Enroliment and event prediction R shiny app manual

1 Introduction

The R Shiny application developed in this study provides a reliable and flexible tool for predicting
enrollment and events in clinical trials. The application can be utilized at different stages of a clinical trial,
including the design stage, real-time before enrollment completion, and real-time after enrollment
completion.

The app's versatility is due to its ability to accommodate various enrollment and event models. These
models' assumptions are clearly outlined to ensure the app's predictions are accurate and reliable.

Users must provide relevant study data as input to the application, and it provides predictions as output.

2 Enrollment models

In this study, we adopt a Poisson enrollment process to model the number of subjects enrolled in a
clinical trial over different time periods. This process assumes that the number of subjects enrolled
during each period is statistically independent.

We use the function a(t) to represent the enroliment rate on day t since the start of the trial. The
number of subjects enrolled between day t, and day t; follows a Poisson distribution with mean

ty

u(t) — to) = j a(u) du

to
where u(t) is the integral of a(u) from O to t.

Different enroliment models assume different functional forms for a(t) and u(t). By selecting an
appropriate enrollment model, we can estimate the enrollment rate and predict the number of subjects
likely to be enrolled at different stages of the trial.

2.1 The Poisson enrollment model
The homogeneous Poisson enroliment model assumes a constant enrollment rate, i.e., a(t) = u. The
mean number of subjects enrolled by time t is given by u(t) = ut.

2.2  The time-decay enrollment model
The time-decay enrollment model assumes that a(t) = %(1 - e‘st), where u is the base rate

parameter and § is the decay rate parameter. The enrollment rate begins at a(0) = 0 and increases to a
steady state value of a(o) = u/§ as t approaches infinity. The mean number of subjects enrolled by

time t is given by u(t) = %(t _%(1 — e—St))_

2.3 The B-spline enrollment model
The B-spline enrollment model is proposed to address the limitations of the time-decay enroliment
model, particularly in capturing complex enroliment patterns where the rate of enrollment initially
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increases and then decreases. The B-spline function is employed to model the log enroliment rates to
maintain the positivity of the enrollment rate. The B-spline model requires users to specify the number
of inner knots and the number of days used for averaging enrollment rates before the last enrollment
date (lag days) to make predictions. The application of log transformation and lag days are introduced to
enhance the B-spline enrollment model proposed by Zhang and Long (2010).

The B-spline enrollment model can only be used after the trial has started and the enrollment is ongoing.
It cannot be used at the design stage.

2.4 The piecewise Poisson enrollment model

The piecewise Poisson model is a widely used enrollment model that segments the time axis into
multiple intervals, each characterized by a constant enrollment rate. Despite its lack of smoothness, the
piecewise Poisson model is a flexible and powerful tool for specifying and analyzing enrollment trends in
clinical trials.

2.5 Generation of enrollment times

Suppose that the study is in progress at time t,, and n(t,) subjects have already been enrolled, with a
target enrollment of n subjects. Therefore, the number of new subjects to enrollisr = n — n(ty). The
Poisson enrollment process assumes statistical independence of the number of enroliments in separate
time intervals. Let n(t) represent the total number of enrolled subjects by time t, and V;) denote the
enrollment time for the ith new subjects. It is evident that

P(V(i) > V1|V(i—1) = 170) =P(n(vy) —n(vy) =0) = eXp(‘H(‘h) + M(Vo))

Using the inverse transform method, we can generate the enrollment times for the r new subjects
sequentially as follows:

e Generate e; from a standard exponential distribution, and calculate V(;) = w(u(ty) +ey).
e Fori=2,..,7, generate ¢; from a standard exponential distribution, and set V(;, =

ut (V-1 + €;)-

3 Event models
Let W denote the time between enrollment and event for a subject. We can characterize the random
variable W using either the survival function, S(t) = P(W > t), or the hazard rate function,
P(T<t+AtIT >t
h(t) = lim ( | )
At—0 At

The hazard rate function tells us the instantaneous rate of having the event at any given time, given that
the subject has not had the event before that time.

3.1 The exponential distribution
The exponential distribution is the most basic time-to-event distribution that assumes a constant hazard
rate over time, which can be denoted as h(t) = A. The corresponding survival function is S(t) = e Mt

For instance, if we have an event rate of 5% in one year, this can be translated to an exponential event



_ log(s()) _ log(1-0.05)
t 365

distribution with a hazard rate of 1 = = 0.00014 per day. The median of the

exponential distribution is @.

3.2 The Weibull distribution

The Weibull distribution is a more versatile version of the exponential distribution. Unlike the
exponential distribution, it does not assume a constant hazard rate, making it more widely applicable.
This distribution is defined by two parameters, k and A, where k determines the shape of the
distribution curve and A determines its scaling. These parameters are referred to as the shape and scale
parameters, respectively.

The hazard function of the Weibull distribution can be expressed as
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When k = 1, the hazard rate remains constant over time, which is the same as the exponential case.
However, when k > 1, the hazard rate increases as time goes on, whereas it decreases when k < 1.

The survivor function for the Weibull distribution is
t K
S(t) = e_(Z)

The mean of the Weibull distribution is AT’ (1 + %) and the variance is A2 (F (1 + %) —TI? (1 + %)),

where I'(+) is the gamma function.

3.3 The log-logistic distribution

The log-logistic distribution is a probability distribution that models a variable whose logarithm follows a
logistic distribution, i.e., T ~ llogis(k, A) if log(T) ~ logis(u,d), where u = log(4),0 = 1/k. Unlike
the Weibull distribution, which has a monotonically increasing or decreasing hazard rate, the hazard rate
function of the log-logistic distribution initially increases from zero to a maximum and then decreases to
zero as time approaches infinity. The log-logistic distribution generally has heavier tails than the Weibull
distribution. This means that there is a relatively higher probability of observing extreme values for a log-
logistic random variable than for a Weibull random variable. The survival function of the log-logistic
distribution is

1 1
() = =

1+ exp (—log(z) — “) 1+ (%)K

where Kk = %is the shape parameter of the log-logistic distribution, and 4 = exp(u) is the scale

parameter of the log-logistic distribution.

The mean of the log-logistic distribution exists if &k > 1 and the variance of the log-logistic distribution
exists if k > 2.



3.4 The log-normal distribution

The log-normal distribution is a probability distribution that models a variable whose logarithm follows a
normal distribution, i.e., T ~ Inorm(u, o?) if log(T) ~ N(u,5?). Unlike the Weibull distribution which
has a monotonically increasing or decreasing hazard rate, the hazard rate function of the log-normal
distribution initially increases from zero to a maximum and then decreases to zero as time approaches
infinity. The log-normal distribution is similar to the log-logistic distribution, with the latter having
heavier tails. The survival function of the log-normal distribution is

S()=1- q;(M)
o

where ®(+) is the distribution function of the standard normal distribution.

The mean of the log-normal distribution is exp (u + %02) and the variance of the log-normal
distribution is (exp(c?) — 1) exp(2u + 72).

3.5 The piecewise exponential distribution

The piecewise exponential distribution divides the time axis into multiple intervals, each characterized by
a constant hazard rate. This allows the hazard rate to change over time and hence is more flexible than
the exponential distribution.

3.6 The model-averaging event distribution

To perform model-averaging, we model the time-to-event using two distributions: Weibull and log-
normal. The weights for each distribution are determined based on the Bayesian Information Criterion
(BIC) score. This approach seeks to balance and improve the robustness of the model by combining the
strengths of both parametric models. The survival function of the resulting averaged model takes the
following form

S() = wwpSws () + winSin(t)
where wy, g and w; y are the weights for the Weibull and log-normal distributions, respectively,

exp (— % BICWB)

exp (—%BICWB) + exp (—%BICLN)

Wyp =

wiy = 1 —wyp, and BICy,g and BIC; are the BIC scores for the respective models.

BIC is a statistical measure used for model selection among a set of candidate models. It is a criterion for
model selection that balances model fit against model complexity. Among competing models, the one
that achieves the lowest BIC value is typically preferred as it indicates a better balance between model
complexity and goodness of fit.

We utilize a weighted BIC to evaluate the performance of the averaged model. Specifically, we calculate
the weighted BIC as wy, g BICyy g + wyyBIC, .



3.7 The spline event model
In the spline event model developed by Royston and Parmar (2002), a transformed survival function,
g(S(t)), is modelled as a natural cubic spline function of log time x = log (t),

g(s®) = s(x,v)
In the proportional hazards model (scale = "hazard"), g(S(t)) = log(— log(S(t))).

In the proportional odds model (scale = "odds"), g(S(t)) = log (% — 1).

In the probit model (scale = *“normal™), g(S(t)) = —CD‘l(S(t)).

The natural cubic spline is constrained to be linear beyond boundary knots, k,,,;, and k;, 4., and is
defined as

s(x,7) =vo + vix + v2v1(x) + - + Vi1 V(%)

where v;(x) represents the jth basis function:

(0 = (x = k)" = 40 = ki)t — (1= ) (¢ = kmax)?

kmax_kj

Here, k]- is the jth inner knot, Aj = , forj =1, ..., m. The knots are chosen as equally spaced

kmax—Kmin
quantiles of the log uncensored survival times. The boundary knots are chosen as the minimum and
maximum log uncensored survival times. In addition, x, denotes the positive part of x.

With no knots (im = 0), the spline reduces to a linear function, and these models are equivalent to
Weibull, log-logistic and lognormal models, respectively. As noted in Royston and Parmar (2002),
experience suggests that a worthwhile improvement in fit over a straight-line model is often obtained by
using a spline model with a single internal knot, but often little is gained by adding further knots.

3.8 Generation of event times

Assuming a data cutoff time of ¢, for the study, we can generate the underlying event time, W;, for an
ongoing subject i. We know that the enrollment time U; < t,, and that W; > ty — U;. We use the
inverse transform method to generate W; by setting the conditional probability

S(t)

P(Wl > tIWi >ty —U;, UL) = m
0 i

equal to a uniform random variable p;, so that

W; = S71(S(to — UDpy)

For instance, for the Weibull distribution with a shape parameter k and a scale parameter 4, the
following equation can be used to generate W;:

t —U'K l/K
WL:/1<<0/‘[ l) +ei>

Here e; = —log (p;) is a random variable generated from a standard exponential distribution.




When dealing with the log-normal distribution, it is more efficient to utilize specialized algorithms
designed to generate random variables from truncated normal distributions.

To generate the event time from the model averaging event model, we begin by generating the
component indicator Y; from the following Bernoulli distribution,

Y; ~ b(1L,P(Y; = 1|W; > to — U, U))
where

WywgSwe(to — U;)
WwpSwe(to — Up) + WinSin(to — Up)

If Y; = 1, then we generate W; from the truncated Weibull distribution. If Y; = 0, then we generate W;
from the truncated normal distribution.

P(Y; =1|W; >ty — U, Up) =

4 Dropout models

In survival analysis, dropout can act as a competing risk that may prevent the observation of the event of
interest. The R shiny app models the time to dropout using various probability models, including
exponential, Weibull, log-logistic, log-normal, piecewise exponential, model averaging, and spline. To
generate the time-to-dropout data, we use the same algorithm that is applied to generate time-to-event
in Section 3.6.

5 Number of events

Bagiella and Heitjan (2001) proposed a method to calculate the cumulative number of events by time t
in a clinical trial using the following equation:

D(t) = D(to) + Q(to,t) + R(to, 1)

where D (t,) represents the number of events that have already occurred by time t,, Q(t,, t) represents
the predicted number of events between t, and t from ongoing subjects, and R(t,, t) represents the
predicted number of events between t, and t from new subjects. Here, the number of events reflects
the observed events after accounting for dropouts and administrative censoring.

6 Inputand output

To predict enrollment and events accurately, the required input and the resulting output vary depending
on the stage of the study and prediction target.

6.1 Design stage enrollment prediction
The following input must be provided:

e The target enroliment (number of subjects)

¢ The level of prediction interval (95%, 90%, or 80%)

e The number of years after study start (prediction horizon)
¢ Whether to predict by treatment

e The number of treatment groups

e Treatment allocation in a randomization block



Treatment description

Whether to fix the parameter values

The number of simulations to be conducted

The random seed used to initiate the simulations

The enrollment model for the study (e.g., Poisson, time-decay, or piecewise Poisson) and the
corresponding model parameters. These parameters can be based on previous studies, literature
reviews, and estimations from sites

The following output will be produced:

6.2

Predicted time from trial start until reaching the target number of subjects
Plots of predicted cumulative number of subjects enrolled over time

Design stage enrollment and event prediction

The following input must be provided:

The target enrollment (number of subjects)

The target events

The level of prediction interval (95%, 90%, or 80%)

The number of years after study start (prediction horizon)

What to show on prediction plot: enrollment, event, dropout, and/or ongoing

Whether to predict by treatment

The number of treatment groups

Treatment allocation in a randomization block

Treatment description

Whether to fix the parameter values

The number of simulations to be conducted

The random seed used to initiate the simulations

The enrollment model for the study (e.g., Poisson, time-decay, or piecewise Poisson) and the
corresponding model parameters. These parameters can be based on previous studies, literature
reviews, and estimations from sites

The event model for the study (e.g., exponential, Weibull, log-logistic, log-normal, or piecewise
exponential) and the corresponding parameter values by treatment. These parameter values can
also be based on previous studies and literature reviews

The dropout model for the study (e.g., none, exponential, Weibull, log-logistic, log-normal, or
piecewise exponential) and the corresponding parameter values by treatment. These parameter
values can also be based on previous studies and literature reviews

The following output will be produced:

6.3

Predicted time from trial start until reaching the target number of subjects

Predicted time from trial start until reaching the target number of events

Plots of predicted cumulative number of subjects enrolled and cumulative number of events
over time

Enrollment phase enrollment prediction

The following input must be provided:



The target enrollment (number of subjects)
The subject level data set, which must include the following variables:
O trialsdt: the trial start date
0 cutoffdt: the data cutoff date for analysis
O usubjid: unique subject identifier
0 randdt: the randomization date (or the enroliment date for a non-randomized study) for
the subject

For prediction by treatment, the subject level data set should also include
0 treatment: treatment arm coded as 1, 2, and so on for the subject
0 treatment_description: treatment label corresponding to the numeric treatment code
The level of prediction interval (95%, 90%, or 80%)
The number of years after data cutoff (prediction horizon)
Whether to predict by treatment
The number of treatment groups required for prediction by treatment
Treatment allocation in a randomization block required for prediction by treatment
Whether to fix the parameter values
The number of simulations to be conducted
The random seed used to initiate the simulations
The enrollment model for the study (e.g., Poisson, time-decay, B-spline, or piecewise Poisson)

The following output will be produced:

Summary of observed data in terms of trial start date, trial cutoff date, days since trial start, and
the current number of subjects

Plot of the observed cumulative number of subjects enrolled

Plot of the daily enrollment rate with loess smoothing

Plot depicting the enrollment model fit

Predicted time from cutoff until reaching the target number of subjects

Plots of observed and predicted cumulative number of subjects enrolled over time

6.4 Enrollment phase enroliment and event prediction
The following input must be provided:

The target enrollment (number of subjects)
The target events
The subject level data set, which must include the following variables:
O trialsdt: the trial start date
0 cutoffdt: the data cutoff date for analysis
0 usubjid: unique subject identifier
0 randdt: the randomization date (or the enroliment date for a non-randomized study) for
the subject
time: days from enrollment to the event of interest or data cutoff, whichever comes first,
for the subject
0 event: the event indicator for the subject, which takes the value 1 if the subject had the
event of interest before the data cutoff date, and 0 otherwise
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0 dropout: the indicator of competing risks to the event of interest for the subject, which
takes the value 1 if the subject dropped out before having the event of interest, and 0
otherwise

For prediction by treatment, the subject level data set should also include
0 treatment: treatment arm coded as 1, 2, and so on for the subject
0 treatment_description: treatment label corresponding to the numeric treatment code
The level of prediction interval (95%, 90%, or 80%)
The number of years after data cutoff (prediction horizon)
What to show on prediction plot: enrollment, event, dropout, and/or ongoing
Whether to predict by treatment
The number of treatment groups required for prediction by treatment
Treatment allocation in a randomization block required for prediction by treatment
Whether to fix the parameter values
The number of simulations to be conducted
The random seed used to initiate the simulations
The enrollment model for the study (e.g., Poisson, time-decay, B-spline, or piecewise Poisson)
The event model for the study (e.g., exponential, Weibull, log-logistic, log-normal, piecewise
exponential, model averaging, or spline)
The dropout model for the study (e.g., none, exponential, Weibull, log-logistic, log-normal,
piecewise exponential, model averaging, or spline)

The following output will be produced:

6.5

Summary of observed data in terms of the trial start date, cutoff date, days since trial start, the
current number of subjects, events, dropouts, and ongoing subjects

Plot of the observed cumulative number of subjects enrolled and cumulative number of events
Plot of the daily enroliment rate with loess smoothing

Kaplan-Meier plot for time to event

Kaplan-Meier plot for time to dropout

Plot depicting the enrollment model fit

Plot depicting the event model fit

Plot depicting the dropout model fit

Predicted time from cutoff until reaching the target number of subjects

Predicted time from cutoff until reaching the target number of events

Plots of observed and predicted cumulative number of subjects enrolled and cumulative number
of events over time

Follow-up phase event prediction

The following input must be provided:

The target events

The subject level data set, which must include the following variables:
O trialsdt: the trial start date
0 cutoffdt: the data cutoff date for analysis
0 usubjid: unique subject identifier



0 randdt: the randomization date (or the enrollment date for a non-randomized study) for
the subject

0 time: days from enrollment to the event of interest or data cutoff, whichever comes first,
for the subject

0 event: the event indicator for the subject, which takes the value 1 if the subject had the
event of interest before the data cutoff date, and 0 otherwise

0 dropout: the indicator of competing risks to the event of interest for the subject, which
takes the value 1 if the subject dropped out before having the event of interest, and 0
otherwise

For prediction by treatment, the subject level data set should also include
0 treatment: treatment arm coded as 1, 2, and so on for the subject
0 treatment_description: treatment label corresponding to the numeric treatment code
The level of prediction interval (95%, 90%, or 80%)
The number of years after data cutoff (prediction horizon)
What to show on prediction plot: enrollment, event, dropout, and/or ongoing
Whether to predict by treatment
Whether to fix the parameter values
The number of simulations to be conducted
The random seed used to initiate the simulations
The event model for the study (e.g., exponential, Weibull, log-logistic, log-normal, piecewise
exponential, model averaging, or spline)
The dropout model for the study (e.g., none, exponential, Weibull, log-logistic, log-normal,
piecewise exponential, model averaging, or spline)

The following output will be produced:

Summary of observed data in terms of the trial start date, data cutoff date, days since trial start,
the current number of subjects, events, dropouts, and ongoing subjects

Plot of the observed cumulative number of subjects enrolled and cumulative number of events
Kaplan-Meier plot for time to event

Kaplan-Meier plot for time to dropout

Plot depicting the event model fit

Plot depicting the dropout model fit

Predicted time from cutoff until reaching the target number of events

Plots of observed and predicted cumulative number of subjects enrolled and cumulative number
of events over time

Both summary data and subject data are available for download. Except for the input data set, the user

inputs can be saved and reused later.
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