Tateneni, & Mels, 2010) and SAS Proc Fac-
tor. Mplus (Muthen & Muthen, 2015) also implemented a version of sandwich standard errors for
EFA, which are robust against non-normal distribution but not model error. Sandwich standard er-
rors computed in efa tend to be larger than those computed in Mplus. Sandwich standard errors for
non-normal distributions and with model error are equivalent to the infinitesimal jackknife standard
errors described in Zhang, Preacher, & Jennrich (2012). Two computationally intensive standard
error methods (se=’bootstrap’ and se=’jackknife’) are also implemented. More details on standard
error estimation methods in EFA are documented in Zhang (2014).
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Value

An object of class ssem, which includes:

details summary information about the analysis such as number of manifest variables,
number of factors, number of endogenous factors, number of exogenous factors,
sample size, distribution, factor extraction method, factor rotation method, target
values for target rotation, xtarget rotation and ssemtarget rotation, and levels for
confidence intervals.

unrotated the unrotated factor loading matrix

fdiscrepancy discrepancy function value used in factor extraction

convergence whether the factor extraction stage converged successfully, successful conver-
gence indicated by 0

heywood the number of heywood cases

nq the number of effective parameters

compsi contains eigenvalues, SMCs, communalities, and unique variances

R0 the sample correlation matrix

Phat the model implied correlation matrix

Residual the residual correlation matrix

rotated the rotated factor loadings

Phi the rotated factor correlations

BG the [Beta | Gamma] latent regression coefficients

psi the endogenous residuals

Phi.xi the exogenous correlation

rotatedse the standard errors for rotated factor loadings

Phise the standard errors for rotated factor correlations

BGse the standard errors for the [Beta | Gamma] latent regression coefficients

psise the standard errors for the endogenous residuals

Phi.xise the standard errors for the exogenous correlation

ModelF the test statistic and measures of model fit

rotatedlow the lower bound of confidence levels for factor loadings

rotatedupper the upper bound of confidence levels for factor loadings

Philow the lower bound of confidence levels for factor correlations

Phiupper the lower bound of confidence levels for factor correlations

BGlower the lower bound of the [Beta | Gamma] latent regression coefficients

BGupper the upper bound of the [Beta | Gamma] latent regression coefficients

psilower the lower bound of the endogenous residuals

psiupper the upper bound of the endogenous residuals

Phixilower the lower bound of the exogenous correlation

Phixiupper the upper bound of the exogenous correlation
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Examples

#cormat <- matrix(c(1, .865, .733, .511, .412, .647, -.462, -.533, -.544,
# .865, 1, .741, .485, .366, .595, -.406, -.474, -.505,
# .733, .741, 1, .316, .268, .497, -.303, -.372, -.44,
# .511, .485, .316, 1, .721, .731, -.521, -.531, -.621,
# .412, .366, .268, .721, 1, .599, -.455, -.425, -.455,
# .647, .595, .497, .731, .599, 1, -.417, -.47, -.521,
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# -.462, -.406, -.303, -.521, -.455, -.417, 1, .747, .727,
# -.533, -.474, -.372, -.531, -.425, -.47, .747, 1, .772,
# -.544, -.505, -.44, -.621, -.455, -.521, .727, .772, 1),
# ncol = 9)

#p <- 9 # a number of manifest variables

#m <- 3 # a total number of factors

#m1 <- 2 # a number of endogenous variables
#N <- 138 # a sample size

#mvnames <- c("H1_likelihood", "H2_certainty", "H3_amount", "S1_sympathy",
# "S2_pity", "S3_concern", "C1_controllable", "C2_responsible", "C3_fault")

#fnames <- c('H', 'S', 'C')
# Step 2: Preparing target and weight matrices =========================
# a 9 x 3 matrix for lambda; p = 9, m = 3

#MT <- matrix(0, p, m, dimnames = list(mvnames, fnames))

#MT[c(1:3,6),1] <- 9

#MT[4:6,2] <- 9

#MT[7:9,3] <- 9

#MW <- matrix(0, p, m, dimnames = list(mvnames, fnames))

#MW[MT == 0] <- 1

# a 2 x 3 matrix for [B|G]; m1 = 2, m = 3

# m1 = 2
#BGT <- matrix(0, m1, m, dimnames = list(fnames[1:m1], fnames))

#BGT[1,2] <- 9

#BGT[2,3] <- 9

#BGT[1,3] <- 9

#BGW <- matrix(0, m1, m, dimnames = list(fnames[1:m1], fnames))

#BGW[BGT == 0] <- 1

#BGW[,1] <- 0

#BGW[2,2] <- 0
# a 1 x 1 matrix for Phi.xi; m - m1 = 1 (only one exogenous factor)

#PhiT <- matrix(9, m - m1, m - m1)
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#PhiW <- matrix(0, m - m1, m - m1)
#SSEMres <- ssem(covmat = cormat, factors = m, exfactors = m - m1,
# dist = 'normal', n.obs = N, fm = 'ml', rotation = 'semtarget',
# maxit = 10000,
# MTarget = MT, MWeight = MW, BGTarget = BGT, BGWeight = BGW,
# PhiTarget = PhiT, PhiWeight = PhiW, useorder = TRUE, se = 'information',
# mnames = mvnames, fnames = fnames)
#
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